

INTRODUCTION: GENERAL PRINCIPLES

Prof. Yasser Mostafa Kadah – www.k-space.org

EE 497 – Spring 2015

Recommended Reference

□ ANSI/AAMI HE75: 2009

General Principles

Knowledge of detailed human factors guidelines is helpful when designing a medical device

Command of the general principles (rules of thumb) is critical

- Clinicians and users can usually cope with devices that have specific design shortcomings, provided that the flaws do not lead to serious use errors or pose insurmountable obstacles to accomplishing a task
- □ Few device—user interface designs are perfect
 - Usually violate one specific guideline or another
 - Much more serious if device violates a general design principle

General Principles

□ Serious violations render a medical device unsafe and unusable

- Presenting information too quickly
- Expecting users to carefully read a manual before
- Designers should focus on meeting the high-level design principles before they perfect the details
 - no sense in refining a fundamentally flawed product

Seek user input

- Involve users early and often
- Refine designs through usability testing
- Establish design priorities
 - Keep it simple
 - Ensure safe use
 - Ensure essential communication
 - Anticipate device failures
 - Facilitate workflow

Accommodate user characteristics and capabilities

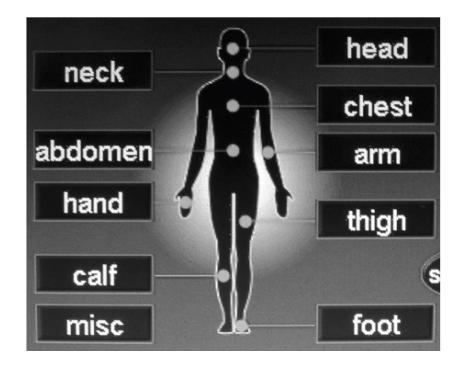
- Do not expect users to become masters
- Expect use errors
- Accommodate diverse users
- Maximize accessibility
- Consider external factors that influence task performance

Sample user	Level of mastery of performing specific tasks		
	Determine the total volume of IV fluid infused	Set up a "piggyback" infusion	Change the battery
Nurse X	High	Medium	Low
Physician Y	Medium	Low	Low
Biomedical Engineer Z	Medium	Low	High

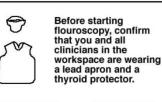
- Accommodate users' needs and preferences
 - Prioritize user input
 - Do not rely exclusively on "thought leaders"
 - Let users set the pace
- Establish realistic expectations of users
 - Do not rely on training
 - Do not rely on instructions for use
 - Do not rely on warnings
 - Do not rely on users' memory
 - Avoid information overload
 - Do not assign users tasks that are better suited to the device

Consider real-world demands

- Consider the context of use
- Consider worst-case scenarios
- Make devices as rugged as necessary
- Limit user workload


Consider potential for device migration into other uses or use environments

Develop compatible designs


- Accommodate mental models
- Establish natural or conventional mappings
- Follow industry conventions and consensus standards

Optimize user interactions to enhance safety and effectiveness

- Make devices error-tolerant and fail in a safe manner
- Avoid physical strain, repetitive motions, and cumulative traumas
- Help users anticipate future events
- Confirm important actions
- Make critical controls robust and guard them
- Clarify operational modes
- Employ redundant coding
- Design to prevent user confusion
- Don't neglect device appeal

Confirm

Cancel

Further Reading and Assignments

□ Chapter 4 of Recommended Reference