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ABSTRACT 
 

Cardiac arrhythmia is a serious disorder in heart electrical 

activity that may have fatal consequences especially if not detected 

early. This motivated the development of automated arrhythmia 

detection systems that can early detect and accurately recognize 

arrhythmias thus significantly improving the chances of patient 

survival.  In this paper, we propose an improved arrhythmia 

detection system particularly designed to identify five different 

types based on nonlinear dynamical modeling of electrocardiogram 

(ECG) signals. The new approach introduces a novel distance series 

(DS) domain derived from the reconstructed phase space (RPS) as a 

transform space for the signals that is explored using classical 

features. The performance measures showed that the proposed 

system outperforms state of the art methods.   

 

Index Terms—Arrhythmia, nonlinear dynamical modeling, 

automated arrhythmia detection. 

1. INTRODUCTION 

 

     Electrocardiogram (ECG) is a non-invasive diagnostic tool used 

for assessment of the heart electrical activity. Through 

characterization of ECG patterns, physicians can recognize 

irregularities in the heart rhythm, known as arrhythmias. Such 

arrhythmias may be life threatening and thus early detection is 

important for improving chances of patient survival [1]. 

    Researchers have developed many algorithms to provide robust 

arrhythmia classification. Ge et al. [2] introduced a method based on 

autoregressive (AR) modeling for ECG data. The AR coefficients 

were fed to generalized linear model for classification. On the other 

hand, Song et al. [3] used SVM with fifteen morphology-based 

features and two rhythm-based features to classify ECG signals after 

preprocessing using wavelet transform. Jadhav et al. [4] proposed 

an ensemble that uses a new feature elimination method that is able 

to reduce huge number of features efficiently.  

     Many studies followed different approach to classify certain 

arrhythmias through addressing the nonlinear dynamics of the heart. 

Owis et al. [5] used largest Lypanov exponent and correlation 

dimension as features to classify five arrhythmias and applied t-test 

to study the significance of the proposed features. Roberts et al. [6] 

utilized artificial neural networks to characterize three ventricular 

arrhythmias based on histogram features derived from the 

reconstructed phase space (RPS). Povinelli et al. [7] introduced 

statistical modeling of RPS using Gaussian mixture models with  

Bayesian maximum likelihood estimation for recognition of four 

types of arrhythmias.  Amann et al. [8] detected ventricular 

fibrillation based on the number of points occupying the 

reconstructed 2D phase space, which was different from that 

computed for the normal sinus rhythm. Koulaouzidis et al. [9] 

diagnosed two ventricular arrhythmias by analysis of RPS using the 

box counting method with a novel statistical index derived from 

classical statistical analysis of this method.  

In this paper, we present an automated arrhythmia detection 

system exploiting the nonlinear dynamical behavior of the ECG 

signals through analysis of RPS of five different types of 

arrhythmias obtained from MIT-BIH Arrhythmia Database. We 

propose a novel formulation of distance series (DS) transform 

domain derived from RPS. Several features such as Fourier, wavelet 

and autoregressive model coefficients are computed for each DS. 

Classical feature selection and classification techniques are used to 

experimentally verify the performance of the new features.  

2. MATERIALS AND METHODS 

     Nonlinear dynamical modeling of the ECG signals has been 

recently used to characterize the underlying dynamics of the heart 

based on its electrical activity measurements. According to Takens 

[10], if these measurements were taken from a system that has an 

attractor, the RPS for these measurements would have the same 

dynamical properties as the true attractor. Consequently, the 

characterization of the RPS for the ECG signals will reflect the heart 

functionality.  

2.1. Phase Space Reconstruction 

     In this work, the time-delay embedding method proposed by [10] 

and [11] was used for the phase space reconstruction where the 

optimal delay-time and the optimal embedding dimension are 

selected based on the mutual information between time-shifted 

versions of the signal and the Cao's method respectively.  

Let {𝑥𝑘 : 𝑘 = 1, 2, … , 𝑁} be the observed time series, the 

reconstructed 𝑚-dimensional phase space 𝑌(𝑚) can be constructed 

as the following matrix: 

𝑌𝑖(𝑚) =  [

𝑌1

𝑌2…
𝑌𝑀

] =  [

𝑥1 𝑥1+𝜏
… 𝑥1+(𝑚−1)𝜏

𝑥2 𝑥2+𝜏
… 𝑥2+(𝑚−1)𝜏

…
𝑥𝑀

…
𝑥𝑁−𝑚𝜏

…
…

…
𝑥𝑁+(𝑚− )𝜏

], 

 

(1) 

where 𝑀 = 𝑁 − (𝑚 − 1)𝜏, 𝑁 is the length of the original time 

series, 𝑚 is the optimal embedding dimension, and 𝜏 is the optimal 

delay time. 

2.1.1. Optimal selection of delay time 



The delay-time 𝜏 for every ECG signal was selected as the first local 

minimum of the graph of the mutual information versus the time 

lags. The mutual information between time series 𝑥𝑘 and the 

delayed version of the same time series 𝑥𝑘+𝜏 is given by the 

following equation:  

𝐼(𝜏) =  ∑ ∑ 𝑃[𝑥𝑘(𝑖), 𝑥𝑘+𝜏(𝑗)]𝑙𝑜𝑔2

𝑃[𝑥𝑘(𝑖), 𝑥𝑘+𝜏(𝑗)]

𝑃[𝑥𝑘(𝑖)]𝑃[𝑥𝑘+𝜏(𝑗)]

𝑁𝑠

𝑗=1

𝑁𝑠

𝑖=1

, 

𝑘 =  1,2, … , 𝑁 − (𝑚 − 1)𝜏  . 

 

(2) 

 

Here 𝑁𝑠 is the total number of the probability bins or states, 

𝑃[𝑥𝑘(𝑖)] is the probability of 𝑥𝑘 belonging to state 𝑖, 𝑃[𝑥𝑘+𝜏(𝑗)] is 
the probability of 𝑥𝑘+𝜏 belonging to state 𝑗, 𝑃[𝑥𝑘(𝑖), 𝑥𝑘+𝜏(𝑗)] is the 

joint probability of 𝑥𝑘 belonging to state 𝑖, and  𝑥𝑘+𝜏 belonging to 

state 𝑗 at the same time. According to [12], 𝑃[𝑥𝑘(𝑖)] can be 

calculated as follows: 

𝑃[𝑥𝑘(𝑖)] =  
𝑛(𝑖)

𝑁 − (𝑚 − 1)𝜏
, 

 

(3) 

where 𝑛(𝑖) is the number of data points in 𝑥𝑘 belonging to state 𝑖 
and  𝑁 − (𝑚 − 1)𝜏 is the length of 𝑥𝑘. Probabilities 𝑃[𝑥𝑘+𝜏(𝑖)] and 

𝑃[𝑥𝑘(𝑖), 𝑥𝑘+𝜏(𝑗)] can be calculated in the same way. In this work, 

the optimal 𝜏 is computed as the average of the calculated lags for 

all signals in the training dataset. 

2.1.2. Optimal selection of embedding dimension 

 

     We used Cao’s method [13] to estimate the minimum embedding 

dimension for every ECG signal in the training dataset. The method 

is based on the principal that if 𝑚 is the true embedding dimension, 

then two points that are close to each other in 𝑚 dimensional space 

will remain close in 𝑚 + 1 dimensional space and hence called true 

neighbors. This method starts to reconstruct the phase space using 

embedding dimension 𝑚 = 1 and then increase it until the number 

of the false nearest neighbor approaches zero. Cao’s function is 

defined as follows: 

 

𝐸(𝑚) =  
1

𝑁 − 𝑚𝜏
∑

‖𝑌𝑖(𝑚 + 1) −  𝑌𝑛(𝑖,𝑚)(𝑚 + 1)‖

‖𝑌𝑖(𝑚) −  𝑌𝑛(𝑖,𝑚)(𝑚)‖

𝑁−𝑚𝜏

𝑖=1

. 
 

(4) 

 

Here 𝑌𝑛(𝑖,𝑚)(𝑚) is the nearest neighbor of 𝑌𝑖(𝑚) in the 𝑚 

dimensional space and ‖∗‖ denotes the maximum norm function. 

The minimum embedding dimension is identified as the value of 𝑚 

at which the measure 𝐸1(𝑚) approaches one with 𝐸1(𝑚) defined as: 

𝐸1(𝑚) =  
𝐸(𝑚 + 1) 

𝐸(𝑚) 
 . 

 

(5) 

In some cases even with random signals 𝐸1(𝑚) may still approach 

one. Therefore, a more robust function 𝐸2(𝑚) is defined by Cao to 

distinguish between deterministic and random signals such that: 

𝐸2(𝑚) =  
𝐸∗(𝑚 + 1) 

𝐸∗(𝑚) 
 , 

 

(6) 

where, 

𝐸∗(𝑚) =  
1

𝑁 − 𝑚𝜏
∑ |𝑥𝑖+𝑚𝜏 − 𝑥𝑛(𝑖,𝑚)+𝑚𝜏|

𝑁−𝑚𝜏

𝑖=1

. 
 

(7) 

Here, 𝑥𝑛(𝑖,𝑚)+𝑚𝜏 is the nearest neighbor of 𝑥𝑖+𝑚𝜏. The signal is said 

to be deterministic if the value of 𝐸2(𝑚) is not unity for at least one 

value of the embedding dimensions. In this work, the optimal 𝑚 was 

computed as the average of the calculated embedding dimensions 

for the training dataset. 

2.2. Feature Extraction 

We define a novel distance series (DS) domain representing a 

transformation of the original multi-dimensional phase space into a 

one-dimensional transform space constructed from the Euclidian 

distance between every point in the phase space and the origin. In 

other words, this transform space maps how consecutive points in 

the original phase space move closer to or farther from a reference 

point (here, the origin of the phase space). A set of features are 

extracted from this new DS space including their raw values, 

autoregressive model parameters, magnitude of discrete Fourier 

transform, and wavelet transform coefficients.  

2.2.1. Distance Series (DS) 

Aiming to characterize the complex variations in RPS, DS maps 

their complex multidimensional trajectory into a one-dimensional 

space. We present calculation of the distance series 𝐷𝑖 defined as the 

Euclidian distance between every point in the phase space 𝑌𝑖  and the 

origin, which can be calculated as: 

𝐷𝑖 =  √∑ 𝑌𝑖𝑗
2

𝑚

𝑗=1

, 𝑖 = 1,2, … , 𝑀. 

 

(8) 

 

If successive values of 𝐷𝑖  show smooth behavior, this indicates a 

slow trajectory and/or a small region of support in the phase space.  

On the other hand, large changes of such values indicate a trajectory 

that is moving with large steps and/or large support in the phase 

space. It should be noted that this mapping allows capturing more 

information about the trajectory than the traditional measures of 

complexity.  

2.2.2. Autoregressive (AR) Model 

AR modeling is a popular technique used in time series analysis. An 

AR model of order 𝑝 can be written as: 

𝐷𝑖 =  ∑ 𝛼𝑗𝐷𝑖−𝑗 + 𝜀𝑖

𝑝

𝑗=1

 , 
 

(9) 

 

where 𝑝 represents the number of points in the past that will be used 

to model the current point and 𝜀𝑖 denotes a zero mean white noise 

with variance 𝛿2, while 𝛼𝑗  represent the model coefficients that will 

be used as features. To calculate the AR coefficients, we used 

Burg’s algorithm. As for the model order, it was selected to be the 

order that produces the maximum possible accuracy over the 

training phase.  

2.2.3. Transform-Domain Features 

     Two sets of transform-domain features for DS were extracted 

including the magnitude of the discrete Fourier transform and the 

wavelet decomposition coefficients. To illustrate the utility of this 

approach, when the trajectory points have the same distance from 

the origin, the Fourier transform is concentrated near DC with no 

high-frequency components. Otherwise, it will contain a spectrum 

that is characteristic to global changes of the distance in the phase 

space. The wavelet decomposition provides a time-frequency 

representation of the decomposed series, which allows the detection 

of local variations in the original phase space trajectory.  



    The selection of wavelet decomposition parameters (i.e., selection 

of basic wavelet and number of levels) was not found to be critical 

for this work. Therefore, we report results based on using 

Daubechies 6 family with 8 levels to allow repeating the procedure 

by readers but do not exclude the possibility of getting similar 

results with other wavelet decomposition parameters.    

2.3. Feature selection and classification 

Fisher score [14] was used for feature selection purposes. In 

addition, the proposed system was evaluated using the basic K-

nearest neighbor classifier (KNN) to reflect the strength of the 

proposed features. 

2.4. Dataset Description 

 

     MIT-BIH Arrhythmia Database [15] contains 48 ECG recordings 

of half an hour duration. The database include 19 different types 

with each having of 300 samples. Table 1 shows the 30 records that 

were used to test our methodology.  

 

Table 1: Records used to test the proposed methodology. 
Type Count Records 

N 1500 100,101,105, 106, 114,116,200,209,233,234 

APC 1317 100,118,202,209,220,222,232 

PVC 1274 106,116,119,200,203,208,213,221,223,233 

LBBB 1131 109,111,207,214 

RBBB 1037 118,124,212,231,232 

3. RESULTS AND DISCUSSION 

To illustrate the validity of the proposed approach, we computed the 

average of the DS raw values for each type as shown in Fig. 1. The 

average DS values over the whole training dataset were plotted 

versus all possible time lag indices which are linear indices 

corresponding to those of the RPS.  Thus, the first point in the 

reconstructed phase space given by RPS (0, 𝜏, 2𝜏, 3𝜏) corresponds 

to the first time lag index and the last point defined as RPS(𝑁 −
3𝜏, 𝑁 − 2𝜏, 𝑁 − 𝜏, 𝑁) corresponds to the last time lag index. 

     Based on the information shown in Fig. 1, it is possible to 

conclude that the different types exhibit different DS patterns. It is 

clear that type RBBB possess the largest peak value indicating that 

its trajectory is moving very fast from a certain point (Departure 

point) in the space to a far point (Peak value point) and then it 

returns to a point (Arrival point) that is near to the departure point 

again. While for VPC, the peak value is lower than that in case of 

type RBBB with a departure point that is closer to the origin and an 

arrival point that is more distant from the origin. Comparing DS 

curves with that for type LBBB, it is obvious that this type has 

lower peak value. As for the normal beats, the peak value that is 

greater than the peak value in case of APC and less than that for all 

other beats. Moreover, the normal beats have the farthest departure 

point while APC beats have the nearest departure point.  

     To assess the performance of the proposed algorithm, 30 ECG 

records from MIT-BIH Arrhythmia database were used to perform 6 

different experiments using 10-fold cross validation scheme on a PC 

with Intel® Core™ i7 2.66 GHz processor and 4 GB RAM. The 6 

experiments were meant to try different combinations of features 

with the aim of finding the best set of features that maximize the 

system performance.  

     The six experiments comprise the following features which were 

fed separately and in combinations to the system: DS values, the 

coefficients of the 6𝑡ℎ order AR model, the magnitude of the 

Table 3: Comparison between the proposed methods and other studies. 

Method Features Classification Accuracy 

[16] Qualitative Features Fuzzy C-means 93.57 % 

[17] Qualitative Features Hidden Markov model 89.74 % 

[18] Qualitative Features Fuzzy Logic 94.03 % 

[19] S-Transform based features and temporal features Neural Network 97.95 % 

[20] Wavelet Transform based features + Timing Features SVM 95.89 % 

[21] Principal Component Analysis Coefficients SVM 98.11% 

Proposed  AR  Coefficients + Wavelet Coefficients KNN  98.70 % 

Table 2: Average of the best performance measures obtained. 

Features 𝑛𝑓 Accuracy Sensitivity Specificity PPV NPV 

DS Values 120 98.10 % 98.25 % 99.45 % 98.26 % 99.45 % 

Magnitude of Fourier Transform 100 94.17 % 95.09 % 98.62 % 95.59 % 98.45 % 

Wavelet Coefficients 80 98.56 % 99.11 % 99.45 % 98.29 % 99.71 % 

DS Values + Wavelet  Coefficients 80 98.18 % 99.13 % 99.47 % 98.34 % 99.72 % 

AR  Coefficients + Wavelet Coefficients 100 98.70 % 99.54 % 99.42 % 98.19 % 99.85 % 

All Features 100 98.58 % 99.28 % 99.44 % 98.26 % 99.77 % 

Fig. 1: The average DS calculated for different beat types. 



Fourier transform (FT), and the wavelet decomposition coefficients. 

In Table 2, different experiments were evaluated in terms of 

accuracy, sensitivity, specificity, positive predictive value (PPV), 

and negative predictive value (NPV).  The experiment that used 

wavelet and AR coefficients gave the best results. It is worth 

mentioning that all indicated performance measures are acquired at 

𝑘 = 1 that showed the best performance of the KNN classifier.  

    Different methods in the literature were developed to classify the 

same beat types. The methods presented in [16-18] use qualitative 

features with different classification techniques while the method 

developed by [19] presented S-transform based features combined 

with wavelet and temporal features. In addition, methods in [20], 

[21] used the support vector machines (SVM) with different set of 

features as shown in Table 3. Moreover, all these methods employed 

sophisticated classifiers. In contrast, the proposed system utilized a 

very simple classifier and got the highest accuracy compared to the 

aforementioned methods. This reflects the robustness of the 

proposed DS approach and validates its value for this application. 

    Although the proposed algorithm seems to be complicated, the 

testing time shown in Table 4 indicates that the system meets the 

relevant AAMI standard [22] for maximum classification time. 

Therefore, the processing time of the proposed approach is practical 

and suggests potential for clinical use.  

4. CONCLUSION 

In this paper, we presented an automated system for arrhythmia 

classification that can differentiate between five types of ECG 

signals; namely, normal, APC, VPC, LBBB, and RBBB. We 

propose a novel formulation of distance series (DS) transform 

domain derived from RPS that provide more information about the 

phase space trajectory. The raw DS domain values were used in 

addition to features derived from them to come up with a feature 

vector for each sample. Fisher score algorithm and KNN classifier 

were used for feature selection and classification respectively to 

measure the performance of the proposed approach. The best 

accuracy was achieved using the AR coefficients combined with the 

wavelet decomposition coefficients of DS. Moreover, the 

computation team on a modest computing platform was shown to 

meet practical constraints for clinical use.  
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