

MEDICAL EQUIPMENT (1) TOPIC 1: RECORDING AND PROCESSING OF BIOSIGNALS

Term 1 – 2013/14 Prof. Yasser Mostafa Kadah – www.k-space.org

Measurement Basics

- Measuring is the experimental determination of a measured value by quantitative comparison of the measurand with a comparison value in a direct or indirect manner
- Measured value obtained by this procedure is given as a product of a numeric value and a dimensional unit
- It can be recorded continuously as a temporal variation of a physical value or discontinuously at particular moments
- Deviation of measured value from the measurand is the measurement error
 - Depends on measurement procedure, measurement device, and environmental effects
 - Systematic and random errors are distinguished

Measuring in Medicine

- Aim of measuring in medicine is objective description of state of patient who might possibly not be able to cooperate
- Goal is to help the physician to define the respective therapy and to evaluate the therapy process and assess the prognosis
- Long-term monitoring of physiological parameters is combined with an alarm function if preset limiting values are exceeded
- New developments include closed-loop systems which directly intervene in patient's state after analysis of measured values
- Unique in having inter-individual and intra-individual deviations for biological measurements, owing to biological variability
 Measured values vary from patient to patient and within same patient

Objectives

- Metrological acquisition, conversion, processing and transmission of biological signals
- Measuring the reaction or the behavior of the biological object to an external stimulus
- Measurements during application of extra- or intracorporeal assist systems to support organ functions or as organ compensation, as well as manipulators for therapeutic means
- Application of substances, irradiation or waves and measurement of reflection, absorption, scattering, distribution or fluorescence to display structures and functions in the organism
- Extraction of body fluids, substances and tissues, as well as tests and analysis in clinical and chemical laboratories

Unique Aspects

- Extent of inconvenience for patient and measurement procedure directly influences the reliability of measured values
- Biological sources of interference (biological artifacts with physiological origin) superimposing the measurand
- Measurement duration and the reproducibility of an examination are limited for most methods
- Wide variability of examined persons
 Ranging from fetus, infants and trained athletes to aged people
- Include subjective methods requiring cooperation of patient
 - e.g., audiometry, vibration tests and temperature sensation

Biosignals

- Biosignals can be defined as phenomena to describe functional states and their variations in a living organism
 - Actual measurand that should be metrologically determined for diagnostic purposes
- Provide information about metabolic, morphological and functional changes, describe physiological and pathophysiological states as well as process dynamics
- To analyze them, generation locus and thus spatial and temporal correlation is significant
- Biosignals are acquired from living organisms, organs and organ parts down to single cells

Biosignal Types

- □ Bioacoustic signals (heart sound, lung sounds, speech)
- Biochemical signals (substance compositions, concentrations)
- Bioelectric and biomagnetic signals (electric potentials, ion currents)
- Biomechanical signals (size, shape, movements, acceleration, flow)
- Biooptical signals (color, luminescence)
- Biothermal signals (body temperature)

Biosignal Examples

Biological Measuring Chain

- Biosensor is a probe to register biological events and morphological structures
- Often, it is directly connected to a transducer, or it transduces the primary measurement signal into a secondary signal itself

Biosensor Requirements

- Feedback-free registration of the signals
- Provide reproducible measurement results
- Transmission behavior has to remain constant for a long time
- Narrow production tolerances
- High biocompatibility
- □ Low stress to patient
- Small mass and small volume
- Application should be simple and manageable
- Allow cleaning, disinfection and possibly sterilization

Chemoelectric Transducers

- Used for the measurement of individual chemical components in the blood, in body tissues, in the exhaled air or on the skin
 - Potentiometric sensors, based on the measurement of cell potential
 - Amperometric sensors, based on cell current
 - Conductometric sensors, based on admittance

Electric and Magnetic Transducers

- Transduce electric signal (ion current) into electric signal (electron current)
- Two groups: microelectrodes (metal microelectrodes) and macroelectrodes (surface electrodes)

Mechanoelectric Transducers

- Measure length changes, strains, pressure changes in tissue, body fluids and organs as well as for the measurement of sounds, microvibrations and blood flow
- □ Strain Gauge: $R = \rho L/A$ allows detecting changes in L
- Piezoresistive elements as strain gauge in a Wheatstone bridge
 - Changes in resistivity can be observed that are up to 100 times larger than the geometric effect yielding a more sensitive strain gauge
- Capacitive transducer: force applied to capacitor yielding a change in the distance between its two plates changes C

$$C_X = \varepsilon_0 \varepsilon_\gamma \frac{A}{x}$$

Mechanoelectric Transducers

Piezoelectric transducers: Mechanical stress in the direction of a polar electric axis causes the generation of electric charges due to a shift of the atoms, at very small deformations

$$\Delta q = k \Delta F$$

Dynamic Properties of Biosensors

- Ideal transmission behavior of a measuring chain is linear
 In reality, relation is not linear, delayed and sometimes oscillating
- □ Signal processing is to correct for such problems

Bioacoustic Signals

- Includes sounds of the upper respiratory tracts (snoring, speech), lung sounds and heart sound
- □ Can be registered with a microphone or a stethoscope

Biochemical Signals: Glucose

- Can be determined in vivo or in vitro
- They can be registered directly or indirectly by reaction
- Example: Glucose identification
 - Amperometrically detected by the O₂ consumption or the hydrogen peroxide formation

$$\begin{array}{c} \text{Glucose} + \text{O}_2 \xrightarrow{\text{GOD}} \text{Gluconolactone} + \text{H}_2\text{O} \\ \xrightarrow{\text{H}_2\text{O}_2} \text{Gluconic acid} + \text{H}_2\text{O}_2 \end{array}$$

Biochemical Signals: Concentration

Infrared spectrometers measure the intensity attenuation of infrared radiation after passing a measuring cuvette and compare it with a reference

$$I_{\rm a} = I_0 \,\mathrm{e}^{-kcl}$$

• I_{α} :output intensity, I_{0} :input intensity, c :concentration, l :layer thickness, and k :constant of proportionality

Bioelectric and Biomagnetic Signals

Signal	Frequency (Hz)	Amplitude (mV)
ECG (heart)	0.2-200	0.1-10
EEG (brain)	0.5-100	$2-1000\mu V$
EMG (muscle)	10-10000	0.05 - 1
EGG (stomach)	0.02-0.2	0.2-1
EUG (uterus)	0-200	0.1-8
ERG (retina)	0.2-200	0.005 - 10
EOG (eye)	0-100	0.01-5
FAEP (brain stem)	100-3000	$0.5 - 10 \mu V$
SEP (somatosensory	2-3000	$0.5 - 10 \mu V$
system)		
VEP (visual system)	1-300	$1-20\mu V$

Biomechanical Signals

Signal	Spezification	Amplitude	Conversion
Pulse (rate)		$720 - 200 \min^{-1}$	
Breathing (rate)		$5 - 60 \min^{-1}$	
Blood pressure (arterial)	Systole	8–33 kPa	60-250 mmHg
	Diastole	5-20 kPa	40-150 mmHg
Blood pressure (venous)		0-4 kPa	0-30 mmHg
Intraocular pressure		0-7 kPa	0-50 mmHg
Blood flow		0.05-51/min	
Blood flow velocity		0.05 - 40 cm/s	
Respiratory flow velocity		20–120 cm/s	
Cardiac output		3-81/min	
Respiratory volume		200–2000 ml/gasp	
Muscle work		10-500 W	
Blood volume	Adults	7000 ml	
Amount of urine	Adults	1500 ml/d	
Nerve conduction velocity	Median nerve	50-60 m/s	

Biomechanical Signals: Pressure

IBP: Invasive probe

Biomechanical Signals: Volume

Biomechanical Signals: Flow Velocity

Doppler effect

$$\Delta f = f_1 - f_2 = f_1 \frac{2v\cos\varphi}{c}$$

Biomechanical Signals: Cardiac Output

Indicator-Dilution method

$$\mathbf{CO} = \frac{m_0}{\int\limits_{t_0}^{\infty} c(t) \, \mathrm{d}t}$$

Biomechanical Signals: Mass

Quartz microbalance

measurement is based on resonance frequency shift of an oscillating crystal due to deposition of substances on the crystal surface

$$\Delta f = \frac{2.3 \times 10^6 f_0^2 \Delta m}{A}$$

Biooptical Signals: O₂ Saturation

- Evaluation of color (skin)
- Evaluation of O₂ saturation based on the different absorption characteristics of oxygenated and deoxygenated hemoglobin

Biothermal Signals: Thermography

- The Most important biothermal signal is the body temperature
- Using thermography, temperature distribution on a skin area can be determined.
- Pathological changes can be detected from distribution relative to normal areas
 - Example: reduction of blood flow due to smoking

□ Sheet #1 on class web site