Signals and Systems - Chapter 1

Continuous-Time Signals

Prof. Yasser Mostafa Kadah

Overview of Chapter 1

- Mathematical representation of signals
- Classification of signals
- Signal manipulation
- Basic signal representation

Introduction

- Learning how to represent signals in analog as well as in digital forms and how to model and design systems capable of dealing with different types of signals
- Most signals come in analog form
- Trend has been toward digital representation and processing of data
 - Computer capabilities increase continuously

Analog vs. Discrete Signals

- Analog: Infinitesimal calculus (or just calculus)
 - Functions of continuous variables
 - Derivative
 - Integral
 - Differential equations

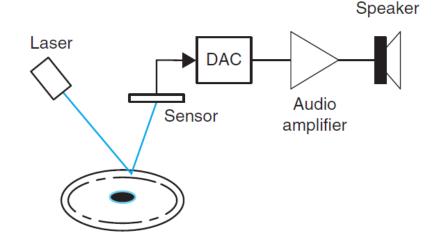
Discrete: Finite calculus

- Sequences
- Difference
- Summation
- Difference equations

Real Life

Example of Signal Processing Application

- Compact-Disc (CD) Player
 - Analog sound signals
 - Sampled and stored in digital form
 - Read as digital and converted back to analog
 - High fidelity (Hi-Fi)



Classification of Time-Dependent Signals

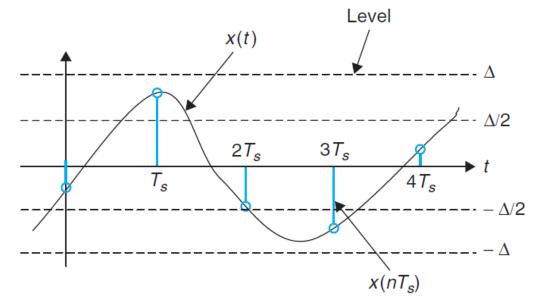
- Predictability of their behavior
 - Signals can be random or deterministic
- Variation of their time variable and their amplitude
 - Signals can be either continuous-time or discrete-time
 - Signals can be either analog or discrete amplitude, or digital
- Energy content
 - Signals can be characterized as finite- or infinite-energy signals
- Exhibition of repetitive behavior
 - Signals can be periodic or aperiodic
- Symmetry with respect to the time origin
 - Signals can be even or odd
- Dimension of their support
 - Signals can be of finite or of infinite support. Support

Continuous-Time Signals

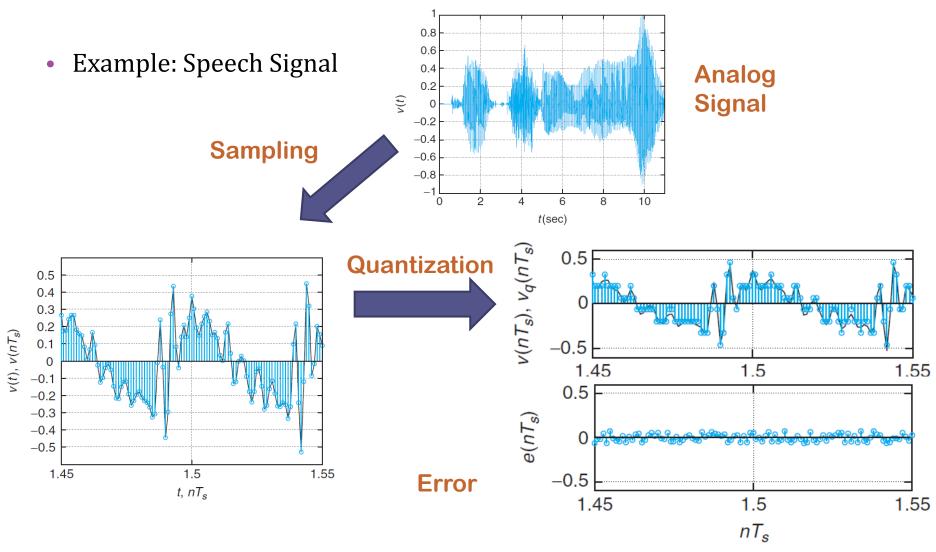
- Continuous-amplitude, continuous-time signals are called *analog signals*
- Continuous-amplitude, discrete-time signal is called a *discrete-time signal*
- Discrete-amplitude, discrete-time signal is called a digital signal
- If samples of a digital signal are given as binary values, signal is called a *binary signal*

Continuous-Time Signals

- Conversion from continuous to discrete time:
 Sampling
- Conversion from continuous to discrete amplitude: *Quantization* or *Coding*



Continuous-Time Signals

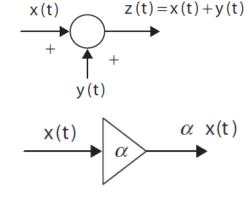


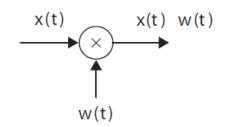
Continuous-Time Signals: Examples

- Example 1: $x(t) = \sqrt{2}\cos(\pi t/2 + \pi/4)$ $-\infty < t < \infty$
 - Deterministic, analog, periodic, odd, infinite support/energy
- Example 2: $y(t) = (1+j)e^{j\pi t/2}$ $0 \le t \le 10$
 - Deterministic, analog, finite support
- Example 3: p(t) = 1 $0 \le t \le 10$
 - Deterministic, analog, finite support

Basic Signal Operations

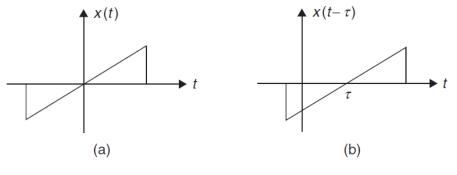
- Signal addition
- Constant multiplication
- Time and frequency shifting
 - Shift in time: *Delay*
 - Shift in frequency: *Modulation*
- Time scaling
 - Example: x(-t) is a "reflection" of x(t)
- Time windowing
 - Multiplication by a window signal w(t)

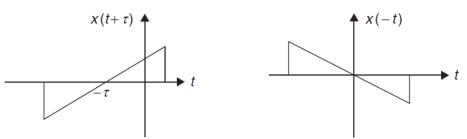




Basic Signal Operations

- Example:
 - (a) original signal
 - (b) delayed version
 - (c) advanced version
 - (d) Reflected version





• Remark:

- Whenever we combine the delaying or advancing with reflection, delaying and advancing are swapped
- Ex 1: x(-t+1) is reflected and delayed
- Ex 2: x(-t-1) is reflected and advanced

Basic Signal Operations

 Example: Find mathematical expressions for x(t) delayed by 2, advanced by 2, and reflected when:

$$x(t) = \begin{cases} 1 & 0 \le t \le 1\\ 0 & \text{otherwise} \end{cases}$$

• For delay by 2, replace t by t-2 $x(t-2) = \begin{cases} 1 & 0 \le t-2 \le 1 \text{ or } 2 \le t \le 3 \\ 0 & \text{otherwise} \end{cases}$

For advance by 2

 $x(t+2) = \begin{cases} 1 & 0 \le t+2 \le 1 \text{ or } -2 \le t \le -1 \\ 0 & \text{otherwise} \end{cases}$

 $x(-t) = \begin{cases} 1 & 0 \le -t \le 1 \text{ or } -1 \le t \le 0\\ 0 & \text{otherwise} \end{cases}$

For reflection

Even and Odd Signals

Symmetry with respect to the origin

x(t) even : x(t) = x(-t)x(t) odd : x(t) = -x(-t)

Decomposition of any signal as even/odd parts

 $y(t) = y_e(t) + y_o(t)$ $y_e(t) = 0.5 [y(t) + y(-t)]$ $y_o(t) = 0.5 [y(t) - y(-t)]$

• Example: $x(t) = \cos(2\pi t + \theta) -\infty < t < \infty$ • Neither even nor odd for $\theta \neq 0$ or multiples of $\pi/2$

Periodic and Aperiodic Signals

- Analog signal x(t) is periodic if
 - It is defined for all possible values of *t*, $-\infty < t < \infty$
 - there is a positive real value T₀, called the period, such that for some integer k, x(t+kT₀) =x(t)
- The period is the smallest possible value of $T_0>0$ that makes the periodicity possible.
 - Although NT₀ for an integer N>1 is also a period of x(t), it should not be considered *the* period
 - Example: $cos(2\pi t)$ has a period of 1 not 2 or 3

Periodic and Aperiodic Signals

- Analog sinusoids of frequency $\Omega_0 > 0$ are periodic of period $T_0 2\pi/\Omega_0$.
 - If $\Omega_0=0$, the period is not well defined.
- The sum of two periodic signals x(t) and y(t), of periods T1 and T2, is periodic if the ratio of the periods T1/T2 is a rational number N/M, with N and M being nondivisible.

• The period of the sum is *MT*1=*NT*2

- The product of two periodic signals is not necessarily periodic
 - The product of two sinusoids is periodic.

Periodic and Aperiodic Signals

• Example 1

Consider a periodic signal x(t) of period T_0 . Determine whether the following signals are periodic, and if so, find their corresponding periods:

- (a) y(t) = A + x(t).
- (b) z(t) = x(t) + v(t) where v(t) is periodic of period $T_1 = NT_0$, where N is a positive integer.
- (c) w(t) = x(t) + u(t) where u(t) is periodic of period T_1 , not necessarily a multiple of T_0 . Determine under what conditions w(t) could be periodic.

• Example 2

Let $x(t) = e^{j2t}$ and $y(t) = e^{j\pi t}$, and consider their sum z(t) = x(t) + y(t), and their product w(t) = x(t)y(t). Determine if z(t) and w(t) are periodic, and if so, find their periods. Is p(t) = (1 + x(t))(1 + y(t)) periodic?

Finite-Energy and Finite-Power Signals

- Concepts of energy and power introduced in circuit theory can be extended to any signal
 - Instantaneous power
 - Energy
 - Power

$$p(t) = v(t)i(t) = i^{2}(t) = v^{2}(t)$$

$$E_{T} = \int_{t_{0}}^{t_{1}} p(t)dt = \int_{t_{0}}^{t_{1}} i^{2}(t)dt = \int_{t_{0}}^{t_{1}} v^{2}(t)dt$$

$$P_{T} = \frac{E_{T}}{T} = \frac{1}{T} \int_{t_{0}}^{t_{1}} i^{2}(t)dt = \frac{1}{T} \int_{t_{0}}^{t_{1}} v^{2}(t)dt$$

Finite-Energy and Finite Power Signals

• Energy of an analog signal x(t)

$$E_x = \int_{-\infty}^{\infty} |x(t)|^2 dt$$

Power of an analog signal x(t)

$$P_x = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt$$

- Signal is *finite energy* (or *square integrable*) if $E_x < \infty$
- Signal is *finite power* if $P_x < \infty$

Finite-Energy and Finite Power Signals: Example

Find the energy and the power of the following:

(a) The periodic signal $x(t) = \cos(\pi t/2 + \pi/4)$.

- (b) The complex signal $y(t) = (1 + j)e^{j\pi t/2}$, for $0 \le t \le 10$ and zero otherwise.
- (C) The pulse z(t) = 1, for $0 \le t \le 10$ and zero otherwise.

$$E_{x} = \int_{-\infty}^{\infty} \cos^{2}(\pi t/2 + \pi/4) dt \to \infty \qquad P_{x} = \frac{1}{8} \int_{0}^{4} \cos(\pi t + \pi/2) dt + \frac{1}{8} \int_{0}^{4} dt = 0 + 0.5 = 0.5$$

$$E_{y} = \int_{0}^{10} |(1+j)e^{j\pi t/2}|^{2} dt = 2 \int_{0}^{10} dt = 20$$
Finite Energy Signals:
Zero Power
$$P_{x} = \lim_{T \to \infty} \frac{E_{x}}{2T} = 0$$

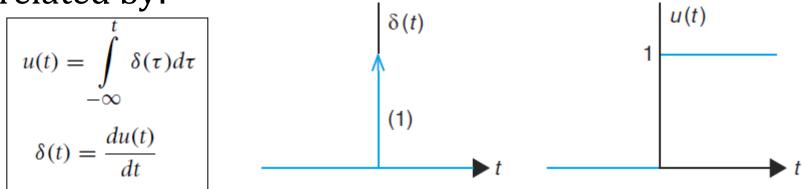
$$E_{z} = \int_{0}^{10} dt = 10$$

Representation Using Basic Signals

- A fundamental idea in signal processing is to attempt to represent signals in terms of basic signals, which we know how to process
 - Impulse
 - Unit-step
 - Ramp
 - Sinusoids
 - Complex exponentials

Impulse and Unit-Step Signals

- The impulse signal $\delta(t)$ is:
 - Zero everywhere except at the origin where its value is not well defined
 - Its area is equal to unity
- Impulse signal δ(t) and unit step signal u(t) are related by:



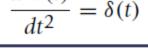
Ramp Signal

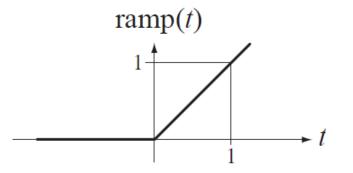
The ramp signal is defined as

r(t) = t u(t)

Its relation to the unit-step and the unit-impulse signals is

$$\frac{dr(t)}{dt} = u(t)$$
$$\frac{d^2r(t)}{dt} = \delta(t)$$



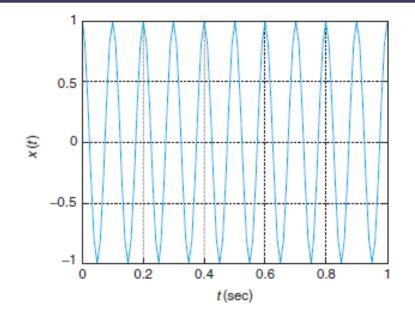


Sinusoids

Sinusoids are of the general form

$$A\cos(\Omega_0 t + \theta) = A\sin(\Omega_0 t + \theta + \pi/2) \qquad -\infty < t < \infty$$

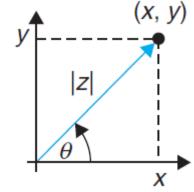
$$\Omega_0 = 2\pi f_0 = \frac{2\pi}{T_0}$$



Review of Complex Numbers

- A complex number z represents any point (x, y):
 z = x + j y,
 - $x = \operatorname{Re}[z]$ (real part of z)
 - y = Im[z] (imaginary part of z)
 i = Sart(1)
 - j =Sqrt(-1)
- Mathematical representations:
 - Rectangular or polar form
 - Magnitude $|\vec{z}| = \sqrt{x^2 + y^2} = |z|$ and Phase $\theta = \angle \vec{z} = \angle z$

• Conjugate $z^* = x - jy = |z|e^{-j\angle z}$



 $z = x + jy = |z|e^{j\theta}$

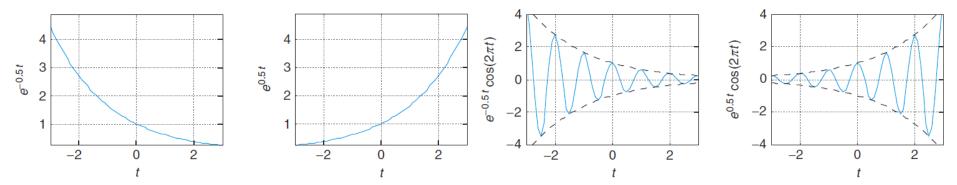
Complex Exponentials

A complex exponential is a signal of the form

$$x(t) = Ae^{at}$$

 $= |A|e^{rt} \left[\cos(\Omega_0 t + \theta) + j\sin(\Omega_0 t + \theta)\right] -\infty < t < \infty$

where $A = |A|e^{j\theta}$, and $a = r + j\Omega_0$ are complex numbers.



• Depending on the values of *A* and *a*, several signals can be obtained from the complex exponential

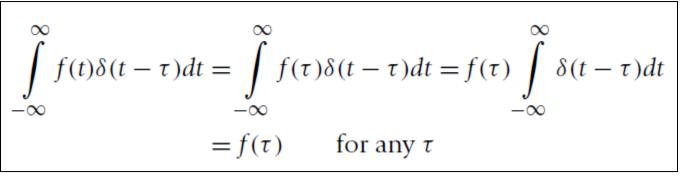
Basic Signal Operations—Time Scaling, Frequency Shifting, and Windowing

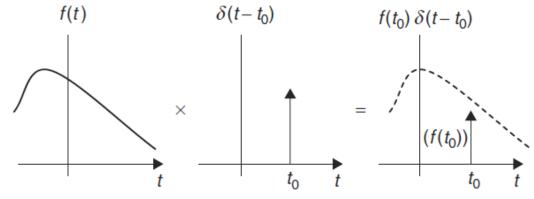
Given a signal x(t), and real values $\alpha \neq 0$ or 1, and $\phi > 0$:

- $x(\alpha t)$ is said to be contracted if $|\alpha| > 1$, and if $\alpha < 0$ it is also reflected.
- $x(\alpha t)$ is said to be expanded if $|\alpha| < 1$, and if $\alpha < 0$ it is also reflected.
- $x(t)e^{j\phi t}$ is said to be shifted in frequency by ϕ radians.
- For a window signal w(t), x(t)w(t) displays x(t) within the support of w(t).

Sifting Property

Property of the impulse function





Problem Assignments

- Problems: 1.4, 1.5, 1.12, 1.13, 1.14, 1.18
- Partial Solutions available from the student section of the textbook web site