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a b s t r a c t

Computed tomography (CT) is a widely used imaging technique in medical diagnosis.

Among the latest advances in CT imaging techniques, the use of cone-beam X-ray projec-

tions, instead of the usual planar fan beam, promises faster yet safer 3D imaging in

comparison to the previous CT imaging methodologies. This technique is called Cone Beam

CT (CBCT). However, these advantages come at the expense of a more challenging 3D

reconstruction problem that is still an active research area to improve the speed and quality

of image reconstruction. In this paper, we propose a rapid parallel Multiplicative Algebraic

Reconstruction Technique (rpMART) via a vectorization process for CBCT which gives more

accurate and faster reconstruction even with a lower number of projections via parallel

computing. We have compared rpMART with the parallel version of Algebraic Reconstruc-

tion Technique (pART) and the conventional non-parallel versions of npART, npMART and

Feldkamp, Davis, and Kress (npFDK) techniques. The results indicate that the reconstructed

volume images from rpMART provide a higher image quality index of 0.99 than the indices of

pART and npFDK of 0.80 and 0.39, respectively. Also the proposed implementation of

rpMART and pART via parallel computing significantly reduce the reconstruction time from

more than 6 h with npART and npMART to 580 and 560 s with the full 3608 projections data,

respectively. We consider that rpMART could be a better image reconstruction technique for

CBCT in clinical applications instead of the widely used FDK method.
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1. Introduction

X-ray computed tomography (CT) is a medical imaging technique
which gathers projection data from a patient and reconstructs
tomograms from these projections. The projections data are
acquired while a pair of X-ray tube and detectors rotates. Pencil,
fan, and cone beam are the three main types of X-ray beam: so
image reconstruction techniques rely directly on the beam type
[1]. 2D image acquisition is achieved using the fan beam type and
linear detector array. A line of projection data is acquired at every
rotation angle to generate a sinogram which is used in the
reconstruction process. Cone Beam computed tomography
(CBCT) is a 3D extension of the 2D fan beam tomography: so a
volume of projection data is acquired through only one rotation
using 2D detector array. Due to this, an accumulative 2D
projection data are generated at each rotation angle. A volume
projection data at the detector planar surface is collected by
integrals of rays diverging from the source that penetrate the
object. There are many advantages of CBCT compared with the
conventional CT, including rapid scan time, reduction of the X-
ray dose, etc. [1]. Among them, the time reduction in data
acquisition is one of the main advantages of CBCT [2]. Once a
volume of sinogram data gets collected, 3D image reconstruction
techniques are applied to reconstruct a volume of object images.
There are two main categories for image reconstruction
techniques, namely analytical techniques which utilize the
concept of the projection slice theorem such as Feldkamp, Davis,
and Kress (FDK) method [3], and iterative techniques that convert
the reconstruction problem into a system of simultaneous linear
equations and then to solve the problem via algebraic methods
such as Algebraic Reconstruction Technique (ART) [4] and
Multiplicative Algebraic Reconstruction Technique (MART) [5].
Lately, the latter is getting more attention due to the increased
computing power via advanced Central Processing Unit (CPU),
Graphics Processing Unit (GPU), and parallel computing.

Among the previous studies of investigating 3D reconstruction
techniques for CBCT, some studies considered non-parallel
reconstruction  approaches and others utilized parallel computing
approaches to speed up the reconstruction process. For instance,
in the non-parallel reconstruction, Cengiz et al. in [6] implemen-
ted both ART and MART with the Shepp-Logan head phantom of
64 � 64 � 51 in its size. Low reconstruction speed was achieved
and the computation time for one iteration took almost 13 min for
both techniques with only a set of 11 projections. Also, Aviles
implemented a MART method with limited number of projec-
tions. Although he used one third of the projection data, the
processing time to reconstruct the results took over three hours
and half [5]. In 2015, Fu et al. presented the implementation of FDK
and ART [7]. Their reconstructed images had low quality in both
FDK and ART. Also they indicated that their algorithms needed
some advanced works to improve the reconstruction speed.

On the other hand, in the parallel computing studies, a major
improvement in the time of computation was shown. In [8], Qiu
et al. presented a significantly reduced reconstruction time of
1600 s for one iteration via ART on a computer of 64 bit 3.33 GHz
Linux with RAM of 32 GB for an image volume of
256 � 256 � 256. In [9], Fan and Xie utilized a GPU on a total
of 768 processor cores and improved the computation time of
ART for only 60 projections of an object size of 256 � 256 � 256
from 40 to two seconds per projection, but they mentioned that
their technique did not produce high quality images. To our
best knowledge, there has been no studies of MART via parallel
computing.

In this study, we propose a rapid parallel version of MART
(rpMART) via a vectorization process for CBCT and investigate
its performance against the parallel version of ART (pART) and
the conventional non-parallel 3D image reconstruction tech-
niques, namely npART, npMART and npFDK. The image
reconstruction performances are compared in terms of
reconstruction quality, speed, and dose quantity of X-ray
radiation (which is proportional to the number of projections)
using analytical phantoms. The results of pART and rpMART
show significant reduction in computation time compared
with the non-parallel techniques. Also our rpMART imple-
mentation provides better image quality index than pART and
npFDK even with the limited numbers of projections. This
paper is organized as follows. First, we present an overview of
the projections data generation. Second, we describe in details
the FDK, ART and MART reconstruction techniques. Then, the
proposed implementation of parallel image reconstruction is
presented. Finally, we compare the performance of rpMART
against pART, npART, npMART and npFDK.

2. Materials and methods

2.1. Projection data generation

Projection is a combination of rays that penetrate an object at the
same orientation. The main principle of projection is considered
as ray-sum, line integral, or Radon transformation [10]. The
general 2D projection p(i, u) with a projection angle of e is as
follows:

pði; uÞ ¼ wi1x1 þ wi2x2 þ wi3x3 þ � � � þ winxn; i ¼ 1; 2; 3; . . .; n;

(1)

where xj is the intensity of jth pixel in an image and the wij is
the weight of the ray in the pixel j that hit the detector bin i.

For CBCT, this 2D projection is extended into 3D. Siddon's
algorithm is one of the best techniques to perform this 3D
projection [11–13]. This algorithm is implemented by the
following consecutive processes. First, the object is placed into
three equal sets of orthogonal planes NX, NY and NZ. Second, the
entrance and exit points of the ray, that penetrates the object,
are determined by obtaining the intersection of the ray with the
plane boundaries in each direction. Then, the range of the plane
indices between these points was calculated. Finally, the voxel
indices and the segment length of the ray within each voxel
(i.e., weight of voxels) are calculated. After computing the first
projection at the first angle, the system is rotated to get the next
projection position at a different angle. In this work, we have
simulated the projection data with a digital Shepp-Logan head
phantom of 128 � 128 � 128 in its size.

2.2. Image reconstruction techniques

2.2.1. FDK method
The FDK method, which is also called filtered back-projection
(FBP) method, is the most widely used algorithm for the cone
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beam image reconstruction. It is an analytical approach for
image reconstruction which is based on Fourier Transform [3].
The FDK image reconstruction is performed in three steps.
First, each projection data is weighted according to the
position of each ray from the center of the flat panel detector.
Second, row-by-row filtering of the weighted projection data
is achieved. Third, the whole filtered projection data gets
back-projected to obtain a reconstructed image volume data
[14–18]. For FDK method, we utilized an open source cone-
beam CT reconstruction (OSCaR) Tool for Imaging Research
[19]. In this work, we have implemented only a non-parallel
version of FDK (npFDK).

2.2.2. ART method
In ART, the reconstruction problem can be formulated as a set
of linear system equations. Compared to the analytical
approach of FDK, ART requires more computational time
[14,15]. The process is summarized in the following steps [20–
23]. First, an initial volume is created with N elements which
represent the number of voxels in a reconstructed volume.
Then, projections pi are calculated for all the rays that pass
through the voxels xj as follows:

XN
j¼1

wijxj ¼ pi; (2)

where {j = 1, 2, . . ., N} is the index for the voxel of x, {i = 1, 2, . . .,
M} is the index of the rays, and the weights, wij, are calculated
using the Siddon's algorithm. After that, the correction is
computed as the difference between the measured projections
pi and rebuilt

PN
j¼1wijxj. Finally, ART solves the set of equations

where the update for each voxel j is achieved through k itera-
tions as:

xðkþ1Þ
j ¼ xðkÞj þ l

pi�
PN

n¼1winx
ðkÞ
nPN

n¼1w
2
in

; (3)

where l is a relaxation factor that controls the convergence
rate, typically chosen �1.0 [8,24]. We have implemented pART
and npART in this work.

2.2.3. MART methods
MART is a nonlinear iterative technique for 2D and 3D image
reconstruction in CT. It has an ability to reconstruct a volume
of images with an underdetermined set of linear equations [6].
Unlike ART, MART must has nonzero initial volume. Also
MART has different update and correction formula which is in
a multiplicative form as follows [25,26]:

xðkþ1Þ
j ¼ xðkÞj � piPN

n¼1winx
ðkÞ
n

  !l

: (4)

MART produces the reconstructed volume with a higher
contrast of the object. Thereby, MART is considered as a better
method in the reconstruction of sparse distributions than the
additive ART in which it leaves the artifact in the reconstructed
volume [6]. This advantage leads MART to be a better choice
than other iterative methods. In this study, we have
implemented npMART and a rapid parallel version of MART
(rpMART).
2.3. Parallel implementation of ART and MART

In this section, we describe our proposed parallel computing
on 3D image reconstruction process via ART and MART (i.e.,
pART and rpMART).

There have been studies of investigating parallel comput-
ing of ART. For instance, in [8], Qiu et al. implemented an
algorithm for sparse linear equation and least square to speed
up the ART reconstruction time using a high computer
specification of 64 bit 3.33 GHz Linux with RAM of 32 GB. In
2015, Fan and Xie implemented a parallel algorithm via block-
wise estimation that distributes the rays into blocks and then
fabricating the rays in each block in parallel pattern [9]. They
utilized a GPU on a total of 768 processor cores, but it is difficult
to use in practice. As seen, the previous studies attempted to
reduce the computation time of CBCT images reconstruction
by utilizing a CPU or GPU parallel computing without
vectorization process of projection calculations. Also most
previous studies investigated the parallel computing of ART,
and no attempt has been made on the parallel version of MART
so far.

In our study, we implement two types of parallel computing
processes sequentially in both ART and MART, which are
vectorization and partitioning parallelization via CPU, to speed
up the volume reconstruction time. In this work, we propose
the vectorization process which is the essential part to reduce
the computation time. We applied our vectorization process to
parallelization via the partitioning approach, which utilizes
four processor cores, to show the ability of the proposed
process to work with multiple processors.

Vectorization is a digital procedure that utilizes vector
operations instead of element by element loop-based opera-
tions. Automatic vectorization in parallel computing is a linear
transformation that converts 2D data into 1D vector. In other
words, it is a compiler optimization that transforms loops to
vector operations. This process in general speeds up the
processing time. In ART and MART, we implemented the
proposed vectorization process through projection calcula-
tions to speed up the volume reconstruction time. These
calculations are utilized to update the weight of voxels to
reconstruct the volume of images corresponding to Eqs. (3) and
(4). In this study, vectorization process is achieved through
three consecutive steps. First, for each 2D projection view, we
determine the indices of all voxels xm through which the ray
passes as shown in Fig. 1(a). These voxels are a subset of the
whole voxels in the volume where m = 1, 2, . . ., L and L � N.
Second, utilizing the Siddon's ray tracing algorithm, we obtain
the segment length or weight wm of each voxel at each
determined index. The other voxels are excluded in this step
because their weights at this particular ray are zeros,
producing a sparse weighting matrix. Thus, the only compo-
nents xm = [x1, x2, . . ., xL], which have nonzero weights wm = [w1,
w2, . . ., wL], are processed as follows to get the computed
projection CP,

CPi ¼
XL
m¼1

wimx
ðkÞ
m : (5)
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To avoid the complicated multiplication and addition
operations, we only transform these voxels' intensities and
their corresponding segment lengths into two separate vectors
as illustrated in Fig. 1(b) and (c), respectively. Finally, to get the
calculated projection (CP) value, we reduce the computation
operations through the summation of product for voxel
intensities [x1, x2, . . ., xL] with weights [w1, w2, . . ., wL] at each
index. Eqs. (6) and (7) explain algorithmically how the
vectorization process is achieved and also express the
alternative formula for Eqs. (3) and (4), respectively, as follows,

xðkþ1Þ
j ¼

xðkÞj ; if wij ¼ 0;

xðkÞm þ l
pi�CPiPL
m¼1w

2
im

; if wij 6¼ 0 and j ¼ m

8><
>: (6)

xðkþ1Þ
j ¼

xðkÞj ; if wij ¼ 0;

xðkÞm � pi
CPi

� �l

; if wij 6¼ 0 and j ¼ m:

8><
>: (7)

This vectorization process improves the computation time
of pART and rpMART.

Domain decomposition or partitioning is a key step in the
partitioning parallelization process. In general, ART and MART
can be executed so that the entire ‘‘blocks’’ of projections can be
made simultaneously instead of sequentially. The simultaneous
projections in each such block are mathematically equivalent to
perform the projections in any sequential order as reported in
[23]. Also Fan and Xie in [9] achieved their parallel implemen-
tation by allotting rays into blocks, and then the rays in the
same block are computed parallel. The partitioning process is
considered as a single instruction multiple data (SIMD)
approach which has multiple processing units that work
under the control of a single control unit (i.e., single
Fig. 1 – Conceptual diagram of vectorization process at a specific 

detector element, (b) intensity values of the voxels through whi
weights, and (d) vectorization of the calculated projection.
instruction). All processing units simultaneously execute the
same instruction and each processing unit can operate on a
different data [27]. According to the number of processors,
partitioning parallelization technique divides the projection
data into a set of partitions. Thus, partitioning parallelization
process should not be arbitrary and the partitions should be
executed independently. In our case, only a CPU with four
processor cores are used to achieve this process with a
computer of 64 bit, 2.2 GHz, Intel(R) Core(TM) i7-3632QM, and
6 GB RAM. Thus, each partition only consists of four projections
data that are selected randomly as shown in Fig. 2. Those four
projections are synchronously passed into four independent
processors at a time without any overhead. At each processor,
vectorization process is achieved with each projection as
mentioned above. In pART and rpMART, each projection
partition is processed with the next partition to reconstruct a
3D volume of images. The data processing in this work was
done using MATLAB version 8.5.0.197613 (R2015a) [28]. In
general, the amount of RAM is important to process a larger
volume of 3D data while the number of cores affects the speed
of the pART and rpMART. Our proposed pART and rpMART
provide a rapid algebraic 3D volume reconstruction. Algorithm
steps of rpMART is illustrated in Algorithm 1.

3. Results and discussion

3.1. Computing projection data

In this study, with a rotation angle step of one degree, the
resulting size of the projections of 128 � 128 � 360 was
obtained, where 128 � 128 is the detector matrix size and
360 is the number of projection angles.

In Fig. 3(a)–(c), examples of three projections of a digital
Shepp-Logan head phantom at different angles 08, 458 and 908
2D projection data, (a) ray tracing from a source point to each
ch the ray passes through, (c) segment lengths or voxel



Fig. 2 – Parallelization processes for iterative 3D image volume reconstruction techniques.
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are illustrated. Fig. 3(d) shows the sinogram of the horizontal
central lines for all projections data. The results show that the
computational time of the projection data generation is high.
So, reducing the computation time is achieved by applying the
proposed vectorization parallel process. Fig. 3(e) illustrates the
computation time with and without the vectorization parallel
process for different phantom sizes. The computation time of
the projection process is clearly decreased utilizing the
vectorization process. With a phantom of 128 � 128 � 128 in
its size, the projection computation time of 360 views before
the vectorization process takes 3.41 h, but only 16.81 min with
Fig. 3 – Cone beam projections of a Shepp-Logan head phantom
horizontal central lines for all projections data. (e) Impact of vect
data generation with respect to the phantom size.
the parallel process. The generation of projection data from
our test object took 16.81 min with our process. When the
object size increases, the reduction in time will increase
significantly. These projections data are used as raw input data
to the reconstruction techniques to get the 3D volume of
images.

3.2. Reconstruction results

The reconstructed volumes of images from rpMART are
compared with those from pART, npART, npMART and npFDK.
 at the angles of (a) 08, (b) 458, (c) 908. (d) Sinogram of the
orization process on the computation time of the projection



Fig. 4 – Effect of the relaxation factor (l) on the performance of (a) pART and (b) rpMART on RMSE with respect to the number of
iteration with the full projections.
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As for quantitative analysis of performance evaluation, we
utilize Signal to Noise Ratio (SNR), Peak Signal to Noise Ratio
(PSNR), Root Mean Square Error (RMSE), and Structural
Similarity Index Measure for image quality (SSIM). More
details of these indices are available in [29,30].

3.2.1. Effect of the relaxation factor on pART and rpMART
The iterative techniques such as ART and MART depend on
two parameters: namely the relaxation factor (l) and number
of iterations which control the convergence rate. The relaxa-
tion factor can be varied with a different value between 0 and 1.
We have investigated the effect of this parameter at 1, 0.1, and
0.01 with respect to the number of iterations. Fig. 4 shows the
Fig. 5 – Performance of pART and rpMART in terms of (a) SSIM a
projections data.
effect of l on the performance of pART and rpMART in term of
RMSE with utilizing full projections data. The results show that
in the case of pART, l with a smaller value (i.e., 0.01) provides a
better image quality. In the case of rpMART, better results are
produced when l has a larger value equal to 1. This difference
of choosing the l in both pART and rpMART is due to its
different use in Eqs. (3) and (4) on the convergence update.

Fig. 5 illustrates the effects of the number of iterations in
image reconstruction on the image quality index (SSIM) and
RMSE with l = 0.01 for pART and l = 1 for rpMART. Increas-
ing the iteration number leads to reduce the RMSE and
increase the SSIM. This result shows that rpMART provides
better SSIM and RMSE than those of pART.
nd (b) RMSE vs. the number of iterations with the full
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3.2.2. Quality of the reconstructed 3D image via pART,
rpMART and npFDK
The results of all reconstruction techniques using the full scan
projections data of the Shepp-Logan phantom are depicted in
Fig. 6. The results show the coronal, sagittal and, axial slices of
the reconstructed volume. The performance of the npART and
npMART is similar to pART and rpMART in term of image
quality, respectively. The significant difference of these
methods is in the computation time. The results of rpMART
are better than pART and npFDK. The red arrows in Fig. 6
indicate the smallest object in the coronal and sagittal slices.
This object is not clearly reconstructed by npFDK and pART but
it is reconstructed by rpMART. Also, npFDK tends to produce
noisy background which are mainly produced during the back-
projection process compared with other techniques. Higher
contrast between the objects and background are produced
from rpMART.

To demonstrate the efficiency of the implemented meth-
ods, the line profiles from the reconstructed coronal slice are
plotted in Fig. 7. rpMART produces the reconstructed life
profile highly close to the original while highly preserving the
edges. The behavior of the horizontal line profile of npFDK is
close to the original but produces some blurring in the images.
Table 1 shows the quantitative performance measures of the
pART, rpMART and, npFDK. The high image quality is
produced with rpMART for each slice of the reconstructed
Fig. 6 – (a) The reconstructed sagittal, coronal, and transaxial im
rpMART using a full 3608 projections with 10 iterations. (b) Cut v
volume. The RMSE is equal 0.138, 0.074 and, 0.002 for npFDK,
pART, and rpMART, respectively. Also rpMART outperforms
pART and npFDK with the best image quality index of 1. The
largest SNR and PSNR indices with rpMART are considered as
the best quality images. Our results can be compared with
those of Simon et al. [17] since they used the stationary
reference case of the thorax with a full 640 projections in a 3608
views (i.e., no motion as same with our case).

3.2.3. Effect of the limited number of projections
Investigation of utilizing the limited amount of the whole
projection data such as 1/2, 1/3, 1/4, and 1/8 of the full
projection data in the reconstruction process is an issue to
reduce the X-ray radiation dose and decrease the computa-
tional time. Fig. 8 shows the performance of pART, rpMART,
and npFDK with respect to the number of projections that are
evaluated in term of RMSE and SSIM. rpMART produced the
promising results in terms of SSIM and RMSE in comparison to
pART and npFDK. In the case of pART, the quality of image is
reduced significantly. Also the results show that rpMART
provides higher image quality at a lower amount of projections
compared with other techniques. The results show that even
full projections set are utilized, the better image quality is
achieved using the iterative techniques against the FDK
method. This due to the FDK method has only one back-
projection, while the iterative methods uses multiple forward
ages in comparison to the original from npFDK, pART, and
iews from the 3D volume data via rpMART.



Fig. 8 – Performance of pART, rpMART and npFDK in terms of (a) SSIM and (b) RMSE vs. different number of projections data.

Table 1 – Quantitative performance measurements for pART, rpMART, and npFDK with the full projection data after 10
iterations.

Slice Reconstruction method Measurements

RMSE SNR (dB) PSNR (dB) SSIM

Coronal npFDK 0.138 �9.77 17.20 0.391
pART 0.074 4.30 22.58 0.800
rpMART 0.002 11.37 52.41 0.9995

Sagittal npFDK 0.151 �2.85 16.41 0.492
pART 0.074 4.14 22.56 0.817
rpMART 0.003 7.74 49.74 0.9992

Axial npFDK 0.127 0.163 17.90 0.355
pART 0.077 3.94 22.30 0.722
rpMART 0.001 11.81 59.38 0.9997

Fig. 7 – Line profiles from the reconstructed coronal slice via pART, rpMART, and npFDK compared to the line profile of the
original slice.
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Fig. 9 – Effect of the limited number of projections data (360, 180, 120, 90, 45) with npFDK, pART and rpMART methods using
10 iterations.
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and backward projections. Clearly from these two plots in
Fig. 8, slightly changes are occurred on SSIM and RMSE from
the full to 1/4 projections data in the case of rpMART and
npFDK, but the significant differences are shown with the 1/8
of the full data.
(a)

Fig. 10 – Computation time for (a) non-parallel npART and npMA
vectorization and parallelization) against npFDK.
For example, in the case of using the 1/8 projections data,
rpMART provides higher image quality index of 0.83 than pART
and npFDK methods which are 0.44 and 0.28, respectively.

It is shown in Fig. 9 where the improved image quality is
achieved with 360 projections in comparison to the less
(b)

RT, and (b) parallel computing pART and rpMART (i.e.,



Table 2 – The computation time of the parallel and non-
parallel ART and MART.

Methods Computation time per one projection (s)

Non-parallel After
vectorization

After parallel
computing

ART 68.7 4.01 1.61
MART 63.14 3.52 1.56
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number of projections via npFDK, pART, or rpMART. Also, we
clearly observe that rpMART provides higher images quality
compared with pART and npFDK as shown in Fig. 9. The results
via rpMART also significantly preserve the edges even at the
lower amount of projection data are utilized. In contrast, pART
and npFDK fail when utilizing the limited amount of projection
data due to the produced images are blurred and deformed as
visible in Fig. 9.

3.2.4. Effect of the parallel computing
The computation time of non-parallel iterative methods
take too much time which are 6.87 h for npART and 6.314 h
for npMART for the full projections data. Fig. 10(a)
represents the computation time of npART and npMART
at different number of projections. Considering the full
projections data, vectorization process reduces the compu-
tation time to 1443.6 and 1267.2 s by pART and rpMART,
repectively. Meanwhile, the partitioning parallelization
process also contributed to reduce the computation time
by pART from 1443.6 to 580 s and from 1267.2 to 560 s in the
case of rpMART as shown in Fig. 10(b). Thus, the computa-
tion time of pART is significantly reduced with 17.13 and
2.49 times via both vectorization and partitioning paralle-
lization processes, respectively. In the case of rpMART, the
computation time is reduced with 17.94 and 2.26 times via
both parallel computing processes, respectively. Although
the partitioning parallelization process reduces the compu-
tation time by more than half using multi-core processing,
major time reduction is occurred by vectorization process.
Therefore, the total time reduction via the proposed parallel
computing processes is 42.64 and 40.59 times for pART and
rpMART, respectively. As shown in Fig. 10(b), npFDK has the
lowest time computation against pART and rpMART with
the full projections data, but it still has a limitation in the
image quality as we mentioned above. The impact of our
proposed parallel computing algorithm on the computation
Table 3 – Comparison of the performance of our proposed rpM
calculated for one iteration with one projection).

Reference Reconstruction method 

Qiu et al. [8] ART CPU, 64 bit 3.3

Fan and Xie [9] ART CPU 

NVIDIA Tesla

Proposed technique pART CPU, 64 bit 2.2
rpMART 
time of both the pART and rpMART methods are very
significant and make these methods as techniques of choice
in clinical applications. The computation time per one
projection of data for the non-parallel npART and npMART
compared with the parallel techniques is reported in Table 2.
This comparison shows the amount of reduction in the
computation time via the parallelized versions of pART and
rpMART against the non-parallelized ART and MART. In the
partitioning parallelization process, the ideal theoretical
limit for speeding up, using only four processor cores, must
not exceed 4 times. Our explanation above clarifies that the
speed up due to the partitioning parallelization process
contributes only by 2.49 or 2.26 times in pART and rpMART
which are both clearly less than 4 times. Finally, the
performance of the computation time via the proposed
rapid Algebraic Reconstruction Techniques against some
other previous works is summarized in Table 3. Our
work shows its capability to speed up the reconstruction
process.

4. Conclusion

We have presented a rapid version of MART via parallel
computing (i.e., rpMART) in this paper and presented its
performance against several conventional reconstruction
techniques for CBCT. The results indicate that the recon-
structed volume produced from rpMART shows the best image
quality and lower errors at much reduced computation time.
Even with the reduced amount of projection data, rpMART
exhibits a better performance compared with pART and
npFDK. Since the reduced projection data indicates the less
scan time: this also implies the reduction of radiation doses.
Hence, the results of this work provide a better way of image
reconstruction with higher quality, fast computation time, and
less projection data is required to reduce the radiation dose.
The presented rpMART could be a better image reconstruction
technique for CBCT in clinical applications. We believe that our
proposed vectorization process plays a significant role in
speeding up the reconstruction computation time. Also the
parallelization via partitioning provided in this work shows
the ability of our proposed vectorization process to work with
multi-processors. Further works will involve adapting our
vectorization process of rpMART with GPU processors in order
to achieve much faster approach. Also its applicability with
real data will be investigated for clinical applications in the
future.
ART against previous works (the computation time is

Hardware specs Computation time (s)

3 GHz Linux, 32 GB RAM 4.44

40
 C1060 GPU, 768 processor cores 2

 GHz, 6 GB RAM, four processor cores 1.61
1.56
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Algorithm 1. Algorithm of the rpMART

1: Input: projection data
2: Output: 3D reconstructed volume X
3: 3D volume initialization
4: For all iterations k, until convergence
5: Parfor projection angle u1!4 // parallelization process

for each partition
6: For each 2D detector element that the ray hits //

convert it into one vector
7: Determine only the voxels that each ray passes

through (xm:1!L)
8: Calculate projection

PL
m¼1wimxðkÞ

m

� �
// (see Fig. 1)

9: Correction/ update :¼ measured projection ðPiÞPL
m¼1

wimxðkÞm10: // Back projection (for each voxel j : 1 ! n)
11: xðkþ1Þ

j :¼ xðkÞj ; if wij ¼ 0, // vectorization process
(line 8:10)

12: xðkþ1Þ
j :¼ xðkÞm �ðupdateÞl; if wij 6¼ 0 and j ¼ m

13: End
14: End
15: End
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