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Abstract-The estimation of diffusion tensors in diffusion tensor 
imaging (DTI) is based on the assumption that each voxel is 
homogeneous and can be represented by a single or multi tensor. As 
a result, estimation errors arise particularly in voxels with partial 
voluming of white matter or gray matter with cerebrospinal fluid 
(CSF) and voxels where fibers cross. This paper presents a tool for 
analysis of DTI called MultiTensor which was developed in Matlab 
language in order to help DTI researchers  by making the analysis 
more easier and faster. The user enters the number of slices, 
bvalues, the gradient directions , the number of excitations. Then 
the program begin by preparing the Dicom file, estimates both 
single and two tensor, the anisotropy indices and the error in 
estimation.  
 
Keywords–Diffusion Imaging, GUI, multi-tensor , magnetic 
resonance Imaging. 
 

I. INTRODUCTION 
 

This paper presents a tool for the multi-tensor analysis of the 
diffusion tensor magnetic resonance imaging (DTI) called 
MultiTensor, which was developed using Matlab 7.01. This 
software was designed to help the DTI researchers by making 
easy to find accurate estimation of single and two-tensor, their 
anisotropy indices (Fractional anisotropy, Relative Anisotropy 
and Partial volume) and find the error in estimation. 

 
This tool was developed in Matlab language provided by the 

Math works Inc. software, which help in implementing the more 
complex algorithms as huge matrix operations and analysis. It is 
also a powerful system for Image viewing and its open source 
nature allows one to adapt the software needs. The graphical 
user interface (GUI) is not as easy as C++ Builders or .net 
programming, but the availability of matrix analysis and graphic 
functions turned Matlab into the software of choice as the 
development environment for MultiTensor. 

 
The Diffusion tensor imaging (DTI) is a non-invasive method 

of characterizing tissue micro-structure. Diffusion imaging 
attempts to characterize the manner by which the water 
molecules within a particular location move within a given 
amount of time. Using a simple pulse gradient spin echo (PGSE) 
imaging sequence, it is possible to obtain a change of the MR 
signal that is related to the diffusivity of water in a certain 
direction.[1] The advantage of this modality lies in the fact that 
the changes in water diffusion, produced by alterations in brain 

biochemistry, can be observed on diffusion weighted (DW) 
images long before the effects of ischemic injury can be seen on 
conventional T1, or T2 weighted images.[2] Measurement of the 
diffusion tensor (D) within a voxel enables the mobility of water 
to be characterized along orthotropic axes, allows a macroscopic 
voxel-averaged description of fiber structure, orientation[3] and 
fully quantitative evaluation of the microstructural features of 
healthy and diseased tissue.[2] 

 
II. DATASET PREPARING 

 
The user must enters the parameters identifying the dataset as 

the number of slices, the bvalues, the gradient directions and the 
number of Excitations (NEX), shown in Fig. 1, which will lead 
him to browse for the directories containing the dataset. The 
program must check the founding of the typical number of 
DICOM figures in each folder then begin to calculate the 
averages of corresponding slices with same bvalues and 
directions defined in the NEX folders. As the number of NEX 
increases the signal to noise ratio (SNR) decreases. The dataset 
is ready now to begin the tensors estimation. Fig. 2 shows a slice 
viewing after been averaged 

 
III. ADDING NEW DATASET PARAMETERS 

 
When loading the program for the first time, the most known 

gradient combinations 6, 12 and 30 directions are added to the 
program, and the same for the b-value sets. Adding new sets for 
both the gradient directions and the b-value is available as 
shown in fig.3. 

 
 

 
 

Fig.1: The parameters needed for the dataset. 
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Fig. 2: Slice viewing after been averaged. 
 

 
 

(a) 
 

 
 

(b) 
Fig.3: The entry of new gradient directions parameters 

 
IV. TENSOR ANALYSIS 

 
A- Single Tensor Estimation 
 

 The diffusion signal from a single diffusion compartment is 
given by:  
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where E(qk) is the normalized diffusion signal magnitude for the 
diffusion gradient wave-vector qk=γδgk, γ is the  gyromagnetic 
ratio,  δ is the diffusion gradient duration, gk is the kth diffusion 
gradient, τ is the effective diffusion time, and D is the apparent 
diffusion tensor.[4],[5] The output of this module is shown in 
Fig. 4(b). 

 
B- Two Tensors Estimation 
 

Assuming a two-component model without loss of generality, 
the projection along any given direction can be given as, 
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Here, the relative amplitudes are given by α1 and α2 and the 
variances are generally different for both components and vary 
with projection direction. The x value is known and can be 
computed given the b-value and the direction of diffusion 
gradients. The 1D component estimation problem amounts to the 
estimation of α1, α2, D1 and D2 given E(qk). Notice that the 
component amplitudes are the same between projections. This 
property will be used to aid in the labeling of components among 
different projections. This estimation problem is nonlinear and 
therefore only iterative estimation methods have been proposed 
[6],[7],[8]. Given the convergence issues associated with such 
methods and their generally high computational burden, another 
more stable strategy is needed to solve this problem in practice. 
Note that for any given parameter estimation accuracy, there 
exists a finite number of possible solution that are determined by 
the a priori information about parameter ranges and the desired 
accuracy. Hence, the problem of finding the solution to this 
problem amounts to a combinatorial optimization problem. This 
means that a globally optimal solution can be found by 
exhaustive search or one of the more efficient random search 
strategies such as simulated annealing or genetic algorithms. 
Nevertheless, the computational effort involved in such 
techniques is prohibitive. Here, we combine exhaustive search 
and least squares estimation to obtain a more efficient 
implementation while maintaining the robustness and global 
optimality. In particular, instead of attempting to find all 
parameters by exhaustive search, we limit this strategy to those 
parameters of more importance in terms of accuracy and 
compute the remaining ones using least-squares estimation. This 
is implemented as follows: 
Step 1. Take the variances to be the parameters estimated by 

exhaustive search while the partial volume ratios are 
estimated from them by least squares. 

Step 2. Generate a list of possible values for the variances 
within the range from 0 to the maximum eigenvalue of the 
diffusion tensors of interest with the desired accuracy as the 
step. 

Step 3. Plug in values for the variances in the equation from the 
list and compute the least-squares solution to the  
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(c) 
Fig. 4: (a) Selecting the area to be calculated. (b) Single Tensor Estimation. 

(c) Two Tensor Estimation. 
 

partial volume ratios for such values and compute the value of 
the residual error with such values plugged in. 

 
Step 4. Loop on all possible variance values in the list and 

repeat step c and find the combination of values that 

generate the lowest error. Consider such combination to be 
the solution. 

Step 5. This method allows an order of magnitude saving in 
computation time while providing a solution with sufficient 
accuracy. 

 
Once the individual component estimates from projections are 

computed, the projections of each component are used to 
estimate the component tensor in very much the same way as the 
single tensor estimation is performed. One problem arises in this 
part because of component labeling. The basic assumption of the 
model that the partial volume ratios remain the same in 
projections may not be practical given the superimposed noise 
and other sources of error in DTI. In other words, partial volume 
ratios from different projections are different in practice. To 
solve this problem, an initial labeling is obtained whereby the 
first component is calculated from the projection components 
having the larger partial volume ratio, while the second 
component is calculated from the components with the smaller 
one. Once the two tensors are computed using this strategy, a 
least squares estimate for the partial volume ratios is computed 
while imposing the constraint of unit summation upon their 
values. Then, the calculated values are used in a second iteration 
of the procedure above to update the projection variances while 
imposing the same partial volume ratios obtained from the first 
iteration. A second estimate of the partial volume ratios is 
computed at the end of the second iteration and this process is 
repeated until estimates from two successive iterations come out 
within a predetermined tolerance. In this case, the estimates 
represent the global solution that is not be biased by error within 
individual projections.  

 
It should be noted that the extension of this method to multiple 

exponential is straight-forward. The computational complexity 
of the developed method can be shown to depend linearly on the 
number of components. This allows the possibility of addressing 
more challenging tasks. We still gain the separation between the 
problems of estimating the variances and the magnitudes. 
Moreover, the same direct magnitude estimation method can still 
be applied in this case once the roots are calculated. This can, at 
least in principle, reduce the require complexity dramatically. 
[9], [10] The output of this module is shown in Fig. 4(c). 

 
V. ANISOTROPY INDICES  

 
Several scalar indices have been proposed to characterize 

diffusion anisotropy. Initially, simple indices, calculated from 
diffusion weighted images or apparent diffusion coefficients 
(ADCs) obtained in perpendicular directions were used [8]. They 
are clearly dependent on the choice of directions made for the 
measurements. The degree of anisotropy would then vary 
according to the respective orientation of the gradient hardware 
and the tissue frames of reference and would generally be 
underestimated. Here again, invariant indices must be found to 
avoid such biases and provide an objective, intrinsic structural 
information [11]. 
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Invariant indices are thus made of combinations of the terms 
of the diagonalized diffusion tensor, i.e., the eigenvalues λ1, λ2 
and λ3. The most commonly used invariant indices are the 
relative anisotropy (RA), the fractional anisotropy (FA), and the 
volume ratio (VR) indices, defined respectively as: 
 

                                                                                               (3) 
 
 
 

                                                                                            (4) 
 
 

                                                                                       (5)  
 
The FA measures the fraction of the magnitude of D that can 

be ascribed to anisotropic diffusion. The RA, a normalized 
standard deviation, also represents the ratio of the anisotropic 
part of D to its isotropic part. FA and RA vary between 0 
(isotropic diffusion) and 1(=2 for RA) (infinite anisotropy). As 
to the VR, it represents the ratio of the ellipsoid volume to the 
volume of a sphere of radius equal to the average eigenvalue and 
its range is from 1 (isotropic diffusion) to 0 [12]. 

 
VI. ERROR IN ESTIMATION 

 
The error in Estimation was then calculated from the 

following Equation: 
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where ),( ki qbS is the  original signal used in Estimation and 

),(ˆ ki qbS  is the predicted diffusion signal based on the 
single/multi tensor model. The output of Error in estimation is 
shown in Fig. 5. 
 

 
          Fig.5: Scaled error. 

 
 
 
 

VII. CONCLUSION 
 

This paper presented a powerful tool for analysis of Diffusion 
tensor images called MultiTensor. This software, which was 
developed using Matlab 7.01, helps the Diffusion tensor 
researchers as providing the estimation of the tensors that can be 
used next in any other application as the fiber tracking. The choice 
of using Matlab will also allow others to modify and improve 
MultiTensor, making it even more versatile. 
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