
 

Abstract- In this paper, we investigate the chaotic behavior of the 

biological sequences among the different species. Throughout 

this work, we have characterized the biological sequences 

according to their moment invariant, correlation dimension, and 

largest Lyapunov exponent estimates. We have applied our 

model to a number of human and mouse genomes encoded into a 

set of integers (time series) using a plain table mapping scheme. 

Our results indicate that the nonlinear dynamical characteristics 

have yielded significant differences between the sequences of the 

different species. That is, we have been able to classify the 

different genome sequences according to their chaotic 

parameters estimates. On the other hand, through our 

investigation we have found that the use of the chaotic modeling 

of the biological sequences could open new frontiers in the 

sequence similarity search techniques.   
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I. INTRODUCTION 

 

The goal of biological sequence alignment is to 

identify regions of similarity (often interpreted as homology) 

between two or more sequences, and associate these regions 

with one another to enable further comparisons. Existing 

algorithms for sequence alignment and validation are 

adequate for many problems as even if a complete solution 

for sequence alignment were available, mathematical or 

statistical optimality and biological optimality are not 

equivalent, due to the inevitable violations of implicit or 

explicit evolutionary models [7],[8]. 

These challenges have led to the development of new 

methods for similarity detection; in this work, the genome 

sequence was encoded to a nonlinear dynamical time series 

(signal) for feature extraction by different techniques. Such 

techniques work by transforming the mostly qualitative 

diagnostic criteria into a more objective quantitative signal 

feature classification problem. Classical techniques have been 

used to address this problem such as the similarity detection 

using the autocorrelation function [1], using frequency 

domain features [2], time frequency analysis [3], and wavelet 

transform [4], [5]. Other techniques used adaptive filtering 

[6], sequential hypothesis testing [7],[8], as well as 

morphological features. Even though fairly good results have 

been obtained using such techniques, they seem to provide 

only a limited amount of information about the signal 

because they ignore the underlying nonlinear signal 

dynamics. 

In the last two decades, there has been an increasing 

interest in applying techniques from the domains of nonlinear 

analysis and chaos theory in studying biological systems [9]. 

In the field of chaotic dynamical system theory, several 

features can be used to describe system dynamics including  

 

moment invariants, correlation dimension (D2) and 

Lyapunov exponents. In this work, these features have been 

used to explain different genome sequences encoded to its 

signal behavior by several studies [12]. In this paper, we 

address the problem of characterizing the nonlinear dynamics 

of our sequence. The implementation details to automatically 

compute three important chaotic system parameters namely, 

the moment invariants, correlation dimension and largest 

Lyapunov exponent, are discussed using the Open TSTool 

MATLAB package. The proposed implementations were 

used to compute these features for a twenty  independent 

sequence encoded time series signals belonging to two 

different genomes: the human and mouse genome, 

downloaded from the Matrix Science - Help - Sequence 

Database Setup - IPI [10]. The results are studied to detect 

statistically significant differences among different genome 

types. Finally, statistical classification techniques are used 

such as K-means clustering to assess the possibility of 

similarity detection and classification using such parameters.  
 

II. METHODOLOGY 

A. Phase Space Trajectory Reconstruction.  

In this section we briefly demonstrate basic steps for 

chaotic time series analysis. We start first by encoding the 

different genome sequences into a time series signal as shown 

in figure (1.a, b). A good choice for a delay time is yielded by 

using the first minimum of the auto mutual information 

function as shown in figure (1.c, d). The first minimum of the 

auto mutual information can be found at four. Now we need 

to know the minimal embedding dimension for both human 

and mouse time series signals. We use Cao's method with a 

delay time of four, a maximal dimension of eight, three 

nearest neighbors and reference point depending on the 

length of each signal. There is a kink in the graph shown in 

figure (1.e, f) produced by Cao's method at three. So we need 

a time delay reconstruction of human and mouse time series 

signals with embedding dimension 3 and delay 4. Finally we 

plotted the phase space trajectory for both human and mouse 

time series signals as shown in figure (1.g, h). The step 

following obtaining the phase trajectory of both human and 

mouse time series signal is the step of feature extraction. This 

can be done by applying the following three methods:  

1. Moment invariants.  

2. Correlation dimension.  

3. Lyapunov exponent.   

 

1) Moment Invariants: The mathematical description of a 

dynamical system consists of two parts: the state which is a 

snapshot of the process at a given instant in time and the 

dynamics which is the set of rules by which the states evolve 
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over time.  To study the dynamics of our system, we first 

need to reconstruct the state space trajectory.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The most common method to do this is using delay time 

embedding theorem to create a larger dimensional geometric 

object by embedding into a larger m-dimensional embedding 

space [1]. The embedding dimension m must be large enough 

for delay time embedding to work. When a suitable m value 

is used, the orbits of the system do not cross each other. The 

dimension m in which false neighbors disappear is the 

smallest dimension that can be used for the given data. The 

data is ready now for feature extraction by the moment 

invariants. These invariants are constructed using the 

generalized fundamental theorem of moment invariants 

(GFTMI), which was formulated [1]. In 1962, Hu [2] 

presented the fundamental theorem, of moment invariants 

(FTMI) for recognition of two dimensional images, subjected 

to general linear transformation. Only in 1991, after 21 years 

of publication [3], the CFTMI was formulated by another 

author [4]. Features obtained by moment invariants are 

simple calculated features that do not change under 

translation, scaling or rotation. The following equations 

calculate the seven features extracted from the ten human and 

mouse time series signals. 
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The seven features for moment invariants 
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2) Correlation Dimension Estimation: The correlation 

dimension provides a straightforward way to 

measure the spatial organization and hence the 

predictability (finite dimensionality) and 

a. human time series signal.             b. mouse time series signal. 

c. delay- time using the first 

minimum of the auto mutual 

information for human time series 

d. delay- time using the first 

minimum of the auto mutual 

information for mouse time series 

e. minimum embedding dimension 

using Cao's method for  human 

time series signal 

f. minimum embedding dimension 

using Cao's method for mouse time 

series signal 

g. phase trajectory of human time 

series signal 

h. phase trajectory of mouse time 

series signal 

Figure (1), basic steps of analyzing a chaotic time series 
system. 
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dimensionality of a given signal (time series). That 

is, the measure of correlation dimension provides a 

way to determine whether the signal (time series) 

has fractional dimension i.e. chaotic attractors. 

However, in order to estimate the correlation 

dimension it is required to reconstruct the state space 

trajectory of the time series. This can be 

accomplished using the delay time embedding 

theorem through the creation of larger dimensional 

geometric object by embedding into a larger m-

dimensional embedding space. The embedding 

dimension m should be large enough for delay time 

embedding to work. When a suitable value for m is 

used, the orbits of the system don’t cross each other 

[1]. However, we have selected the first minimum of 

the mutual information function as a suitable value 

for the embedding time lag. The embedding 

dimension has been estimated using the Cao’s 

method [6]. Nevertheless, we have computed the 

correlation dimension using Taken’s estimator 

provided with the TSTOOL add-on toolbox for 

MATLAB. 

 

3) Lyapunov exponent: The notion of Lyapunov 

exponents is a generalization of the idea of the 

eigenvalues as a measure of stability of a fixed point 

(characteristic exponent) as it provides a measure of 

stability of a periodic orbit. That is, Lyapunov 

spectrum (exponents) characterizes the behavior 

(contraction or expansion) of the trajectories close to 

a fixed point. Therefore, these exponents provide a 

mean to measure the sensitivity to perturbed initial 

conditions. For a system to undergo chaotic 

dynamics, it must have at least one positive 

Lyapunov exponent. The largest Lyapunov exponent 

(lambda1), nevertheless, may be regarded as an 

estimator to the dominant chaotic behavior of the 

system [1]. However, in this work we have used the 

TSTOOL largest lyapunov estimation algorithm. 

This algorithm is similar to Wolf’s algorithm and 

provides an efficient estimation of the largest 

lyapunov exponent through the calculation of the 

scaling (rate of increase) of the prediction error 

(separation of nearby trajectories) versus the 

prediction time.  

 

III. RESULTS 

A. Moment Invariants 

 We have applied moment invariants feature extraction 

method to a twenty human and mouse sequences encoded 

time series signals for feature extraction, these signals are 

plotted in figure (2). Figure (2.a), shows the ten human time 

series signals and figure (2.b), shows the other ten time series 

mouse signals. It is clear from figure (2.b) that the ten mouse 

signals are very similar but not identical. As described in the 

methodology section after calculating the seven features 

extracted by moment invariants, the mean of both human and 

mouse features is taken and plotted versus each other as 

shown in figure (3). It is clear from this figure, that the third 

feature is the most discriminate feature. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
B. Correlation Dimension 
 

We have applied the Taken’s estimator to the encoded 

sequences in order to obtain their correlation dimension 

estimates. The following table renders the fractional (chaotic) 

correlation dimension estimates of a set of human genes and 

mouse genes obtained from [10].  

 

 

a. The ten time series human time series signals. 

b. The ten time series mouse time series signals. 

Figure (2), the twenty human and mouse time 
series signals 

Figure (3), a comparison between µh and µm. 
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Table (1), Correlation Dimension (D2) estimates of 

the translated gene sequences dataset.   

Human D2 Mouse D2 

4.7579 3.7796 

4.8145 4.2047 

3.2511 6.6643 

4.7954 4.2047 

4.8337 4.5172 

3.25 2.6328 

10.7250 3.5917 

7.4067 3.2439 

15.0129 5.1459 

15.7937 10.4523 

 

We have used these estimates in order to classify the 

encoded sequences into their respective genomes using the K-

means clustering algorithm. The classification accuracy using 

the correlation dimension estimates is depicted in table 3. 
 

C. Largest Lyapunov Exponent  
 

The largest Lyapunov exponent (LLE) has been estimated 

manually from the scaling (linear increase) of the prediction 

error versus the prediction time using the TStool algorithm. 

The following table depicts the LLE estimates of a set of 

human genes and mouse genes. 

 
Table (2), Largest Lyapunov Exponent (labda1) estimates of 

the translated gene sequences dataset. 

Human LLE Mouse LLE 

0.000778 (D2=4.7579) 0.003 (D2=3.7796) 

0.0003347 (D2=4.8145) 0.001 (D2=6.6643) 

0.0001666 (D2=3.2511) 0.00146 (D2=6.66) 

0.000137 (D2=3.25) 0.0010398 (D2=10.4523) 

0.000428 (D2= 4.7954) 0.00078 (D2=3.2439) 

0.0001544 (D2=4.8337) 0.000493 (D2=3.5917) 

0.00045 (D2=10.7250) 0.00033 (D2=4.5172) 

0.000406 (D2=7.4067) 0.0005 (D2=3.59) 

0.000262 (D2= 15.7937) 0.00140 (D2=6.6) 

0.000137 (D2=15.0129) 0.0030 (D2=3.77) 

 

Furthermore, we have applied the K-means clustering 

algorithm to classify the sequences into their respective 

genomes. The classification accuracy using the LLE is 

depicted in table 3.  
 
 

Table 35), accuracy of the proposed feature extraction methods to K- means 

Clustering classifier.  

 Moment 

invariants 

Correlation 

dimension 

Lyapunov 

exponent 

Human  80% 40% 100% 

Mouse 100% 80% 60% 

 

 
 

IV. DISCUSSION AND CONCLUSION 
 

In this work, we have characterized the biological 

sequences based on their nonlinear dynamical behavior. That 

is, we have established a nonlinear dynamical model consists 

of moment invariant, correlation dimension (D2), largest 

Lyapunov exponent (lambda1) estimates of plain integer 

mapping encoded sequences. The pattern of this model’s 

parameters has varied considerably between the different 

genomes. Furthermore, we have used the K-means clustering 

algorithm in order to classify the different sequences into 

their respective genomes.  

Experiments were performed on a dataset obtained from 

[10] to evaluate the reliability of the proposed nonlinear 

dynamical model. The proposed model has yielded 

reasonable classification accuracy between the human 

sequences and the mouse sequences. Nonetheless, due to the 

existence of similarities between some of the human 

sequences and the mouse sequences, our model has yielded 

low classification accuracy in some cases. Therefore, it is 

required to use longer sequences (more than 300 bases) in 

order to enhance the performance of our proposed model for 

the similar sequences.  

In conclusion, throughout this work we have found that the 

natural nonlinear dynamics that the biological sequences 

undergo differ between the different species. Therefore, it is 

rather encouraging to distinguish between the different 

species according to the nonlinear dynamical characteristics 

of their respective translated gene sequences. 
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