
Abstract- Denoising procedure for functional Magnetic 

Resonance Imaging (fMRI) is introduced in this paper. 

The noises are classified into random noise components 

and physiological baseline fluctuation components. The 

proposed technique based on threshold the Fourier 

spectrum of the output response to remove any 

frequencies less than the fundamental frequency and 

harmonics of the true activation, which it is periodic. 

The new technique is tested using computer 

simulations (block design) as well, real data from 

event-related fMRI experiments. The results show that, 

the new technique is suppressing both random and 

physiological noise components while preserving the 

true activation in the signal from the acquired data in a 

simple and efficient way. This allows the new method 

to overcome the limitation of previous techniques while 

maintaining a robust performance and suggests its 

value as a useful preprocessing step for fMRI data 

analysis.   
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I. INTRODUCTION 

 

Functional Magnetic Resonance Imaging (fMRI) is a non-

invasive brain imaging technique, which developed in the 

early 1990's [1] for determining which parts of the brain are 

activated by different types of physical sensation or activity, 

such as sight, sound, or the movement of subject's fingers, 

and detecting the corresponding increase in blood flow.  To 

observe these hemodynamic changes, rapid acquisition of a 

series of brain images is performed. The sequence of images 

is analyzed to detect such changes and the result is expressed 

in the form of a map of the activated regions in the brain [2]. 

        In the majority of reported functional human brain 

mapping studies using fMRI, blocks of baseline and 

activation images are scanned periodically. Typically, a 

number of frames are acquired while the subject is at rest or 

under some baseline condition, this is followed by a number 

of activation frames during which the subject is receiving a 

sensory stimulus or performing a specified motor or cognitive 

task [3]. This pattern is repeated in order to improve the 

Signal-to-noise ration (SNR).  New advances that improve 

the temporal resolution of fMRI called single trial or event-

related fMRI (ER-fMRI). In this new design, the subject 

receives a short stimulus or performs a single instance task 

while the resultant transient response is measured [4]. Event-

related fMRI offers many advantages over block design that 

include versatility, investigation of trial-to-trial variations, 

and extraction of epoch-dependent information and direct 

adaptation of the methods used for ERP to fMRI [5]. One 

significant limitation in ER-fMRI is the degradation in signal-

to-noise ratio (SNR) due to the transient nature of the 

response [5]. 

         Several methods of data analysis have been used to 

process the fMRI raw data. The ultimate goal of such analysis 

is to try to separate signal components due to true activation, 

physiological fluctuations and random noise [5]. The latter 

two components 

are considered as nuisance and must be removed for correct 

results [6]. Several methods have been proposed to suppress 

physiological noise including the use of harmonic model [7], 

and noise subspace characterization [3]. Others attempted to 

use different strategies to suppress the effect of random noise 

in the analysis using finite impulse response (FIR) filter 

modeling [8], smart spatial averaging [9], inter-epoch 

averaging [4], and Wiener filtering [10]. These techniques 

suffer from at least one of the following limitations: the 

assumption of a certain signal characteristic to enable 

building the denoising filter and the assumption of limited 

epoch-to-epoch variability to enable the averaging. 

             In this paper, that concentrates on denoising. The 

proposed method technique based on threshold the Fourier 

spectrum of the output response take into account 

physiological and random components noise while preserving 

the true activation in the signal. The new technique is tested 

using computer simulations (block design) as well, real data 

(ER-fMRI experiments). 
 

II. METHODOLOGY 

 

A. Theory 

 
When examining the BOLD response we often look at a 

system as a linear system composed of several subsystems 

(Fig 1). It implies response from short stimuli should predict 

responses to longer stimuli. 

A “linear system” satisfies the following: Scaling- Increasing 

stimulation by some ratio will increase the output by the same 

ratio, Superposition- Combining (adding) any two stimuli 

will lead to an output that is the sum of the two responses, 

Time-invariance-a response is the same irrespective of when 

it comes or what precedes or follows it. 

 

Generally, the fMRI temporal signal can be modeled as the  

Linear combination system , which are the summation of the 

true activation signal s(t), a physiological baseline fluctuation 

component, and a random noise d(t) component (Linear 

combination system) 

y(t) = s(t) + d(t) ,            

In frequency domain, we have: 

Y(k) = S(k) + D(k), 
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Fig.1. BOLD response system 

We proposed this linear combination system, since the true 

activation is periodic; we assume the output response signal 

also periodic 

 

Y(t) = y( t + T )      for all t, T(period Time) 

 

 

 

 

Each signal in the linear combination has a fundamental 

frequency that is a multiple of w. From the linear 

combination we select -DC, first, 

second and third harmonics. The selected components refer to 

the true activation and other threshold to zero refer to 

physiological and random components noise. 

After that, we reconstruct the resulting signal using real part 

of inverse Fourier transformation. 

 

B. Signal Fourier transform estimation: 

 

           According to the above theorem, we need to compute 

the Fourier transform of the signal and visualizing the Fourier 

transform with zero frequency components in the middle of 

the spectrum. The spectral of the physiological and random 

noise centralized in low frequency overlapped with that of the 

true activation. 

 

C. Denoising the signal: 

 

               We chose then threshold or amplitude (less than the 

smallest harmonic amplitude chose) from the visualizing 

Fourier transform to remove random and physiological noise 

components The remaining is the fundamental frequency and 

harmonics of the true activation signal. The technique 

strategy is shown in Fig. 2 

 

III. RESULTS 

 

This technique is tested using computer simulation as well, 

real data from human volunteer. The computer simulation by 

computer generated block design activation signal was added 

to an actual baseline set. The baseline data were collected on 

a healthy human volunteer using an EPI sequence 

(TE/TR=25/500ms, Matrix=64x64, field of view 

(FOV=20cmx20cm, slice thickness=5mm, 640 images) on a 

Siemens MagnetomVision 1.5 T clinical scanner. The 

number of epochs was 10. 

     The actual data were obtained from an ER-fMRI study 

performed on a normal human volunteer using a Siemens 1.5 

T Magnetom Vision clinical scanner [10]. In this study, an 

oblique slice through the motor and the visual cortices was 

imaged using a - weighted EPI sequence 

(TE/TR=60/300ms, flip angle= 

,Matrix=64x64,FOV=22cmx22cm, slice 

theckness=5mm). The subject performed rapid finger 

movement cued by flashing LED goggles. The study consists 

of 32 epochs with 64 images per epoch [5]. Temporal data 

from a single pixel in each motor and visual cortices were 

processed using the new method and compared to the case 

when the remainder of the acquired epochs are used for 

classical spectral subtraction denoising[5]. 

 

 
Fig.2. The technique strategy 

 

In Fig. 3, the result of applying the new technique to process 

computer simulated fMRI data. As can be observed the noise 

in the data was eliminated clearly in the output, compared to 

the classical parametric spectrum subtraction denoising [5]. 

 
Fig. 3.Result from computer simulation data time course. 
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Fig. 4.Result from real data time course. 

Also, the difference between original and processed signal 

appear to have no signal components 

In Fig. 4, the result of applying the new technique to process  

real fMRI data from activated pixel with in time course 

length 512 and 256 points (i.e., correspond to 8 or 4 epochs).  

As can be observed, the process removed the random noise 

and baseline variation, this achieve one's aim that this 

processing technique suppressing both random and 

physiological components noise while preserving the true 

activation in the signal from the acquired data in a simple and 

efficient way, we emphasized that by the difference between 

original and processed signal.  Compared to the classical 

parametric spectrum subtraction denoising which remove 

amount of the random noise, while keeping the baseline 

variation. 
 

In Fig.5, shown the Fourier spectrum of the signals in Fig, 3 

and Fig. 4. As can be shown the peaks corresponding to the 

fundamental frequency and harmonics of the activation signal 

are still present in the Fourier spectrum, certain that by the 

difference between original and denoising Fourier spectrum 

compared to classical parametric spectrum subtraction 

denoising, which contained noisy peaks corresponding to the 

physiological noise peaks.  
 

IV. DISCUSSION 
 

The results show that, the new technique is suppressing both 

random and physiological noise components while preserving 

the true activation  in the signal from the acquired data in a 

simple and efficient way. This allows the new method to 

overcome the limitation of previous techniques. 

                 The technique is virtually transparent to 

conventional statistical analysis methods, which assume 

statistical independence of samples. This is important for 

further analysis of the fMRI data (c.f., activation detection 

[10] and motion correction of fMRI time series [11]. This 

means that no constraints are imposed on the data analysis 

when the new method is used as a preprocessing step. 

               This technique  provide control over noise removal 

using a threshold. This allows the user to customize its use to 

specific data analysis too his/her choice. 
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Fig. 5.illustration of the Fourier spectrum of the original 

signal, the denoised signal, classical parametric spectrum 

subtraction denoising signal and the difference between 

original and denoising signal for time course shown in Fig.2 

and fig. 3. 

 
 

V. CONCLUSION 
 
A new signal denoising technique was proposed for fMRI 

signals. The proposed technique based on threshold the 

Fourier spectrum of the output response suppressing both 

random and physiological components noise while preserving 

the true activation in the signal from the acquired data in a 

simple and efficient way. The new technique is tested using 

computer simulations as well, real data, the implementation 

was described and its performance was demonstrated. 
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