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Abstract- Clusters of microcalcifications in mammograms are an 
important early sign of breast cancer in women. In this paper an 
approach is proposed to develop a Computer-Aided Diagnosis 
(CAD) system that can be very helpful for radiologist in 
diagnosing microcalcifications’ patterns in digitized 
mammograms earlier and faster than typical screening 
programs. The proposed method has been implemented in three 
stages: (a) the region of interest (ROI) selection of 32×32 pixels 
size which identifies clusters of microcalcifications, (b) the 
feature extraction stage is based on the wavelet decomposition of 
locally processed image (region of interest) to compute the 
important features of each cluster and (c) the classification 
stage, which classify between normal and microcalcifications’ 
patterns and then classify between benign and malignant 
microcalcifications. In classification stage, four methods were 
used, the voting K-Nearest Neighbor classifier (K-NN), Support 
Vector Machine (SVM) classifier, Neural Network (NN) 
classifier, and Fuzzy classifier. The proposed method was 
evaluated using the Mammographic Image Analysis Society 
(MIAS) mammographic databases. The proposed system was 
shown to have the large potential for microcalcifications 
detection in digital mammograms. 
  
Keywords -  Microcalcification, mammograms, wavelet, support 
vector machine, neural network, and fuzzy classifier. 

 
I. INTRODUCTION 

 
 Breast cancer is the most common cancer and continues 
to be a significant public health problem among women 
around the world. Primary prevention seems impossible since 
the cause of this disease still remains unknown [1]. It is 
believed that the most promising way to decrease the number 
of patient suffering from the disease is by early detection. 
The earlier breast cancer is detected, the better the chances 
that treatment will work and the better a proper treatment 
options can be provided. 
 
 To date, mammography remains the most effective 
diagnostic technique for early breast cancer detection; 
however, not all breast cancer can be detected by 
mammograms [2]. For microcalcifications (MCCs), the 
interpretations of their presence are very difficult because of 
its morphological features. For example, the sizes of MCCs 
are very tiny, typically in the range of 0.1mm- 1.0mm and the 
average is about 0.3mm, implying it can easily be overlooked 
by a radiologist. While in some dense tissues, and/ or skin 
thickening, MCCs areas are almost invisible to be seen by 
examining radiologist. The dense tissues especially in 
younger women may easily be misinterpreted as MCCs due 
to film emulsion error, digitization artifacts or anatomical 
structures such as fibrous strands, breast borders or 
hypertrophied lobules that almost similar to MCCs. Other 

factors that contribute to the difficulty of MCCs detection are 
due to their fuzzy nature, low contrast and low distinguish 
ability from their surroundings [1].  
 
 In the literature, various numbers of techniques are 
described to detect and classify the presence of 
microcalcifications in digital mammograms as benign or 
malignant. Yu and Guan [3] presented a CAD system for the 
automatic detection of clustered microcalcifications through 
two steps. The first one is to segment potential 
microcalcification pixels by using wavelet and gray level 
statistical features and to connect them into potential 
individual microcalcification objects. The second step is to 
check these potential objects by using 31 statistical features. 
Neural network classifiers were used. Mascio, Hernandez, 
and Clinton [4] developed a microcalcification detection 
algorithm, which operates on digital mammograms by 
combining morphological image processing with arithmetic 
processing. Netch [5] proposed a detection scheme for the 
automatic detection of clustered microcalcifications using 
multiscale analysis based on the Laplacian-of-Gaussian filter 
and a mathematical model describing a microcalcification as 
a bright spot of certain size and contrast. Barman, Granlund, 
and Haglund [6] used a low-pass filter to detect 
microcalcification by analyzing digital mammogram. 
Although the system based on their algorithm is still under 
development, good preliminary results have been produced 
with further modifications still to be made. Karssemeijer [7]–
[9] developed a statistical method for detection of 
microcalcifications in digital mammograms. The method is 
based on the use of statistical models and the general 
framework of Bayesian image analysis. Chan et al. [10]–[12] 
investigated a computer-based method for the detection of 
microcalcification in digital mammograms. The method is 
based on a difference image technique in which a signal 
suppressed image is subtracted from a signal enhanced image 
to remove structured background in the mammogram. Zheng, 
Qian, and Clarke [13]–[15] proposed a method for the 
detection of microcalcifications clusters in digitized 
mammograms using mixed feature-based neural networks. 
Zaiane, Maria, and Alexandru [16] used neural network and 
data mining techniques for detection and classification of 
digital mammograms. Cheng, Lui, and Feiimanis [17] 
proposed an approach using fuzzy logic for the detection of 
microcalcifications. Pfrench, Zeidler, and Ku [18] presented a 
two–dimensional adaptive lattice algorithm to predict 
correlated clutters in the mammogram. Li, and Lo [19] 
proposed using fractal background modeling, taking the 
difference between the original and the modeled image, 
which results in enhanced MC detection.  
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 Strickland, and Hahn [20], [21] used a discrete wavelet 
transform (DWT) with biorthogonal spline filters to detect 
microcalcifications. Yoshida, Doi, and Nishikawa [22], [23] 
applied a DWT. They multiplied every scale by a weight 
factor and reconstructed an image by applying the inverse 
transform. The weights were determined by supervised 
learning, using a set of training cases. Clarke et al. [24] and 
Qian, Clarke, Kallergi, Zheng, and Clark [25], [26] applied a 
denoising to the image and then took the high-pass scale of a 
DWT using spline wavelets. This resulted in a general edge 
detector that could locate not only microcalcifications but 
also several other structures, such as film artifacts or lines. 
Bazzani et al. [27] proposed a method for MC detection 
based on multiresolution filtering analysis and statistical 
testing, in which an SVM classifier was used to reduce the 
false detection rate. Essam, Yongyi, and Mile [28] 
investigated an approach based on SVM for detection of 
microcalcification clusters in digital mammograms, and the 
sensitivity as high as 94% was achieved by the SVM. Wei, 
and Simoncelli [29] investigated several state-of-the-art 
machine-learning methods for automated classification of 
clustered microcalcifications in mammograms.  
 
 The remainder of the paper is organized as follows 
Section II gives a background of the wavelet analysis. 
Section III provides detailed information about the proposed 
system. Experiments performed and the results achieved are 
discussed in Section IV. Conclusions are drawn in Section V. 
 

II. BACKGROUND 
 
 The proposed system is built based on wavelet analysis of 
the region of interest to extract features. Here we introduced 
the theoretical background for wavelet analysis. 
 
A. Wavelet Analysis 
       Wavelet analysis is the most recent solution to 
overcome the shortcoming of the Fourier transform. Wavelet 
is a waveform of limited duration and can be expressed as 
mathematical functions that cut up data into different 
frequency components (into shifted and scaled versions of the 
original or mother wavelet) and then study each component 
with a resolution matched to its scale. The fundamental idea 
behind wavelet is to analyze according to scale. The spectrum 
is calculated each time it shifted and repeated many times 
with a slightly shorter or (longer) window every new cycle. 
So wavelet analysis allows the use of long time intervals 
where we want more precise low frequency and shorter 
regions where we want high-frequency information [30]. 
 
      Wavelet analysis is based on three properties: 
orthogonality, quadratic filter and filter bank. Two functions f 
and g are said to be orthogonal to each other if their inner 
product is zero. 

∫ =∗=
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      The symbol * mean a convolution operation. Dilation and 
translation of the mother function or analyzing function 
achieved as shown in equation: 
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      The variables j and k are integers that scale and dilate the 
mother function φ to generate wavelets. The scale index j 
indicates the wavelet's width and the location index k gives 
its location or (translation). 
 
      In the two dimensions wavelet analysis, two dimensions 
scaling functions φ(i,j) and three 2D wavelets are required. 
These wavelet functions measure intensity or gray level 
variations for image along different directions. 
 
      ΨH(x,y) responds to variation along columns (horizontal 
edge), ΨV(x,y) responds to variation along rows (vertical 
edges) and ΨD(x,y) measures variations along diagonals. The 
discrete wavelet transform of image f(x, y) of size M x N is 
computed as follow: We first define the scaled and translated 
basis functions: 
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where  
j0: starting scale, we normally let it equal to zero. 
wφ(j0,m,n): define an approximation of f(x,y) at the scale and 
normally obtained by convolving signal with the low -pass 
filter. 
wi
ψ(j0,m,n): define horizontal, vertical and diagonal details 

normally obtained using high - pass filter. 
 

III. METHODOLOGY 
 
 The proposed system has three stages: preprocessing, 
feature extraction and classification process.  
 
A. Preprocessing stage 
 In the preprocessing, the region of interest (ROI) was 
selected from the digital mammograms images. 
A1. Mammogram image data source 
 It is difficult to access real medical images for 
experimentation due to privacy issue. The data collection that 
was used in our experiments was taken from the 
Mammographic Image Analysis Society (MIAS) [31]. It 
consists of 322 images, which belong to three categories: 
normal, benign and malign, which are considered abnormal. 
In addition, the abnormal cases are further divided into six 
categories: circumscribed masses, spiculated masses, 
microcalcifications, ill-defined masses, architectural 
distortion and asymmetry. All images are digitized at a 

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 11, 2009 at 08:44 from IEEE Xplore.  Restrictions apply.



Proceedings of the 2008 IEEE, CIBEC'08                                                              978-1-4244-2695-9/08/$25.00 ©2008 IEEE

resolution of 1024×1024 pixels and eight-bit accuracy (gray 
level). They also include the locations of any abnormalities 
that may be present. The existing data in the collection 
consists of the location of the abnormality (like the center of 
a circle surrounding the tumor), its radius, breast position 
(left or right), type of breast tissues (fatty, fatty-glandular and 
dense) and tumor type if exists (benign or malign). 
A2. ROI Selection 
 Using the locations of any abnormalities supplied by the 
MIAS for each mammogram, the ROI of size 32×32 pixels is 
extracted with microcalcification centered in the window, and 
divided into two sets: the training set and the testing set. We 
used 100 images for normal cases, and 25 images for 
microcalcification cases (13 benign images and 12 malignant 
images). 
 
B. Features Extraction 

Features are extracted from the ROI based on the wavelet 
decomposition process. These features are passed to the 
classification stage. There are five processing steps in the 
features extraction stage [2]. Features, in our system, are 
extracted from the coefficients that were produced by the 
wavelet analysis decomposition. In this section we discuss 
these steps. 
B1. Wavelet Decomposition 
 In this work, the wavelet decomposition applied on the 
region of interest using matlab toolbox. The output of 
wavelet analysis are the decomposition vector C and 
corresponding book keeping matrix S, The vector C consist 
from horizontal, vertical, and diagonal detail coefficients and 
one approximation. 
B2. Coefficients Extraction 
 The horizontal, vertical and diagonal detail was extracted 
from the wavelet decomposition structure [C, S]. These 
vectors were extracted at each scale from scale 1 to 3. 
B3. Normalization 
 The coefficients vectors for scales 1 to 3 are normalized 
after extracted. The normalization process is achieved by 
dividing each vector by its maximum value. The results of 
this operation is that all vectors values become less than or 
equal one. The normalization process is used to simplify the 
coefficients value. 
B4. Energy Computation 
 We compute the energy for each vector by squaring every 
element in the vector. The produced values are considered as 
features for the classification process. 
B5. Features Reduction 
 From the wavelet decomposition, it produces high 
number of coefficients. Therefore, at the last phase, we 
reduce the number of features by estimated the mean for each 
wavelet coefficient at each scale. 
 
C. Classification  
 The classification process is divided into the training 
phase and the testing phase. In the training phase, labeled 
data are given. Separately, the data on a candidate region 
which has already been decided as a microcalcification or as 
normal are given, and the classifier is trained. In the testing 

phase, unknown data are given and the classification is 
performed using the classifier after training. The number of 
images which were used in training and testing sets are 
shown in Table 1.  
 

We used four techniques, the voting K-Nearest Neighbor 
(K-NN) classifier, Support Vector Machine (SVM) classifier, 
Neural Network (NN) classifier, and Fuzzy classifier to 
classify between normal and microcalcification tissues, and 
to classify between benign and malignant microcalcification 
tissues. 
C1. Voting K-Nearest Neighbor (K-NN) classifier 

The Voting k-Nearest Neighbor (k-NN) classifier is 
nonparametric technique, it assigns a test sample to the class 
of the majority of its K-neighbors; that is, assuming that the 
number of voting neighbors is k=k1+k2+k3 (where ki is the 
number of samples from class i in the k-sample neighborhood 
of the test sample), the test sample is assigned to class m if km 
= max {ki, i=1, 2, 3} [32]. Through this study, we compared 
the results of using k=1 to k=11.    
C2. Support Vector Machine (SVM) classifier 
 SVM has the potential to handle very large feature spaces, 
because the training of SVM is carried out so that the 
dimension of classified vectors does not has as distinct an 
influence on the performance of SVM as it has on the 
performance of conventional classifier. That is why it is 
noticed to be especially efficient in large classification 
problem. This will also benefit in faults classification, 
because the number of features to be the basis of fault 
diagnosis may not have to be limited. Also, SVM-based 
classifier is claimed to have good generalization properties 
compared to conventional classifiers, because in training 
SVM classifier the so-called structural misclassification risk 
is to be minimized, whereas traditional classifiers are usually 
trained so that the empirical risk is minimized. The 
performance of SVM in various classification task is 
reviewed, e.g., in Christiani and Shawe-Taylor [33]. Through 
this study, we used linear kernel function. 
C3. Neural Network (NN) classifier 
 A back propagation neural network (BPNN) was used for 
classification of features into normal or microcalcification, 
and then into benign or malignant microcalcification.  
C4. Fuzzy classifier 
 The fuzzy classifier based on the Fuzzy C-Mean (FCM) 
clustering which provided by matlab toolbox in order to 
classify between normal and microcalcification patterns, and 
then classify between benign and malignant 
microcalcification. 

 
TABLE 1 

Number of training and testing sets 

Category No. of image No. of training 
set 

No. of testing 
sets 

Normal 100 75 25 
Microcalcification 25 18 7 

Benign 13 9 4 
Malignant 12 8 4 
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IV. RESULTS & DISCUSSIONS 
 

 Results from the proposed system obtain in two steps; 
first we obtained results of classification between normal and 
microcalcification images from four classifiers shown in 
table 2, 3, 4, and 5. Second we obtained results of 
classification between benign and malignant 
microcalcifications images from four classifiers shown in 
table 6, 7, 8, and 9. 
 
 Table 2 shows results of classification rates for normal 
and microcalcifications (MCCs) by using K-NN classifier for 
testing set with varying the k value (1-11) and at different 
levels of wavelet decomposition (levels 1-3, levels 1-2, and 
levels 2-3). 
 

In table 3, 4, and 5 show results of classification rates for 
normal and microcalcifications (MCCs) by using SVM, 
fuzzy, and BPNN classifiers for testing set at different levels 
of wavelet analysis (levels 1-3, levels 1-2, and levels 2-3). 
 
 These results demonstrate that four classifiers with 
different levels of wavelet decomposition give the best 
results. But the classification rate of microcalcification cases 
achieves the best performance with features extracted from 
levels 1–3, and levels 2-3 because microcalcification is small 
and represented as high frequency information details which 
embodied in the highest levels by wavelet decomposition. On 
the other hand, the classification rate of microcalcification 
cases achieves the bad performance with features extracted 
from levels 1–2 because the low frequency information 
which embodied in the lowest levels by wavelet 
decomposition. 
 
 Table 6 shows results of classification rates for benign 
and malignant microcalcification by using K-NN classifier 
for testing set with varying the k value (1-11) and at different 
levels of wavelet decomposition (levels 1-3, levels 1-2, and 
levels 2-3).  
 

In table 7, 8, and 9 show results of classification rates for 
benign and malignant microcalcification by using SVM, 
fuzzy, and BPNN classifiers for testing set at different levels 
of wavelet analysis (levels 1-3, levels 1-2, and levels 2-3). 
 
 From the above results the best results of classification 
rates for benign and malignant microcalcification obtained by 
K-NN classifier at k = 11, and levels 1-3, SVM classifier at 
levels 1-3, fuzzy classifier at levels 1-3, and BPNN classifier 
at levels 2-3. We noted the best results achieved at level 1-3, 
and level 2-3, because benign and malignant are small and 
represented as high frequency information details which 
embodied in the highest levels by wavelet decomposition. 
 

These results are not so much satisfactory because small 
number cases for benign and malignant were used in training 
and testing the system which does not cover the entire space 
of each cluster. 

 
TABLE 2 

Classification rates for normal and MCCs by using K-NN classifier  
Levels 1-3 Levels 1-2 Levels 2-3 

k Normal 
(%) 

MCCs 
 (%) 

Normal 
(%) 

MCCs 
 (%) 

Normal 
(%) 

MCCs 
 (%) 

1 100 100 100 25 100 100 
3 100 100 100 12.5 100 100 
5 100 100 100 12.5 100 100 
7 100 100 100 0 100 100 
9 100 100 100 0 100 100 

11 100 100 100 0 100 100 
 

TABLE 3 
Classification rates for normal and MCCs by using SVM classifier 
Levels 1-3 Levels 1-2 Levels 2-3 

Normal 
(%) 

MCCs 
 (%) 

Normal 
(%) 

MCCs 
 (%) 

Normal 
(%) 

MCCs 
 (%) 

100 100 96 12.5 100 100 
 

TABLE 4 
Classification rates for normal and MCCs by using Fuzzy classifier  

Levels 1-3 Levels 1-2 Levels 2-3 
Normal 

(%) 
MCCs 
 (%) 

Normal 
(%) 

MCCs 
 (%) 

Normal 
(%) 

MCCs 
 (%) 

75 100 100 12.5 100 100 
 

TABLE 5 
Classification rates for normal and MCCs by using BPNN classifier  

Levels 1-3 Levels 1-2 Levels 2-3 
Normal 

(%) 
MCCs 
 (%) 

Normal 
(%) 

MCCs 
 (%) 

Normal 
(%) 

MCCs 
 (%) 

100 100 72 37.5 100 100 
 

TABLE 6 
Classification rates for benign and malignant by using K-NN classifier  

Levels 1-3 Levels 1-2 Levels 2-3 
k Benign 

(%) 
Malignant 

(%) 
Benign 

(%) 
Malignant 

(%) 
Benign 

(%) 
Malignant 

(%) 
1 50 75 25 75 75 50 
3 25 100 50 50 75 50 
5 50 100 50 50 50 75 
7 75 75 25 75 75 50 
9 75 25 25 75 75 50 

11 100 100 25 100 100 50 
 

TABLE 7 
Classification rates for benign and malignant by using SVM classifier 

Levels 1-3 Levels 1-2 Levels 2-3 
Benign 

(%) 
Malignant 

(%) 
Benign 

(%) 
Malignant 

(%) 
Benign 

(%) 
Malignant 

(%) 
75 100 50 50 75 75 

 
TABLE 8 

Classification rates for benign and malignant by using Fuzzy classifier 
Levels 1-3 Levels 1-2 Levels 2-3 

Benign 
(%) 

Malignant 
(%) 

Benign 
(%) 

Malignant 
(%) 

Benign 
(%) 

Malignant 
(%) 

75 100 25 100 100 50 
 

TABLE 9 
Classification rates for benign and malignant by using BPNN classifier 

Levels 1-3 Levels 1-2 Levels 2-3 
Benign 

(%) 
Malignant 

(%) 
Benign 

(%) 
Malignant 

(%) 
Benign 

(%) 
Malignant 

(%) 
25 75 50 50 75 75 
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V. CONCLUSION 

 
  In this study, a computer-aided diagnostic system using 

wavelet analysis for microcalcification detection in the 
digitized mammograms of the breast is presented. This 
system depends on selecting some features from different 
levels of wavelet decomposition and using them in the 
classification process. Experiments were conducted on the 
MIAS dataset to diagnose microcalcification in a fully 
automatic manner using wavelet analysis and four classifiers.  

The results suggest that proposed system can aid in the 
microcalcification detection in digital mammograms. It is 
hoped that more interesting results will follow on further 
exploration of data. Although developed method is built as an 
offline diagnosing system, it can be rebuilt as an online 
diagnosing system in the future. 
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