
 
 

  

   Abstract— The model-based approach for detecting the 
fMRI activations involves assumptions about the hemodynamic 
response function. If such assumptions are incorrect or 
incomplete, this may result in biased estimates of the true 
response, posing a significant obstacle to the practicality of the 
technique.  In this work, a simple yet robust model-free 
technique is proposed for detecting the fMRI activations. The 
idea of the proposed model is to convert one of the model-based 
fMRI tools, namely canonical correlation analysis (CCA), to 
model–free with help of independent component analysis 
(ICA). In particular, ICA provides accurate reference functions 
for CCA instead of the harmonics originally used. This 
combination enables the elimination of the limitations of both 
techniques and provides a model-free approach for data 
analysis. Results from both numerical simulations and real 
fMRI data sets confirm the practicality and robustness of the 
proposed method. 
   Keywords: Functional magnetic resonance imaging, independent 
component analysis, canonical correlation analysis. 

I. INTRODUCTION 
   Functional magnetic resonance imaging (fMRI) is an       
exciting relatively new medical imaging technique that is 
providing much new information about the function of the 
human brain. The technique hinges upon the sensitivity of 
the magnetization decay rates to changes in physiological 
conditions. For example, the effective decay rate of the 
longitudinal magnetization is sensitive to increases in the 
inflow of blood during activation or sensory stimulation. The 
resulting signal change has been measured [1] in order to 
quantify cerebral blood flow (CBF) rates. Another example 
is the decay rate, which has a blood oxygenation level 
dependence (BOLD) [2]. The fMRI measurements are 
physiologically filtered versions of the actual neural activity, 
disturbed by electronic noise and other physical and 
physiological artifacts. Although blood oxygenation level 
dependent (BOLD) fMRI has considerable advantages over 
other functional imaging modalities. On a 1.5 T scanner, the 
BOLD signal change due to the experimental stimulation of 
the brain is approximate 1%-5%. In addition, various 
sources of noise and artifacts such as subject motion, 
scanner calibration drifts, and physiological processes such 
as vascular flow, heart rate, and vessel motion significantly 
confound the fMRI signal. Therefore, the analysis method 
should be insensitive to these interfering signals so that 
activations can be accurately detected. A variety of analysis 
methods have been developed for detecting brain activations 
in fMRI. Principal component analysis (PCA) [4], 
independent component analysis (ICA) [5], model-based 
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fMRI signal analysis methods (e.g., [6]-[7]) assume a 
specific model for the fMRI signal with a specified noise 
structure. However, the structure of noise in fMRI is not 
well understood and remains a contentious subject [8]. The 
validity of the statistical models depends on the extent to 
which the data satisfies the underlying assumptions. If we 
assume that images are acquired during an fMRI experiment, 
then the data at each pixel can be represented by a discrete-
time sequence of length. Each measured sequence  can be 
thought of as containing three components: 1) a 
hemodynamic response signal component which arises due 
to the experimentally controlled activation-baseline pattern; 
2) a nuisance component representing effects of no interest 
such  as the average signal intensity, physiological 
biorhythms, and  systematic drifts in the signal level; and 3) 
noise. One can think of the signal component as the response 
of a system whose input is the activation-baseline pattern.  A 
widely used method for detecting activated pixels in fMRI is 
the cross-correlation method [9]. 
    In this method, one computes the cross correlation 
between the measured time series and a reference signal 
which represents an estimate of the response signal 
component. Those pixels that show high correlations are 
declared to be activated. The suggestion is to select the 
reference signal to be formed as a periodic   function by 
replicating this time-averaged cycle throughout   the time 
course. As noted, the reference signals obtained using the 
latter may not present all kind of data. In addition, it may be 
difficult to represent activated pixels whose time sequences 
are event related fMRI. Besides, the data are in general very 
noisy, and much statistical research has been devoted to 
studying how the weak activation signals may be extracted 
with optimal sensitivity. Thus, the use of model-free analysis 
in fMRI is inherently attractive because it does not rely on 
imposed assumptions about experimental conditions.  

II. THEORY 

A. Independent Component Analysis  

    Independent Component Analysis is a signal processing 
technique, created to separate a number of statistically 
“independent” sources that have been mixed linearly without 
further knowledge of their distributions or dynamics.  
ICA assumes there are N statistically independent inputs that 
have been mixed linearly in N output channels. Knowledge 
of joint distributions and statistical independence of latent 
variables is assumed [10]. There are two types of ICA that 
can be calculated: spatial ICA, in which the spatial 
components are constrained to be independent and temporal 
ICA, in which the time courses of modulation are 
constrained to be independent. That latter is considered here. 
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B. WN criterion 
    The WN criterion was met if the mean power across all 
frequency bins of the power spectrum was greater than the 
standard deviation of the power across all those frequency 
bins. If for any given component, the WN criterion was met, 
then its power spectrum was considered essentially the 
spectrum of white noise and that component was scored as a 
relevant contributor to the overall noise content of the MR 
signal. 

C. Canonical correlation analysis  

Canonical correlation analysis (CCA) is a well-known 
tool in statistical analysis. CCA is a way of measuring the 
linear relationship between two multidimensional variables. 
It finds two bases, one for each variable, that are optimal 
with respect to correlations and, at the same time, it finds the 
corresponding correlations [11]. Given two 
multidimensional random vectors, CCA finds the optimal 
linear combination such that X and Y correlate the most.  

III.METHODS 
     Assume that an fMRI experiment has been performed in 
which a number of image slices are acquired at N 
subsequent time points. In each pixel in each image slice we 
obtain a time series of length N. In activated region of the 
brain there should be a small signal increase during task 
performance due to BOLD effect. We are searching for 
pixels whose time series has a component that follows the 
paradigm. However, due to the low signal-to-noise ratio we 
will instead consider a region of pixels to make use of the 
spatial relationships between pixels. This region becomes 
our multidimensional x-variable, in this work, a 3×3 region 
is chosen leading to a nine-dimensional x-variable, the 
measured time series will be referred to as x(t) = [x1(t),……, 
x9(t)]T . Since it is not well known what the hemodynamic 
response in an activated region is, therefore Instead of using 
a modeled signal subspace as other technique [11] chose the 
y(t) variable as a basis-function  of Fourier-series expansion 
of a square-wave in contrast to the other technique [11], we 
extract the reference signal y(t) directly from the outcome of 
ICA of  a true activation selected from the real data itself 
without any assumption about the neuronal response. The 
practical implementation steps are described later. The 
algorithm and all supporting routines were written in Matlab 
(Math Works, Natick, MA). This approach was investigated 
by applying it to simulated fMRI datasets, for event related 
fMRI. In the simulation studies, the performance of the 
present approach was measured to make its results easier to 
evaluate. In the experimental studies, the present approach 
was applied to activated time courses from experimental 
data obtained to illustrate its practical utility. 
 The computer simulations were performed whereby a 
computer generated ER-fMRI activation signal was added to 
an actual baseline data set. The generated activation was 
generated using a signal of the form as per equation (1):  

X(t) = (1− exp (−t/T1) )3 ⋅ exp(−t/T2) ,       (1) 
where T1 and T2 are constants that can be adjusted to obtain 
the desired shape and t represents the sampling times (i.e., 

the image number within an epoch), the number of epochs 
was 5 and the length of each epoch was 100 as shown in Fig. 
1. Spatial pattern of activity activations were added to the 
dataset in the regions as shown in Fig. 2, with different 
contrasts, from left to right and different pattern, from top to 
bottom. 

 
Fig. 1. Simulated activation time course 

 
Fig. 2. Spatial pattern of activity activations were added to the dataset in the 
regions shown in this figure, with different contrasts, from left to right and 

different pattern from top to bottom. 

   New Postprocessing functions were added to the FastICA 
package [12] as shown in Fig. 3. The practical 
implementation steps needed to implement the new 
technique are as follows: 

Step 1.  Select the region of interest for selecting a good real 
reference activation time course. 

Step 2.  Compute the mean power for the recalled data across 
all frequency bins of the power spectrum. 

Step 3.  Compute the standard deviation of the power for the 
recalled data across all those frequency bins of the 
power spectrum.  

Step 4.  The power spectrum of each pixel was evaluated 
with white noise (WN) criterion by dividing the 
standard deviation over the mean as a ratio. 

Step 5.  Rank the above ratio in descending order. 
Step 6.  Screen the region of interest. Iin our case, the motor 

cortex screened first then the visual cortex for the 
highest rank value, then a 3×3 region selected from 
each area which has a real activation as shown the 
center pixel for each area in Figs. 4 and 5 
respectively. 

Step 7.  Perform PCA for reducing dimension and get as 
much signal variance possible. 

Step 8.  Perform ICA for the selected pixels, using the 
modified FastICA module [12]. 

Step 9.  Extract the reference function needed to CCA 
technique from the outcome of ICA. 

Step 10.  Select the region of interest to be examined for a 
real activation, 3×3 pixel regions at a time. 

Step 11.  Apply the new technique for computing the 
correlation factor for the selected area. 

Step 12.  These pixels unable to pass the threshold 
correlation factor are classified as noise and 
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automatically cleared for the data sets in which noise 
was to be removed. 

Step 13.  Pixels that passed the threshold correlation factor 
are classified as activation and assigned an 
activation value corresponding to the correlation 
factor as shown in Figs. 6-9. 

Step 14.  Steps 10-13 are repeated for the rest of the pixels. 

 
Fig.3. Postprocessing Functions added within FastICA [12] 

      
Fig. 4. Reference time course signals selected from the motor cortex area: 

a)original signal and b) denoised signal 
 

  
Fig. 5. Reference time course signals selected from visual cortex area: 

a) original signal and b) denoised signal 

IV. RESULTS AND DISCUSSION 
    The proposed technique for activation detection was 
applied to simulated and real experimental fMRI data sets 
and its performance compared to those of a similar time 
domain method. Simulated Data set for simulating an fMRI 
dataset was created, by adding activations, trends and noise 
to a base image. Also the present technique was applied to 
the event-related fMRI data. The data were obtained from an 
activation study performed on a volunteer using a Siemens 
1.5T clinical scanner. In this study, an oblique slice through 
the motor   and the visual cortices was imaged using a T2*-
weighted EPI sequence (TE/TR= 60/300 ms, Flip angle=55°, 
FOV=22cm×22cm, slice thickness=5mm). The subject 
performed rapid finger movement cued by flashing LED 
goggles. The study consisted of 31 epochs, with 64 images 
per epoch where we processed 8 epochs in our case. 
Substantially more information is obtained using CCA 
compared to ordinary correlation analysis. The largest 
canonical correlation coefficient is a qualitative measure of 
how well the time series in the 3×3 neighborhood 
corresponded to the optimal reference signal Y, that of the 
CCA found in Y. A large correlation implies a high degree 
of similarity, and therefore an activated central pixel, a low 
correlation value means that it was not possible to find a 
signal in Y that had any similarity to the time course in the 
neighborhood. The largest canonical correlation coefficient 
(ρ), is thus the most obvious measure for distinguishing 
nonactivated pixels from possibly activated. At each pixel, 
we would like to test the hypothesis H0: ρ1= 0 against 
H1:ρ1>0, A natural decision is to reject H0 if the largest 
sample canonical correlation exceeds some threshold (ρ≥0.5 

[11]). Temporal ICA was applied to process groups of pixels 
within a user specified region of interest of size 3×3. We 
found that in case of the simulated data the correlation factor 
for the proposed technique   was 50% more than the other 
model based technique [11] and 80% more than the ordinary 
correlation technique and these results are shown clearly in 
Figs. 6-8, accordingly the intensity of the pixels within the 
selected region which has a true activation is higher in the 
proposed technique than the other model based [11]. 
      We performed the simulation in two levels for signal to 
noise ratio (SNR): one set with high SNR the other with low 
SNR. We found that the results from the proposed technique 
for both level is same giving a high correlation factor in both 
cases while the correlation factor from the model-based 
technique [11] is very low in case of low SNR in this case 
the activation can not be detected our explanation for that 
with the proposed technique the reference function to be 
correlated with where, the area selected was extracted from a 
real actual data. The use of the proposed model-free analysis 
in fMRI is inherently attractive because it does not rely on 
imposed assumptions about experimental conditions  but  the 
only limitation is the way to choose a good activation to be 
as a reference function and therefore we added a preprocess 
step for screening the data with the WN criterion. The 
detection map from our proposed technique is coincident 
with the results from [13] which dealt with same data set, 
also we found that in case of the real data the correlation 
factor for The proposed technique was 25% more than the 
other model-based technique [11] and 80% more than the 
ordinary correlation which deal with data as a univeriate 
technique and these results are shown clearly in Fig. 8-9. 
 Some pixels were selected from region A and region B as 
shown in Figs. 9, 10 and 11. These pixels show that the 
proposed technique success to detect a very contaminated 
signals which can not be detected by the technique in [11], 
also pixel shown in Fig. 12 in region C shows a false 
detection of the other technique in [11] while our proposed 
technique detected as a noise,   the reason behind that is the 
chosen sine/cosine reference function by other technique 
(model-based) gives an opportunity to noise by pure chance 
create a pixel time series in a non activated area with high 
correlation to some signal in chosen reference function,  in 
contrast the proposed model-free technique does not rely on 
imposed assumptions.  
     The sensitivity of detecting the activated pixels within the 
interested region in visual and motor cortices that have a true 
activation is higher in the proposed technique. This suggests 
that the idea included in our proposal of converting one of 
the model based fMRI tools, namely canonical correlation 
analysis (CCA), to be a model-free with help of the outcome 
of ICA from actual real data make the technique more 
sensitive. Also this combination enables the elimination of 
the limitations of both techniques (CCA-ICA) and provides 
a robust model-free mechanism for analyzing and makes it 
more practical for use in clinical settings. 

a) b) 

a) b) 
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Fig. 6.  Result for simulated data in case of low signal to noise ratio: 

 a) proposed technique, and b) other technique 

            
Fig. 7. Result for simulated data-case- high signal to noise ratio:  

a) proposed technique and b) other technique 

       
Fig. 8. Activation map for real data: a) proposed and b) other technique 

V. CONCLUSION 
A simple model-free technique is proposed for detecting 

the fMRI activations. This technique adds a second step to 
CCA (canonical correlation analysis) and the prior 
information about the activation paradigm which were 
extracted from the outcome of ICA. The new technique 
accounts for spatial correlations such as interactions among 
different regions elicited by various factors. This enables the 
proposed technique to provide an accurate detection method 
based on a robust selection of reference functions. The use 
of model- free analysis in fMRI is inherently attractive 
because it does not rely on imposed assumptions about 
experimental conditions. 

 
 
 
 
 
 
 

 
 
 
 

 

Fig. 9. Activation map for real data set, comparison between the proposed 
(model free) and technique in [11]  

 
Fig. 10. Time course from a pixel chosen from area A 

 

 
Fig. 11. Time course from a pixel chosen from area B 

 

 
Fig. 12. Time course from a pixel chosen from area C 
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