
 

 

  
Abstract— Alzheimer's disease (AD) is the most common form of 
dementia with strong genetic factors in which a combination of 
genetic variants contributes to AD risk. Discovering epistasis 
interactions among genetic variants is key to identifying valuable AD 
predictive models that allow earlier diagnosis and better prognosis for 
patient. Presently, AD predictive models are derived using either 
statistical or biological feature selection methods. Unfortunately, both 
approaches suffer from inherent limitations in their generalization 
and prediction power. This study presents a new hybrid method 
between these two approaches based on integrated higher-order 
evidence-based (IHOEB) framework. This method combines 
statistical and biological feature selection methods and allow 
computationally-efficient detection of up to 4-way epistasis models 
associated with AD. The new processing framework was applied to 
data obtained from the Alzheimer’s Disease Neuroimaging Initiative 
database (ADNI). The classification accuracies of IHOEB 4-way 
models varied between (0.7410-0.7860) whereas the accuracies of 
statistical and biological 2-way models varied between (0.6450-
0.6760) and (0.5300-0.5750) respectively. This new IHOEB 
framework offers a promising alternative for epistasis interactions in 
genome wide association studies where it allows identification of AD 
models that are supported by both statistical and biological analyses 
efficiently and at higher accuracy.  
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I. INTRODUCTION 
HE accessibility of high-throughput genotyping data has 
greatly boosted biomedical research by more accurately 
identifying genetic variations associated with disease risk 

[1]. In recent years, the search for genetic variations that 
control common complex diseases and description of the 
effects of those variations has been a challenging goal [2]. The 
most common type of DNA variation is the single nucleotide 
polymorphism (SNP) that results when a single nucleotide 
changes to another in the genome sequence [1]. SNPs are 
estimated to be presented every 300 base pair of DNA, and 
human genome is estimated to include roughly 11 million 
SNPs. SNPs are spread throughout the human genome and 
their effect on phenotype depends on the genomic regions 
where they are located. It is believed that SNPs play a critical 
role in the biological mechanisms underlying many complex 
diseases such as Alzheimer’s Disease (AD) [3]. 
Alzheimer’s disease is a complex genetic brain disease with 
little understood etiology identified by gradual progressive 
memory loss, confusion, and cognitive impairment [4]. The 
absence of relevant biomarkers that can identify the disease 
risk and progression poses a major limitation for diagnosis and 
prognosis of the disease. Late Onset Alzheimer’s disease 
(LOAD) is the most common form of AD accounting for 
approximately 95% of all cases [5] and is considered the most 
prevalent cause of dementia associated with aging. LOAD is a 
complex disease with both genetic and environmental risks 
and hence, identifying the influence of genetic risks in the 
development of LOAD has been the focus of many recent 
studies. A well-known genetic risk factor for LOAD is 
Apolipoprotein E (APOE) genotypes at loci rs429358 and 
rs7412 [3]. The search for AD treatment to slow or stop the 
disease progression depends on identifying a set of effective 
biomarkers in early stages. 
Genome-wide association studies (GWAS) approach offers a 
powerful tool to analyze the genetic profile of human disease. 
The main objectives of GWAS include using causal variants in 
early prediction of phenotype and understanding underlying 
biological mechanisms of the disease [6]. With this approach, 
it was well-established that SNP profiles describe a variety of 
diseases [2]. In GWAS, data from a large number of subjects 
are collected in a case-control study with genotyping of each 
with up to millions of SNPs. Many studies proposed different 
methods for analyzing the individual effect of each SNP to 
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identify the small subset of SNPs associated with a particular 
disease [7]. 
Most complex diseases like AD are caused by intricate 
interactions among multiple genes known as epistasis 
interactions. Epistasis interactions are commonly studied using 
two feature selection approaches. The first is a statistical 
approach that detects independent main and joint effects of 
SNPs based on the population variations in patients and 
control [8]. The second approach relies on the biological 
interactions that occur at the cellular level [9]. The latter 
approach detects the physical interaction between two or more 
biological components (e.g. DNA, RNA, proteins, enzymes, 
etc.) [10]. Methods based on either of the two approaches 
inherently introduce bias into the analysis based on their 
assumptions and hence will not be optimal for all cases [9]. 
For example, using the statistical approach alone as a filter 
limits SNP selection to SNPs that have a significant main 
effect on the phenotype, whereas applying a statistical model 
for prediction may be proper in the same sampled population. 
Also, application of that model to other populations cannot be 
generalized unless it is based on biological function [9]. On 
the other hand, using biological knowledge alone to filter 
SNPs will bias the analysis toward previously known 
interactions. Consequently, it is not possible to discover new 
interactions using this approach [11]. Furthermore, reporting 
two physically interacting molecules does not indicate which 
phenotypes will be affected. So, it is preferred to use 
biological interactions together with statistical analysis to 
cross-examine a given interaction’s role in the phenotype. 
Epistasis interaction in human genome data poses four major 
challenges for identifying the associations between SNPs 
(more than 700 thousands) and disease. The first challenge is 
the noisy nature of data and the similarity between nearby 
SNPs. The second is the expanded search space and the 
combinatorial nature of the analysis where the search for all 
SNP-SNP interactions is computationally prohibitive [12]. 
Furthermore, 3- and 4-way interactions are impractical to 
examine due to the exponential relationship between the 
number of tests and the order of interactions sought [6]. The 
third challenge is the model bias related to the statistical or 
biological filters used. Even when both are combined, such 
approaches are applied in a sequential manner where bias 
comes into the analysis in each of these steps. The fourth and 
last challenge is the missing replication or verification. The 
replication of statistical epistasis between studies and the 
biological evidence of them strongly suggest that these 
predictive models contribute to the disease risk. Consequently, 
most of AD predictive models suffer a limited success in 
replication, generalization, and prediction.  
 A study based on the statistical approach used Random Forest 
(RF) to identify new genes associated with neurological 
disorders [13]. It utilized a two-stage quality-based strategy 
for SNP selection within 188 neurological controls and 176 
AD patients from National Alzheimer's Coordinating Center 
(NACC) brain bank. The prediction performance achieved 
with RF and two-stage RF models on AD data did not exceed 
0.6320 and 0.7100 respectively. Another study obtained poor 
results when identifying the potential genetic variants in the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
genotype dataset using RF [14]. An alternative decision tree 

based statistical method was proposed in [15] to predict AD 
from SNP biomarkers and clinical data with sensitivity of 
0.5753 and specificity 0.5462. Label propagation (LP) method 
was also reported to rank SNPs in two different AD datasets 
with classification accuracies of 0.6039 ± 0.0300 and 0.7023 ± 
0.0272 using the top two ranked SNPs and the top five ranked 
SNPs respectively [16]. The search for epistasis role in the 
disease process using biological approaches was attempted in 
[17] where an interaction between rs6455128(KHDRBS2) and 
rs7989332 (CRYL1) was identified using GWAS data (2,259 
cases and 6,017 controls). Another study found that epistatic 
interaction between rs1049296 (P589S) in the transferring 
gene (TF) and rs1800562 (C282Y) in the hemochromatosis 
gene (HFE) has a significant association with AD risk [18].  
 Other studies applied both statistical and biological 
approaches in a sequential way to identify genetic variation 
with AD. A study based on ADNI dataset used Bayesian 
networks to identify AD genetic biomarkers within the top ten 
genes associated with AD as identified by GWAS [19]. They 
observed seven new SNP biomarkers that had significant 
association with AD. Another genome association study for 
patients carrying APOE-ε4 used random forest and enrichment 
analysis to detect 1058 SNPs associated with AD [20]. The 
study identified 27 significant functional annotations that were 
associated with AD in APOE-ε4 carriers. One further study 
used Bayesian combinatorial method (BCM) to identify pairs 
of SNPs that are significantly related to AD in two different 
datasets [7]. They restricted the analysis to SNP pairs with one 
of them identified from prior knowledge to be associated with 
AD. The comparison between BCM and logistic regression 
results revealed that presence of 5 and 8 SNP pairs in common 
between the two methods in ADRC and TGEN datasets 
respectively. In [17], an exhaustive genome-wide epistasis 
analysis was developed for AD using statistical methods 
followed by biological validation. This study did not explore 
higher order interactions in their analysis but confirmed the 
association of (rs6455128 and rs7989332) with AD. 
In this work, we present a new processing framework that 
integrates both the statistical and biological approaches to 
derive high-order interactions in a computationally efficient 
manner. The new approach tries to combine the advantages of 
both approaches and address their limitations. The developed 
method is implemented to process real data from the ADNI 
database [21] to demonstrate the practical potential of the new 
approach.  

II. METHODOLOGY 

A. Dataset 
The genome sequencing data of 434 individuals between case 
and control were obtained from ADNI database [21]. The 
ADNI database was launched in 2003 as a public-private 
partnership, led by Principal Investigator Michael W. Weiner, 
MD. The primary goal of ADNI has been to test whether serial 
magnetic resonance imaging (MRI), positron emission 
tomography (PET), and other biological markers can be 
combined for early prediction of AD. ADNI contained total 
genotypes of 730,525 SNPs for both 125 neurologically 
human controls and 306 Alzheimer’s disease patients (cases). 
Among all SNPs, we limited our selection for those reference 
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SNPs (starting with ‘rs’ identifiers), cataloged on the Single 
Nucleotide Polymorphism database (dbSNP) [22].  
 

B. Approach 
 The goal of this work is to develop a new approach to 

predict higher-order models called Integrated Higher-Order 
Evidence-Based (IHOEB) framework to overcome the 
challenges outlined above. First. the noisy nature of data and 
similarity between nearby SNPs are addressed by applying 
SNP quality control and linkage disequilibrium (LD) pruning. 
Then, the massive computational requirements for predicting 
higher-order interactions are significantly reduced by applying 
SNP-disease association ranking in which each SNP is tested 
against disease separately then discarding statistically 
insignificant SNPs. The relevant and statistically significant 
subset of SNPs obtained from the above two steps is then used 
to identify multi-SNP interaction models up to fourth-order 
associated with AD. Finally, the model bias including limited 
prediction accuracy and missing replication between statistical 
and biological models is minimized by integrating statistical 
and biological SNP filtering to detect higher-order interactions 
associated with AD. In the statistical analysis, statistical filters 
were applied to reach significant consensus dataset then a 
carefully selected classification technique was used to assess 
AD predictive models. In the biological analysis, prior 
biological information was utilized that filter an extensive 
number of SNP data to find a biologically relevant subset. 
Then, all possible pairs of SNPs with prior knowledge of 
putative epistasis are identified. Within IHOEB framework, 
integrated statistical and biological SNP filters provide a 
combined dataset. This combined dataset is used by a 
statistical classifier to detect higher-order AD models. A block 
diagram of the statistical, biological and IHOEB analyses is 
shown in Fig. (1).   

 

 
Figure (1): A block diagram of the Integrated Higher-Order Evidence-Based 

(IHOEB) proposed framework. 
 

C. Statistical feature selection method  
The selection of informative SNPs was done using statistical 
filters to reach significant consensus dataset [25]. A two-stage 
SNP filtering was utilized to differentiate informative SNPs 
from noisy one. In the first stage, SNP based quality control 
and LD pruning are used. PLINK, an open source package 
allowing a full range of basic large-scale GWAS analyses, is 
used to filter and exclude individual or SNP datasets that have 
missing rate more than 10% [23-24]. Also, SNPs with minor 
allele frequency less than 10% are excluded. These filtering 
parameters were chosen in this study due to their wide use in 
the literature [10]. In the second stage, SNP disease 
association ranking based on three statistical tests was utilized 
to prioritize SNPs. We compared allele or genotype 
frequencies at each SNP loci in the given case-control 
population to decide whether there is a statistical association 
between AD and that SNP loci. Allelic, genomic and 
regression tests were all used to test each SNP against disease 
separately and SNP with the strongest association to disease 
was selected. In each test, a p-value threshold of 0.05 was 
taken as the significance level to detect SNP associations. By 
intersecting the results of the three tests, a significant 
consensus SNP dataset is determined. In the statistical 
epistasis analysis, statistical filters were applied to reach 
significant consensus dataset then MDR used this dataset to 
identify 2-way interactions models associated with AD. We 
refer to these models here as AD predictive models using 
statistical analysis. 

D. Biological feature selection method 
Prior biological information was utilized to filter the 

extensive number of GWAS data records into a biological 
dataset with relevant biological basis without applying 
statistical analysis. In the last decade a huge amount of 
biological information became available via public databases 
such as gene–gene interaction databases, gene ontology 
annotation, pathways, and gene networks [26]. To investigate 
the association between genetic variations and disease, 
Biofilter (version 2.0) software tool, whose main functions 
include annotation and filtering, was used [27]. This software 
consults a local database called the Library of Knowledge 
Integration (LOKI), which stores data collected from public 
resources and databases including the National Center for 
Biotechnology (NCBI) dbSNP [28] and gene Entrez database 
[29], Gene Ontology (GO) [30], Protein Families database 
(Pfam) [31], and others [32]. LOKI utilizes three main terms 
for representing the different types of data. Position and region 
terms refer to SNP data and gene region respectively, and the 
term “group” is used to represent a set of regions that are 
linked in some way [33]. GWAS SNPs were annotated with 
gene and group information based on the relationships stored 
in the LOKI database. We filtered out all genes that do not 
contain at least one evidence-supported relation with AD. 
Then, by mapping the associated genes back to SNPs, we 
formed a new data subset, which we will refer to here as the 
biological dataset. Since combinations supported in more than 
one data source are more likely to be relevant, the confidence 
in biological interaction of multi-SNP model was assessed 
here using its implication score [27].  
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Table 1. The performance metrics of the classification methods  
 

Classifier Accuracy Sensitivity Specificity 

Naive Bayes 0.6172 0.6200 0.6140 

Random Forest 0.7031 0.7130 0.6930 

KNN 0.6032 0.6547 0.5530 

Logistic Regression 0.7100 0.7020 0.7180 

SVM 0.7070 0.6810 0.7340 

MDR 0.7816 0.7455 0.8214 

 
 
The implication score measures of strength of evidence 

supporting a given model based on prior knowledge. It 
provides the number of sources followed by the number of 
groups which support this gene model [27].   We call the 
models obtained using the above procedure as AD predictive 
models using biological analysis. 

E. Higher-Order Model Prediction  
The developed IHOEB framework works to identify AD 
models that were replicated in both statistical and biological 
analyses with higher accuracy. Multiple statistical and data 
mining methods were used to investigate multi-locus 
interactions in AD. In this framework, we integrated statistical 
and biological SNP filters to form the combined dataset. A 
total of six popular classifiers were tested for utilization to 
build AD prediction models based on this combined dataset. 
These classification techniques include Support vector 
machine (SVM) [34], naïve Bayes [19, 35], k-nearest neighbor 
(KNN), random forest (RF) [36], logistic regression (LR) [37], 
and multifactor dimensionality reduction (MDR) [38] 
classifiers. These algorithms (except MDR) were implemented 
in Python whereas the open-source MDR software package 
was used for MDR [39]. In our experiments, KNN used 5 
nearest neighbors and Euclidean distance metric, SVM 
classifier used radial basis function kernel, RF included 100 
trees and a minimal number of instances in a leaf of 5, and LR 
used least squares for regularization. The predictive 
performance of these algorithms were compared in terms of 
classification accuracy, sensitivity, and specificity to select the 
best method that would be utilized in IHOEB proposed 
framework. We evaluated the performance of using 10-fold 
cross validation.  The performance of these classifiers shown 
in Table 1 indicated that MDR achieved the highest accuracy, 
sensitivity and specificity compared to the other techniques 
and hence will be the classification method of choice in this 
work.  
The selected classification method (MDR) will be used to 
evaluate the predictive accuracy of 2-, 3-, and 4-SNP 
interaction models. Since searching all 4-way models within 
the combined dataset is computationally prohibitive, we limit 
our search to the interaction of the 1000 best 3-way models 
with any other of the SNPs included in the combined set to 
evaluate 4-way combinations. This procedure significantly 
reduces the computational complexity while maintaining 

potential to find good models. The deduced 4-way interaction 
models are called AD predictive models using IHOEB. 
To account for data imbalance, the assessment metric was 
chosen here to be the balanced accuracy (BA) metric, which is 
the average of the sensitivity and specificity, shown to 
outperform the traditional measure of classification accuracy 
[42].  

III. RESULTS AND DISCUSSION 
 
     The new approach outlined in the block diagram of Fig. (1) 
was implemented and applied to the ADNI database. In the 
first stage of statistical feature selection, the whole dataset 
(730,525 SNPs) was examined for quality control using 
PLINK. Two subsequent quality control procedures were used 
for individual and marker. A total of 431 individuals passed 
the quality control filtering. About 9.3% reduction in the count 
of markers was obtained, leaving 662,630 SNPs after quality 
control. LD pruning further reduced the redundancy of signals 
and decreased the level of similarity between one or more 
nearby SNPs. These highly correlated SNPs were excluded 
from the dataset leaving number of markers at 464,168 SNPs. 
Then, we applied three different SNP–disease association tests 
implemented in PLINK to assess the statistical association of 
each SNP with the disease. Each of the total of 464,168 SNPs 
was examined for association with the disease in the three 
tests independently. The results of each of the three tests were 
ranked and the non-significant SNPs with p-value greater than 
0.05 were discarded. Subsequently, the SNP markers were 
reduced to 31,333, 35,275 and 20,197 SNPs using allelic, 
genomic and regression tests respectively.  
 

 
 

Figure (2): Results of statistical epistasis with two-stage SNP filtering and    
SNP-disease association ranking, indicating the number of SNPs in each 

stage. 
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Table 2. The top ten 2-way interaction models using MDR in statistical 
analysis 

 

 Model BA Training BA Testing p-Value 

1 rs1542176, rs4955669 0.6763 0.6763 3.66E-3 

2 rs7650925, rs3765121 0.6726 0.6645 6.70E-3 

3 rs7650925, rs3800908 0.6690 0.6690 3.00E-3 

4 rs7650925, rs9862078 0.6663 0.6712 2.97E-3 

5 rs17021105, rs11155266 0.6602 0.6530 2.56E-3 

6 rs182009, rs17021105 0.6587 0.6547 4.00E-3 

7 rs17073734, rs942666 0.6547 0.6634 7.68E-3 

8 rs878698, rs7799696 0.6491 0.6519 8.20E-3 

9 rs1317902, rs13013095 0.6463 0.6427 1.57E-3 

10 rs6546056, rs2798224 0.6450 0.6450 2.00E-3 

 
 
 

 
 

Figure (3): The Comparative performance of all classification methods with 
respect to Classification accuracy (CA), sensitivity (Sens), specificity (Spec)  

 
By intersecting the significant SNP results from these tests, a 
total of 8,360 significant consensus SNPs were obtained. 
Using this set of significant consensus SNPs help reduce the 
false-positive association with disease. Fig. (2) shows the 
processing steps and summarizes their results of the two-stage 
SNP filtering and SNP-disease association ranking including 
the number of SNPs in each stage.  
For biological feature selection, a total of 730,525 SNPs were 
annotated with gene and group information using Biofilter 
based on the relationships stored in the LOKI database. Then, 
the genes that do not contain at least one supported relation 
with AD are excluded. After mapping AD-associated genes 
back to SNPs, the new biological dataset of 3,131 SNPs was 
obtained.      
The results of comparing classification accuracy, sensitivity, 
and specificity of the six classifiers are shown in Fig. (3). 

MDR achieved the highest classification accuracy, therefore it  
would be utilized in IHOEB proposed framework. 
 
Three AD models were obtained from statistical analysis 
alone, biological analysis alone and the new IHOEB 
framework to illustrate its performance advantage. 
 
In the statistical model, the significant consensus dataset is 
used to identify 2-way models that are associated with AD. 
The best ten models for 2-way interaction are presented in 
Table 2. The predictive performance of the models was 
estimated from a 10-fold cross-validation along with the 
training and testing datasets. The metric of model fit was BA 
averaged for all cross-validation experiments. Our results 
showed that the training and testing accuracies are close to 
each other, which means less over fitting and more 
generalizability [39]. However, such indicated statistical 
associations lack evidence for biological mechanism in the 
disease. 
The biological model used Biofilter whereby all possible pairs 
of genes with prior knowledge of putative epistasis were 
identified. The generated gene-gene models were ranked by 
their implication score then mapped into SNP-SNP interaction 
models. The ranking by the implication score was done by 
sorting those models by the number of sources then number of 
groups in a descending manner. A total of 8,192 SNP-SNP 
interaction models were generated from the biological dataset 
of 3,131 AD-associated SNPs. The resultant top ten SNP-SNP 
and gene-gene models are listed in Table 3. As can be noticed, 
these models show less accuracy than statistical models due to 
the absence of significant effects between factors in the model.  
The models derived from the new IHOEB framework start by 
integrating statistical and biological feature selection methods 
to form a combined dataset. The combined dataset helped 
identify more reliable models with underlying biological 
mechanism of AD in a statistically significant manner to 
reduce the likelihood of false-positive results. This was 
evident by observing many 2-way interaction models from 
IHOEB to be replicated in both the statistical and biological 
models, which serve as validation and confirmation of the 
potential of the new method. We used the combined dataset to 
identify 3-way models associated with AD using MDR as the 
classifier of choice based on its superior performance relative 
to other classifiers. The best ten models for 3-way interaction 
are shown in Table 4.  
Given the size of the combined dataset of 11491 SNPs, 
performing a search within all 4-way models within this 
dataset is computationally prohibitive with estimated 
operations of more than 200 trillion comparisons. So, we used 
the strategy to limit our search to the interaction of the 1000 
best 3-way models with other SNPs included in the combined 
set. The top ten results of the 4-way interaction models are 
presented in Table 5.  
Five significant pairs of interacting models in the results of 
biological analysis were repeated in IHOEB 4-way models 
with BA greater than 0.74.  The most repeated interaction is 
between CALM1 and CALM3 in models 2, 7 and 10, in 
addition to the interaction between FAS and FADD repeated 
in models 3 and 6 as observed from Table 5.  
 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

CA Sens Spec

Comparative Classifier Performance

Naive Bayes

Random Forest

kNN

Logistic regression

SVM

MDR

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 11, 2017

ISSN: 1998-4510 20



 

 

Table 3. The top 10 SNP-SNP and corresponding gene-gene models using 
biological analysis 

 

 SNP1 SNP2 Gene1 Gene2 Implication 
Score BA 

1 rs2268433 rs710889 CALM1 CALM3 3-104 0.574 

2 rs17036325 rs10113 CALM2 CALM3 3-104 0.572 

3 rs2300496 rs17036325 CALM1 CALM2 3-104 0.563 

4 rs10931934 rs1131715 CASP8 FADD 3-19 0.579 

5 rs6948 rs4647698 CASP3 CASP9 3-6 0.557 

6 rs11899004 rs17860418 CASP7 CASP8 3-4 0.561 

7 rs1143634 rs3093662 IL1B TNF 2-15 0.532 

8 rs3218615 rs1131715 FAS FADD 2-13 0.557 

9 rs3093665 rs10793035 TNF FADD 2-5 0.541 

10 rs165932 rs6669689 PSEN1 NCSTN 2-4 0.557 

 
 

Table 4. The top ten 3-way interaction models using IHOEB analysis (BA: 
balancing accuracy) 

 

 Model BA 
Training 

BA 
Testing p-Value 

1 rs1542176, rs4955669, rs17021105 0.7219 0.7155 1.30E-4 

2 rs1542176, rs7650925, rs3800908 0.7195 0.7066 2.78E-3 

3 rs7650925, rs3765121, rs3800908 0.7116 0.6981 6.39E-3 

4 rs1825503, rs556322, rs173644 0.7073 0.6947 3.00E-3 

5 rs7591175, rs9878318, rs2309949 0.7054 0.7119 1.66E-3 

6 rs2300496, rs10498633, rs710889 0.7063 0.7162 9.40E-3 

7 rs2289319, rs347984, rs7786289 0.6988 0.6750 9.40E-3 

8 rs759050, rs4547755, rs412657 0.7018 0.6809 7.15E-3 

9 rs6882, rs10230371, rs235390 0.6898 0.6443 2.20E-3 

10 rs7650925, rs3800908, rs2300496 0.6856 0.6767 5.10E-3 

 
 
These 4-way models had a pair of SNPs with prior evidence of 
being related with AD and interacting with two other SNPs in 
a significant manner. So there is adequate evidence to suggest 
a possible biological relationship between these SNPs and AD.  
 
New 4-way interaction models were also reported in Table 5 
models 3, 5, 8 and 9. These 4-way models were significantly 
associated with AD with BA values ranging from 0.7646 to 
0.7502. All the SNPs in these defined models were recognized 
in the genetic region. Models 1 and 4 are two additional new 
models with better accuracy of 0.7864 and 0.7622 
respectively. However, the last SNP in each model of them is 
not recognized in the genetic region. 

The obtained predictive values are higher than those 
reported in literature [13,15,16]. In [13], the study used 
Random Forest (RF) classifier to identify new genes 
associated with neurological disorders using a two-stage 
quality-based approach in RF for SNP selection within 188 
neurological controls and 176 AD patients from NACC brain 
bank. However, the prediction performance of the RF and two 
stage RF models on AD data set did not exceed 0.6320 and 
0.7100 respectively with 20 trees. In [15] the study predicted 
AD from SNP biomarkers and clinical data where they 
identified 958 biologically and statistically significant SNPs 
associated with late onset AD. These are later used to 
construct a decision tree model for differential diagnosis with 
an accuracy of classification of 0.5608. In [16], the study used 
Label Propagation (LP) method to rank SNPs in two different 
AD datasets with classification accuracies of 0.6039 ± 0.0300 
and 0.7023 ± 0.0272 using the top two ranked SNPs and the 
top five ranked SNPs respectively. Therefore, the proposed 
technique offers significant improvement over previous 
methods. 
 
The strategy employed in this study of building higher 
dimensional models starting from interactions involving one 
SNPs/genes previously identified to be related to AD and 
using that to identify other SNPs while making the search far 
more efficient is a key aspect of the proposed method. In order 
to illustrate the effectiveness of such strategy, we studied the 
correlation between pairs of SNPs with one of them having 
well-known association with AD from the literature whereas 
the other was identified from our study. The results are shown 
in Table 6 where the highest correlation had r2 value of 
0.183266 and was found between rs11771145 (AD gene 
EPHA1) and rs2300496 (CALM3), which is significantly 
better than a recent study [43] where the highest correlation 
had an r2 value of 0.0730273 and was found between 
rs72508453 (AD gene HLA-DRB5) and SNP on chromosome 
16 at position 6110138 (non-AD gene RP11-509E10.1).  
 
    As expected, IHOEB models performed significantly better 
than using either statistical or biological models alone in terms 
of classification accuracies. This confirms the advantage of 
combining both statistical and biological filters and also the 
potential of using such combination to reduce the search space 
for higher-order interactions without exhaustive evaluation of 
all possible higher order models. This helps to efficiently 
identify accurate and reliable higher-order AD predictive 
models.   

IV. CONCLUSIONS 

 
Large   In this study, we presented a new IHOEP framework 
that integrates both the statistical and biological predictive 
modeling approaches to derive high-order interactions in a 
computationally efficient manner. The new approach 
combines the advantages of statistical significance and clarity 
of underlying biological mechanism. The developed method 
was implemented and applied to the ADNI database [21] and 
the results of best 2-, 3-, and 4-way interactions are presented.  

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 11, 2017

ISSN: 1998-4510 21



 

 

Table 5. The top ten 4-way interaction models using IHOEB analysis (BA: 
balancing accuracy) 

 

 Model (SNP / GENE) BA 
Training 

BA 
Testing p-Value 

1 
rs7650925, rs3765121, rs3800908, 

rs1542176 
SRPRB, KCNIP4, MAD1L1, NON 

0.7671 0.7315 1.00E-3 

2 
rs1862710, rs11136000, rs2300496, 

rs10113 
CASP9, CLU, CALM1, CALM3 

0.7710 0.7340 4.90E-3 

3 
rs1571011, rs1131715, rs7650925, 

rs3800908 
FAS, FADD, MAD1L1, SRPRB 

0.7550 0.7270 4.80E-3 

4 
rs7650925, rs6546056, rs2300496, 

rs878698 
SRPRB, LINC00309, CALM1, NON 

0.7451 0.7240 5.28E-3 

5 

rs7650925, rs3765121, rs3800908, 
rs6546056 

SRPRB, KCNIP4, MAD1L1, 
LINC00309 

0.7362 0.7439 7.10E-3 

6 
rs7650925, rs3765121, rs1571011, 

rs1131715 
SRPRB, KCNIP4, FAS, FADD 

0.7271 0.7366 2.00E-3 

7 
rs3800908, rs1131715, rs2268433, 

rs10113 
MAD1L1, FADD, CALM1, CALM3 

0.7339 0.6995 2.34E-3 

8 
rs7650925, rs3800908, rs7799696, 

rs11136000 
SRPRB, MAD1L1, DGKB, CLU 

0.7257 0.7324 2.66E-3 

9 

rs3800908, rs11155266, rs6948, 
rs10113 

MAD1L1, HIVEP2, CASP3, 
CALM3 

0.7206 0.6914 1.50E-3 

1
0 

rs7650925, rs2268433, rs710889, 
rs1542176 

SRPRB, CALM1, CALM3, NON 
0.7288 0.7057 5.05E-3 

 
 
The IHOEB framework identified AD models that were 
replicated in both statistical and biological analyses with 
higher accuracy. The two gene pairs of CALM1/CALM3 and 
FAS/FADD were found to be the most replicated and 
validated models in our results. New 4-way interaction models 
that were significantly associated with AD were also identified 
with accuracies varying from 0.7464 to 0.7813. The ability to 
combine statistical analysis with support from prior biological 
knowledge in the new IHOEB framework makes it rather 
flexible, reliable and applicable to derive models for other 
complex diseases.   
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                  Well-known AD SNPs/ Genes 
 

 rs7412 
APOE 

rs38654
44 

CD33 

rs117711
45 

EPHA1 

rs190982 
MEF2C 

rs809373
1 

DSG2 

  rs10113 

r2 
0.002016

4    
BA 

0.060573
5 

r2 

0.011244
7     BA 

0.053228
3 

r2 
0.020150
8     BA 

0.058737
8 

r2 
0.005150
73    BA 
0.027989

3 

r2 

 
0.072492
2     BA  

0.591871 

rs230049
6 

r2 

 0.129783      
BA 

0.516324 

r2 
0.002007
3     BA 

0.023835 

r2 

 0.183266      
BA 

0.167158 

r2 

0.017260
6     BA  

0.055826 

r2 

0.016179
6     BA  
0.25663 

rs113171
5 

r2 

0.014774
2     BA 

0.142851 

r2 

0.037548
7     BA 

0.085167
5 

r2 

0.000915
67 
BA 

0.011223
3 

r2 

0.13238       
BA  

0.127189 

r2 

0.001187
73    BA 
0.084519

8 

  rs6948 

r2 

0.095152      
BA 

0.429449 

r2 

0.007477
3    BA 

0.040458
4 

r2 

0.072470    
BA 

0.112244 

r2 

0.072470
6     BA  

0.112244 

r2 

0.012294
7     BA  

0.252147 

 
rs118990

04 

r2 

0.000278
84    
BA 

0.051251
9 

r2 

0.017475
2     BA 

0.150235 

r2 

0.009585
3    BA 

0.053521
4 

r2 

0.006505
71    BA 
0.046782

8 

r2 

0.133124      
BA  

0.344864 

rs186271
0  

r2 

0.008943
5 BA 

0.137457 

r2 

0.031002
1     BA 

0.095436
8 

r2 

0.052909
1     BA 

0.105407 

r2 

0.039771
6     BA 

0.072206
4 

r2 

0.035187
1     BA  

0.444162 
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APPENDIX I: SUMMARY OF STATISTICAL CLASSIFIERS TESTED 
       
In medical data analysis, data models differ significantly and it 
is usually not possible to determine which classifier would 
perform best without experimentation. It is therefore necessary 
to try and compare the performance of various classifiers to 
determine which one works well on the given dataset. The 
performance of a classifier is assessed using quantitative 
performance metrics such as accuracy, sensitivity and 
specificity.  
Five popular classification techniques in addition to 
multifactor dimensionality reduction (MDR) [38,40-41] were 
applied to identify the model that best fit the significant 
consensus dataset and correctly predict the case-control status 
of test set. A summary of the classifier methods used is as 
follows: 
 
Support vector machine (SVM) is a supervised learning 
algorithm designed to find the optimal separating hyper plane 
between the two groups of data. The corresponding 
hyperplane permits SVM to predict class label of unlabeled 
samples [34].  
 
Naïve Bayes is a Bayesian Network that utilizes the Bayes 
theorem. NB classifier assume that the values of particular 
variables are conditionally independent of any other variable 
given the class (target).  In NB structure all variables are 
children of the target variable. It means ignoring interactions 
between variables of the same class, which is violated in 
practice [19, 35]. However, NB is widely used due to its 
competitive classification accuracy.  
 
K-nearest neighbor (KNN) method is a simple method for 
classifying objects based on closest training points in the 
feature space. KNN assumes that objects, which are close 
together, are probable to have the same classification. The 
chance that a point x belongs to a class can be estimated by the 
majority voting for the training data sets.  in a specified 
neighborhood of x that belong to that class. The Euclidean 
distance that calculate the distances from x to all points in the 
training set is the most common distance metric used in K-
nearest neighbor.  
 
Random forest (RF) classifier is a classification method based 
on a collection of decision trees CART classifiers. RF uses 
bootstrap samples from the dataset to build a set of trees. To 
classify a new sample, a majority vote method is utilized to 
make a decision about class label. RF has better performance 
over the single (CART) [36].  
 
Logistic regression (LR) is commonly used to analyze 
interactions between variables [37]. Logistic Regression is a 
nonlinear model that is particularly useful when the output 
variable is binary as in case and control studies. 
 
Multifactor dimensionality reduction (MDR) [38] is a method 
that can increase the power of detecting interactions and be 
able to detect high-order interactions even in the absence of 
statistical main effects [9]. Using MDR for high-order 

interactions may provide an optimal approach to solve this 
problem. In principle, MDR is a machine learning approach 
designed for detecting and evaluating SNP-SNP interactions 
associated with disease. An advantage of MDR over 
conventional statistical methods like logistic regression lies in 
that MDR is a nonparametric method and model-free method 
that does not need a genetic model [39]. Several studies 
applied MDR to assess gene–gene interactions in different 
human diseases such as bladder cancer, multiple sclerosis, and 
AD [38,40-41]. MDR pools the genotypes from two or more 
SNPs into one attribute that has high risk or low risk groups. 
The binary attribute is considered high risk if the ratio of cases 
to controls in that group is higher than the original ratio of 
cases to controls in the dataset [40]. Otherwise, it is 
considered low risk. This change in the space representation 
leads to dimensionality reduction that aids in discovering 
higher interactions among the SNPs. MDR uses cross-
validation to evaluate the predictive accuracy of all exhaustive 
2-, 3-, 4-, up to n-SNP combination models. The best model is 
the model with the highest classification accuracy that is 
subsequently evaluated by the test set to assess its prediction 
error. The genetic interactions have been successfully carried 
out using the open-source MDR [39] software package. 
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