
Abstract—The proper design of RF pulses in magnetic resonance 
imaging (MRI) has a direct impact on the quality of acquired images, 
and is needed for many applications. Several techniques have been 
proposed to obtain the RF pulse envelope given the desired slice 
profile. Unfortunately, these techniques do not take into account the 
limitations of practical implementation such as limited amplitude 
resolution. Moreover, implementing constraints for special RF pulses 
on most techniques is not possible. In this work, we propose to 
develop an approach for designing optimal RF pulses under 
theoretically any constraints. The new technique will pose the RF 
pulse design problem as a combinatorial optimization problem and 
uses efficient techniques from this area such as genetic algorithms 
(GA) to solve this problem. In particular, an objective function will 
be proposed as the norm of the difference between the desired profile 
and the one obtained from solving the Bloch equations for the current 
RF pulse design values. The proposed approach will be verified using 
analytical solution based RF simulations and compared to previous 
methods such as Shinnar-Le Roux (SLR) method, and analysis, 
selected, and tested the options and parameters that control the 
Genetic Algorithm (GA) can significantly affect its performance to 
get the best improved results and compared to previous works in this 
field. The results show a significant improvement over conventional 
design techniques, select the best options and parameters for GA to 
get most improvement over the previous works, and suggest the 
practicality of using of the new technique for most important 
applications as slice selection for large flip angles, in the area of 
unconventional spatial encoding, and another clinical use. 

Keywords—selective excitation, magnetic resonance imaging, 
combinatorial optimization, pulse design. 

I. INTRODUCTION

AGNETIC resonance imaging (MRI) is an imaging 
technique using primarily in medical setting to produce 

high quality images of the inside of the human body. It offers 
true volumetric acquisition, ability to visualize and quantify 
flow, and spectroscopic imaging to image both anatomy and 
function. This technique relies on collecting the signal from an 
excited slice or volume within the human body. This 
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excitation is achieved using special RF pulses that are 
designed to provide the required localization within the 
imaged volume. The proper design of RF pulses is important 
to avoid artifacts such as cross-talk in the acquired images.                  
The design of RF pulses is a rather difficult problem 
mathematically [1]. The basic goal of this design is to enable 
the desired slice profile to be achieved using the available RF 
pulse generation hardware. The practical implementation of 
RF pulse systems consists of a computer that stores the array 
of digital values representing the RF pulse envelope 
amplitudes. These values are converted using a digital-to-
analog converter (DAC) into actual voltage levels. This DAC 
has a limited resolution in both amplitude and time. As a 
result, the generated envelope voltages appear like a piecewise 
constant curve with a fixed time step and limited stepwise 
amplitudes. These levels modulate the amplitude of the output 
of an RF generator before applying this output to the RF coils. 
The RF coils may be either linear (i.e., allowing only the real 
component to be applied) or quadrature (i.e., allowing both 
the real and imaginary components to be used). The actual 
frequency of the RF generator and the applied slice selection 
magnetic field gradient determine the position of excited slice. 
On the other hand, the amplitudes of the RF pulse envelope 
points determine the shape of the excitation profile as well as 
its flip angle. 

Development of such pulses has been a topic of interest to 
researchers for over 20 years [2] and many methods have been 
developed. Hoult showed that at small tip angles (30 or less), 
the characteristic Bloch equations are nearly linear in nature 
[3]. As a result, assuming linear response in the spectrometer 
transmitter chain, the Fourier transform (FT) of the desired 
magnetization profile is a reasonable choice for the RF 
waveform. Pulses derived in this manner can produce 
acceptable results at larger tip angles, but as the tip angle 
approaches and exceeds 90, the Bloch equations become 
increasingly nonlinear, with significant distortion in both 
phase and magnitude [4]. 

Researchers have extensively investigated both direct and 
inverse approaches to RF pulse optimization. Hoult [3] and 
Mansfield et al. [6] were pioneers in the direct solution of the 
Bloch equations for shaped pulse design, whose work was 
verified numerically by Locher [7]. Techniques for analytical 
inversion of the Bloch equations were also proposed by 
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Caprihan [8] and Silver et al. [9]. Caprihan concluded that 
numerical methods are the key to effective selective pulse 
synthesis. Conolly et al. [10] and Murdoch et al. [11] explored 
optimal control adaptations to RF pulse refinement. This work 
was reinforced by Ngo and Morris [12], who showed that the 
Bloch equations respond linearly to large excitations if they 
are treated as a superposition of perturbations of small tip 
angle. Among the many design methodologies that have been 
proposed in the last decade, the Shinnar-Le Roux (SLR) 
method is probably the most widely used [13]. This method 
works by transforming the problem into one of designing a 
finite impulse response (FIR) filter. The solution of this 
problem is obtained as an FIR filter coefficients and 
subsequently transformed back into the desired RF pulse 
envelope. 

Given the extensive literature on FIR filter design, the 
strength of the SLR technique is that it taps into some of the 
most powerful FIR filter design techniques to solve the 
original problem of RF pulse design [13]. Nevertheless, it still 
has some limitations that did not enable its performance to be 
optimal in practice. In particular, this technique does not take 
into consideration the limited amplitude resolution in 
designing the RF filter. As it is well known in FIR filter 
design literature, the limited precision (i.e., quantization or 
limited word length effects) in implementing the digital filter 
may substantially deteriorate its performance [14]. Even if the 
FIR filter design technique is modified to take care of this 
problem and provides optimal filter coefficients for a given 
precision, there is no guarantee that the backward 
transformation to RF pulse coefficients would preserve this 
property for RF pulse coefficients. In other words, the 
characteristics of the SLR transformation do not allow such 
constraints to be imposed. In fact, it is generally difficult to 
impose any type of constraints on the solution (like for 
example adiabatic constraints). As a result, the obtained 
design may in fact be suboptimal in many cases that are 
common in practical use. An example where difficulty to 
obtain accurate slice profiles is reported is the use of 
unconventional spatial encoding techniques such as wavelet 
encoding and pseudo-Fourier imaging [15]. The 
implementation of such techniques had to compromise 
between the need to use low flip angles to obtain accurate 
slice profiles for correct encoding and the need for high flip 
angles for better signal-to-noise ratio. Therefore, a new RF 
pulse design technique that can incorporate practical 
constraints thus offering a true optimal performance under the 
practical implementation constraints would be rather helpful 
to solve these problems. 

In this work, we formulate the problem of RF pulse design 
as a combinatorial optimization problem with an arbitrary 
number of constraints and uses efficient techniques from this 
area such as genetic algorithms (GA) to solve this problem. 
This formulation takes into account the limited precision of 
RF pulse generation and provides the optimal results at any 
given precision. Unlike SLR technique, the objective function 
will be proposed as the norm of the difference between the 

desired profile and the one obtained from solving the Bloch 
equations for the current RF pulse design values, which offers 
a feedback loop to improve the results. The proposed 
approach will be verified using analytical solution based RF 
simulations and compared to previous methods such as 
Shinnar-Le Roux (SLR) method, and analysis, selected, and 
tested the options and parameters of genetic algorithms to get 
the best improved results and compared to previous works in 
this field. We provide the detailed implementation details for 
each and present their results compared to those of the SLR 
technique. 

II. METHODOLOGY

A. Theoretical background 
Given the definition of the RF pulse, it is possible to 

compute the expected slice profile using the solution to the 
Bloch equations. This solution relies on using the analytical 
form for the slice profile from a single rectangular pulse of 
arbitrary magnitude given in [1]. In traditional practical cases, 
the gradient is kept constant and the relaxation times (T1&T2)
are neglected. The Bloch equations relate magnetization 
values with these assumptions is given by: 
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  (1) 
Here, Bx and By are the two quadrature components of the 

RF pulse,  is the gyromagnetic ratio, and G.z is the slice 
selection gradient. The gradient is assumed to lie along the +z 
axis. For a rectangular pulse, the solution can be simply 
computed as, 

).().()( 0 tAExpzMzM ,                     (2) 
Where t is the duration of the rectangular RF pulse and the 

matrix exponent can be computed analytically for this 
problem as in [1]. 

Keeping in mind the practical implementation of RF pulses 
in the form of piecewise constant envelope pulses (i.e., a 
sequence of rectangular pulses of arbitrary amplitudes), the 
output magnetization from one piece serves as the initial 
condition for the next. Hence, given any design for the RF 
pulse, the slice profile can be computed this method. Given 
that the amplitudes of the RF pulses must be represented 
within a certain number of bits, the problem now becomes the 
one of finding the optimal combination of amplitudes that 
would give a slice profile closest to the desired. This problem 
description shows that this problem is indeed a combinatorial 
optimization problem. Using the rich literature of this area, the 
solution can be obtained efficiently and accurately. In this 
work, we explore one of the most prominent techniques in this 
area, namely, genetic algorithm (GA). 

B. Methods 
We use one of the most prominent techniques in the area of 
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a combinatorial optimization problem, namely, genetic 
algorithm (GA). The Genetic algorithm (GA) is an 
optimization and search technique based on the principles of 
genetics and natural selection. A GA allows a population 
composed of many individuals to evolve under specified 
selection rules to a state that maximizes the “fitness” (i.e., 
minimizes the cost function) [16]. GA accommodate all the 
facets of soft computing, namely uncertainty, imprecision, 
non-linearity, and robustness. Some of the attractive features 
include: 
a.     Learning: GA are the best known and widely used global 

search techniques with an ability to explore and exploit a 
given operating space using available performance (or 
learning) measures. Moreover, genetic operators such as 
crossover, mutation, and reproduction allow express 
simulations of an extensive learning process of nature. 

b. Generic code structure: operate on an encoded parameter 
string and not directly on the parameters. This enables 
the user to treat any aspect of the problem as an 
optimizable variable. 

c.     Optimality of the Solutions: In many problems, there is 
no guarantee of smoothness and unimodality. Traditional 
search techniques often fail miserably on such search 
spaces. GA is known to be capable of finding near 
optimal solutions in complex search spaces. 

d. Advanced Operators: This includes techniques such as 
niching (for discovering multiple solutions), 
combinations of Neural, Fuzzy, and chaos theory, and 
multiple objective optimizations. 

The Figure (1) and following outline summarize how the 
genetic algorithm works: 
1. The algorithm begins by creating a random initial 
population. 
2. The algorithm then creates a sequence of new populations, 
or generations. At each step, the algorithm uses the 
individuals in the current generation to create the next 
generation. To create the new generation, the algorithm 
performs the following steps: 

a.     Scores each member of the current population by 
computing its fitness value. 

b. Scales the raw fitness scores to convert them into a 
more usable range of values. 

c.     Selects parents based on their fitness. 
d. Produces children from the parents. Children are 

produced either by making random changes to a single 
parent – mutation – or by combining the vector entries 
of a pair of parents – crossover. 

e.     Replaces the current population with the children to 
form the next generation. 

f.     The algorithm stops when one of the stopping criteria 
is met. 

 A solution is encoded as a string of genes to form a 
chromosome representing an individual. In many applications 
the gene values are [0, 1] and the chromosomes are simply bit 
strings. An objective function, f, is supplied which can decode 
the chromosome and assign a fitness value to the individual 

the chromosome represents. 
Given a population of chromosomes the genetic operator's 

crossover and mutation can be applied in order to propagate 
variation within the population. Crossover takes two parent 
chromosomes, cuts them at some random gene/bit position 
and recombines the opposing sections to create two children. 
Mutation is a background operator, which selects a gene at 
random on a given individual and mutates the value for that 
gene (for bit strings the bit is complemented).       

The use of GA is robust in that they are not affected by 
spurious local optima in the solution space. Nevertheless, the 
parameters that control the GA can significantly affect its 
performance, and there is no guidance in theory as to how 
properly select them but in this work we are analysis, select, 
and test the options and parameters of genetic algorithms to 
get the best improved results and compared to previous works 
in this field. The most important parameters are the population 
size, the fitness scaling, the selection function, the crossover 
function, and the mutation function. The following are the 
proposed algorithm details. 
1) Population of the chromosomes: Population represents 

the size of the solutions that we are working with and 
specifies how many individuals there are in each 
generation. With a large population size, the genetic 
algorithm searches the solution space more thoroughly, 
thereby reducing the chance that the algorithm will return 
a local minimum that is not a global minimum. However, 
a large population size also causes the algorithm to run 
more slowly. Some research also shows that best 
population size depends on encoding, on size of encoded 
string. It means, if you have chromosome with 32 bits, the 
population should be say 32, but surely two times more 
than the best population size for chromosome with 16 bits 
[17]. 

2) Population Initialization: The populations of 
chromosomes are initialized randomly by the GA. A 
chromosome that represents the SLR solution is added to 
the initial population to produce the initial population that 
we are working with. This means that we start with the 
best solution in the literature and try to get a more optimal 
solution that produces a better slice profiles. 

3) Chromosome structure: Binary chromosome is used. The 
RF pulse is encoded into the chromosome as follows. The 
real RF pulse values are converted into discrete ones 
according to the resolution of the D/A of the MRI 
machine (12 or 16 bit for example). Every bit represents a 
gene. The most significant bits of all values are placed 
adjacent to each other, then the second most bits and so 
on until placing the least significant bits together at the 
end. Hence, the chromosome size equals the number of 
the RF pulse envelope values times the bit resolution 
(usually 12 or 16). 

4) Fitness criterion: The chromosome is decoded to obtain 
the corresponding RF pulse envelope amplitudes and its 
slice profile is computed by solving the Bloch equations. 
Then, an error measure is calculated for the difference 
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between the response of this RF pulse and the desired 
response. This measure is usually taken as either the 1-
norm or 2- norm of the difference vector. The results of 
this paper were obtained using the 1-norm. We use the 
evaluation function: 

zzyyxx MDMDMDF
,   (3) 

5) Fitness scaling: Fitness scaling converts the raw fitness 
scores that are returned by the fitness function to values 
in a range that is suitable for the selection function. The 
range of the scaled values affects the performance of the 
genetic algorithm. If the scaled values vary too widely, 
the individuals with the highest scaled values reproduce 
too rapidly, taking over the population gene pool too 
quickly, and preventing the genetic algorithm from 
searching other areas of the solution space. On the other 
hand, if the scaled values vary only a little, all individuals 
have approximately the same chance of reproduction and 
the search will progress very slowly. We can specify 
options for fitness scaling in the GA: 

Rank:  Rank, scales the raw scores based on the rank 
of each individual instead of its score. The rank of an 
individual is its position in the sorted scores. The 
rank of the fittest individual is 1, the next most fit is 
2, and so on. Rank fitness scaling removes the effect 
of the spread of the raw scores. 
Proportional: Proportional scaling makes the scaled 
value of an individual proportional to its raw fitness 
score.
Top: Top, scales the top individuals equally. 
Selecting Top displays an additional field, Quantity, 
which specifies the number of individuals that are 
assigned positive scaled values. Quantity can be an 
integer between 1 and the population size or a 
fraction between 0 and 1 specifying a fraction of the 
population size.  
Shift linear: Shift linear, scales the raw scores so that 
the expectation of the fittest individual is equal to a 
constant multiplied by the average score. You specify 
the constant in the Max survival rate field, which is 
displayed when you select Shift linear.  

6) Selection: Selection options specify how the genetic 
algorithm chooses parents for the next generation. You
can specify options for selection in the GA:

Stochastic uniform:  stochastic uniform, lays out a 
line in which each parent corresponds to a section of 
the line of length proportional to its scaled value. The 
algorithm moves along the line in steps of equal size. 
At each step, the algorithm allocates a parent from 
the section it lands on. The first step is a uniform 
random number less than the step size.
Remainder: Remainder, assigns parents 
deterministically from the integer part of each 
individual's scaled value and then uses roulette 
selection on the remaining fractional part. 

Uniform: Uniform, chooses parents using the 
expectations and number of parents.  
Roulette: Roulette, chooses parents by simulating a 
roulette wheel, in which the area of the section of the 
wheel corresponding to an individual is proportional 
to the individual's expectation. The algorithm uses a 
random number to select one of the sections with a 
probability equal to its area. 
Tournament: Tournament selection chooses each 
parent by choosing Tournament size players at 
random and then choosing the best individual out of 
that set to be a parent. Tournament size must be at 
least 2. 
Reproduction: Reproduction options specify how the 
genetic algorithm creates children for the next 
generation. You can specify options for reproduction 
in the GA:
Elite count: specifies the number of individuals that 
are guaranteed to survive to the next generation. Set 
Elite count to be a positive integer less than or equal 
to the population size. The default value is 2. 
Crossover fraction: specifies the fraction of the next 
generation, other than elite children, that are 
produced by crossover. Set Crossover fraction to be a 
fraction between 0 and 1. The default value is 0.8. 

7) Crossover: Crossover options specify how the genetic 
algorithm combines two individuals, or parents, to form a 
crossover child for the next generation. You can specify 
options for crossover in the GA:

Scattered:  creates a random binary vector and 
selects the genes where the vector is a 1 from the first 
parent, and the genes where the vector is a 0 from the 
second parent, and combines the genes to form the 
child.  
Single point: chooses a random integer n between 1 
and Number of variables and then 
1. Selects vector entries numbered less than or 

equal to n from the first parent. 
2. Selects vector entries numbered greater than n 

from the second parent. 
3. Concatenates these entries to form a child vector.  
Two point: Selects two random integers' m and n 
between 1 and Number of variables. The function 
selects

1. Vector entries numbered less than or equal to m 
from the first parent. 

2. Vector entries numbered from m+1 to n, 
inclusive, from the second parent. 

3. Vector entries numbered greater than n from 
the first parent.

   The algorithm then concatenates these genes to 
form a single gene. 

Intermediate: Creates children by taking a weighted 
average of the parents. You can specify the weights by 
a single parameter, Ratio, which can be a scalar or a 
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row vector of length Number of variables. The 
function creates the child from parent1 and parent2 
using the following formula. Child = parent1 + rand 
× Ratio × (parent2 - parent1).
Heuristic: returns a child that lies on the line 
containing the two parents, a small distance away 
from the parent with the better fitness value in the 
direction away from the parent with the worse fitness 
value. You can specify how far the child is from the 
better parent by the parameter Ratio, which appears 
when you select Heuristic. The default value of Ratio 
is 1.2. If parent1 and parent2 are the parents, and 
parent1 has the better fitness value, the function 
returns the child. Child = parent2 + Ratio× (parent1 - 
parent2).

8) Mutation: Mutation options specify how the genetic 
algorithm makes small random changes in the individuals 
in the population to create mutation children. Mutation 
provides genetic diversity and enables the genetic 
algorithm to search a broader space. You can specify 
options for mutation in the GA:

Gaussian: Gaussian, adds a random number taken 
from a Gaussian distribution with mean 0 to each 
entry of the parent vector. The variance of this 
distribution is determined by the parameters Scale 
and Shrink, and by the Initial range setting in the 
Population options. 
Uniform: Uniform mutation is a two-step process. 
First, the algorithm selects a fraction of the vector 
entries of an individual for mutation, where each 
entry has a probability Rate of being mutated. The 
default value of Rate is 0.01. In the second step, the 
algorithm replaces each selected entry by a random 
number selected uniformly from the range for that 
entry.

III. RESULTS

The proposed Genetic Algorithm method was applied to 
design RF pulses with rectangular spatial profile at /2 and 
flip angle. The outcome of the Genetic method is compared to 
the outcome of the SLR technique. Firstly to get the best 
results from the genetic algorithm, you usually need to 
experiment with different options of GA. Selecting the best 
options for a problem involves trial and error. We used 64 
points for RF pulse design and applied Genetic Algorithm to 
design RF pulses with rectangular spatial profile at  flip 
angle. The following describe some ways you can change 
options to improve results. 

a. Population Size and Initial Range 
One of the most important factors that determine the 

performance of the genetic algorithm performs is the diversity 
of the population. If the average distance between individuals 
is large, the diversity is high; if the average distance is small, 
the diversity is low. Getting the right amount of diversity is a 
matter of trial and error. If the diversity is too high or too low,

the genetic algorithm might not perform well. This section 
explains how to control diversity by setting the Initial range of 
the population, and also explains how to set the population 
size. The effects of the initial range and population size on the 
performance of the genetic algorithm are illustrated in table 
(1). 

b. Fitness scaling 
The range of the scaled values affects the performance of 

the genetic algorithm. If the scaled values vary too widely, the 
individuals with the highest scaled values reproduce too 
rapidly, taking over the population gene pool too quickly, and 
preventing the genetic algorithm from searching other areas of 
the solution space. On the other hand, if the scaled values vary 
only a little, all individuals have approximately the same 
chance of reproduction and the search will progress very 
slowly. The effects of the fitness scaling on the performance 
of the genetic algorithm are illustrated in table (2), and figure 
(2).

c. Selection function: 
The effects of changing selection function on the performance 
of the genetic algorithm are illustrated in table (3), and figures 
(3).

d. Function of crossover: 
The effects of changing selection function on the performance 
of the genetic algorithm are illustrated in table (4), and figures 
(4).

e. Change function of mutation: 
The effects of changing the selection function on the 
performance of the genetic algorithm are illustrated in table 
(5), and figures (5). 

Secondly, after the test options of GA to get the best results, 
we applied the genetic algorithm with the best parameters to 
design two RF pulses with rectangular spatial profiles at /2 
and  flip angles. The outcome of these experiments is 
compared to the outcome of the SLR technique, and compared 
the outcome of this work and the outcome of previous work 
(using the following options for GA: proportional scaling 
function, Roulette selection function, single point crossover 
function, probability of crossover is taken as 90%, uniform 
mutation function, and probability of mutation is taken as 
1%). The results are shown in Table (6) and figures (6), and 
(7). As can be observed, the GA technique show a significant 
improvement over the design computed using the SLR 
technique. Also, the outcome of this work appears better and 
faster to reach the solution than that from previous work in the 
number of experiments we performed.  

One of the most important applications for the proposed 
technique is in the area of unconventional spatial encoding 
where complex RF pulse are to be generate at high accuracy. 
The proposed technique is expected to enable better 
reconstruction accuracy, less image artifacts, and higher 
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signal-to-noise ratio. The study of this area requires the 
investigation of several of these techniques and the assessment 
of the results and is left to future work. 

IV. CONCLUSIONS

In this paper, we present a new optimized RF pulse design 
in MRI using the GA. The new technique relies on posing the 
problem as a combinatorial optimization problem and uses 
GA to compute the solution under any type of constraints, and 
select the best options for parameters of GA to get the more 
improvement results. The results demonstrate the success of 
the new approach and suggest its potential for practical use in 
clinical magnetic resonance imaging. 
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TABLE I BEST VALUES RESULTS FOR CHANGE POPULATION SIZE AND INITIAL RANGE

Norm-1 Errors(Best values) No
.

Pop.Size 
Initial range 

[-0.0001,0.0001] 
Initial range 
[-0.01,0.01] 

Initial range 
[-0.1,0.1] 

1. 16 4.9923 5.0223 8.557 

2. 32 4.9256 4.8973 5.1912 

3. 64 4.9951 4.9348 4.8993 

4. 128 4.986 5.026 5.0184 

5. 256 4.9337 4.935 6.6971 

TABLEII BEST VALUES RESULTS FOR CHANGE FITNESS FUNCTION
No. Scaling Function Norm-1 Errors (Best Values) 
1. Rank 4.8973 
2. Proportional 4.9541 
3. Top 4.9981 
4. Shift Linear 4.927 

TABLE III BEST VALUES RESULTS FOR CHANGE SELECTION FUNCTION
No. Selection Function Norm-1 Errors (Best Values) 
1. Stochastic uniform 4.8973 
2. Remainder 5.0248 
3. Roulette 5.0006 
4. Tournament 4.9209 

TABLE IV BEST VALUES RESULTS FOR CHANGE CROSSOVER FUNCTION

No. Crossover Function Norm-1 Errors (Best Values) 
1. Scattered 4.8973 
2. Single point 5.0653 
3. Two point 4.9948 
4. Intermediate 5.2007 

TABLEV BEST VALUES RESULTS FOR CHANGE MUTATION FUNCTION

No. Mutation Function Norm-1 Errors (Best Values) 
1. Gaussian 4.8973 
2. Uniform 5.05 

TABLE VI NORM-1 ERROR RESULTS FOR /2 AND  FLIP ANGLE

No. Flip angle Norm-1 Errors for 128 points Norm-1 Errors for 256 points 
  previous work Our work previous work Our work 
1. /2 1.304 1.2698 1.0979 0.88545 
2. 3.9839 3.8768 3.0929 2.7724 
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Fig. 1 Computational Flows in Genetic Algorithms 
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(c)

(d)

Fig. 2  (a) slice profile and Norm-1 Error with rank function, (b) slice profile and Norm-1 Error with proportional function, (c) slice 
profile and Norm-1 Error with top function, and (d) slice profile and Norm-1 Error with shift linear function 

(a)
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(b)

(c)

(d)

Fig. 3 (a) slice profile and Norm-1 Error with stochastic uniform function, (b) slice profile and Norm-1 Error with remainder function, (c) slice 
profile and Norm-1 Error with roulette function, and (d) slice profile and Norm-1 Error with tournament function 
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(a)

(b)

(c)

(d)
Fig. 4 (a) slice profile and Norm-1 Error with scattered function, (b) slice profile and Norm-1 Error with single point function, (c) slice profile 

and Norm-1 Error with two point function, and (d) slice profile and Norm-1 Error with Intermediate function 
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(a) (b)

(c) (d)

Fig. 5 (a, b) slice profile and Norm-1 Error with Gaussian function, (c, d) slice profile and Norm-1 Error with uniform function

(a) (d)

(b)  (e)
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(c) (f)
Fig. 6 (a, b, c) slice profile from SLR  before GA, slice profile after GA, and Norm-1 Error for /2 flip angle and 256 points from (previous 

work) , (d, e, f)  slice profile before GA, slice profile after GA, and Norm-1 Error for /2 flip angle and 256 points from our work 

(a) (d)

(b) (e)

(c) (f)

Fig. 7 (a, b, c) slice profile from SLR before GA, slice profile after GA, and Norm-1 Error for  flip angle and 256 points from (previous 
work), (d, e, f) slice profile before GA, slice profile after GA, and Norm-1 Error for  flip angle and 256 points from our work 
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