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Abstract— Computed Tomography (CT) is one of the most 
used imaging techniques in medical field which enables us to 
generate two-dimensional as well as three-dimensional image of 
the inside the body. Fundamentally, any imaging system contains 
two main stages the data collection and the image reconstruction. 
For CT, The data collection stage depends on the resolution of 
image collected and field of view. The image reconstruction of an 
object depends on projections by passing a series of rays through 
an object. The problem in general is that CT is computationally 
very intensive, due to the large number of projections. The large 
computational requirements have led to large times for CT image 
reconstruction, and extra X-ray dose to get high quality images. To 
accelerate the reconstruction process and decrease the effect of x-
ray on patients, we need to decrease the number of projections. In 
this paper we introduce a compressed sensing (CS) technique for 
CT to reconstruct images from reduced projection data and 
compare it with other algorithms, A CS iterative algorithm 
reconstructed an image of digital Shepp-Logan phantom using 
small number of projections with high quality resolution compared 
to traditional iterative technique, we studied the effect of algorithm 
controlling parameters on the reconstructed image. Finally using 
the proposed technique will decrease the high risk associated with 
the high dose x-ray needed in the traditional CT scans.

Keywords— computed tomography; compressed sensing, 
projections; reconstruction.

I. INTRODUCTION 
Computed tomography (CT) imaging is one of the most important 

imaging devices that create detailed two-dimensional cross-sectional 
images from three-dimensional body structures by using rotating x-ray 
equipment, combined with a digital computer. Fundamentally, 
tomography deals with a series of projection data of objects from 
several view angles, and gets the reconstructed image from the 
mathematical solution of the acquired projections  [1].

After collecting projections’ data of the scanned body, we need to 
reconstruct these projections into an actual image, this operation is 
called CT image reconstruction which is creating a 2-D or 3-D image 
from radiation readings acquired from the CT imaging operation, for 
example we can generate a three-dimensional image of the body from 
a series of individual camera images. To reconstruct an image, some 
mathematical operations must be done to generate the image and to 
make some processing on it like sharpening or to remove blurring to 
be clear and useful enough  [2].

We have two methods to solve the reconstruction problem: either 
the analytical method or the algebraic method [3]. The analytical 
method, such as filtered back projection (FBP) method, are relatively 
high computational speed and short computational time,   but it needs 
many projection data to reconstruct images accurately  [4], but its main 
drawback is that the analytic algorithms will reconstruct images with 
severe aliasing artifacts for a reduced number of projections  [5]. The 
iterative algorithms such as Algebraic reconstruction technique (ART), 
on the contrary, can reconstruct images from relatively less projection 
data than the analytical algorithms. But, it will take much longer time 
that is why we use the iterative algorithm in our technique.

Compressed sensing theory (CS)  [6] states that one can recover 
certain signals and images from far fewer samples or measurements
than traditional methods use. CS depends on two principles: sparsity
and incoherence  [7]. Sparsity expresses the idea that the “information 
rate” of a continuous time signal may be much smaller than suggested 
by its bandwidth, or that a discrete-time signal depends on a number of 
degrees of freedom which is comparably much smaller than its (finite) 
length. More precisely, CS exploits the fact that many natural signals 
are sparse or compressible in the sense that they have concise 
representations when expressed in the proper basis. Incoherence 
extends the duality between time and frequency and expresses the idea 
that objects having a sparse representation in basis must be spread out 
in the domain in which they are acquired, incoherence says that the 
under sampling criterion should give noise like artifacts in the 
sparsifying domain  [8].

In biomedical applications, scanning time and radiation dose are 
the most two important parameters in CT Scans, to reduce radiation 
dose and shorten scanning time, we need to decrease the number of 
projections or speed up the time needed at each projection, decreasing 
the time of projections leads to damage the biological specimens, and 
if we apply FBP or ART with limited number of projections we 
couldn’t reconstruct image with high resolution as both algorithms 
mainly requires large number of projections. To solve this problem 
either to interpolate or extrapolate the missing data from the measured 
data then apply analytical reconstruction, this method couldn’t give
general conclusion from it, the other way to apply iterative algorithms 
to solve the problem from the insufficient data, this techniques are 
differ in the constraints [8]. In this paper we use the ART iterative 
technique and Sparsity constraint to solve this problem.

II. MATERIALS AND METHODS 

Inspired by the CS theory’s success in signal recovery, we have 
anticipated that a CS-based algorithm may be used to reconstruct 
images from substantially reduced projection data. The algorithm 
minimizes the L1-norm of the sparse image as the constraint factor for 
the sparsity condition. This work focuses on reconstructing images 
from significantly reduced projection data and minimizing radiation 
dose without reducing image quality.

A successful application of CS requires that the desired image 
should have a sparse representation in a known transform domain  [6].
Consider an image f, which can be viewed as an N × 1 column vector 
in RN, whose individual elements fj, j = 1, 2, .. N are N pixel values of 
the image. Expand vector f in an orthonormal basis ߰ as Eq. (1).݂ = ߰ ܺ. (1)
Here f is the image, ߰ is the N by N matrix [ψ1..., ψN] and X is also an 
N × 1 column vector.

If all but a few of entries in vector X are zero or almost zero, we 
will say that f is sparse in the ߰ domain and X is its sparse 
representation.

For example, the Shepp-Logan phantom 256x256 pixels in 
fig.(1a) and its gradient counterpart in fig.(1b), The number of non-
zero pixels in (fig.(1a)) is 27521which is about 42% of the total pixels 
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number, while the number of non-zero pixels in its gradient image 
(fig.(1b)) is only 2182 which is about 3.3% of the total pixels number, 
which is much less than the non-zero pixel number of the original 
image. That means clearly that ߰ domain is said to be the sparse 
domain of the image. Incoherence depends on the sampling pattern, 
the samples couldn’t be uniform as it will cause aliasing , but applying 
random uniform sampling will result in noise in the reconstructed 
image which could be removed using L1 constraint  [6]. 

As Sparsity and Incoherence can be applied for our case, we can 
reconstruct an image from low projections and apply CS algorithm. 

In this algorithm to reconstruct image using CS we need to have 
initial reconstructed image and the sparse domain, we consider ART 
and L1 norm of the sparse image in gradient domain as the constraints 
of CS iterative algorithm. We test algorithm on phantom image using 
phantom(128) command from Matlab, we need to compute the 
attenuation coefficient of CT image which will be represented as the 
pixels of the image, to start the algorithm we need to compute the 
projections using parallel beam orientation and fan beam orientation as 
shown in fig.(2), the projection data is known as Sinogram  [9] where 
the horizontal and vertical axes represent the detector-bin and view-
angle coordinates, fig.(3) shows Shepp-Logan phantom Sinogram for 
parallel and fan beam orientations.  
 

 

Figure 1: Shepp-Logan phantom. (a) The original image. (b) The gradient 
counterpart of (a). 

  

 

Figure 2: parallel and fan beam projections 

 

Figure 3: Shepp Logan phantom Sinogram for: a) parallel beam b) fan 
beam. 

A. The Algorithm Outlines 
Consider an image F (Nx1), suppose parallel-beam projection data of 
image F modeled by Eq. (2)  [10]. ௜ܲ = ∑ ∅௜,௝ܨ௝ே௝ୀଵ  . (2) 

Here ௜ܲ  is the projection ray, F is the image matrix and ∅i, j is the 
weight component of the intersection with matrix F which can be 
computed by the intersection length of the ith ray through the jth pixel 
image as shown in fig. (4). 

To reconstruct an image it we use ART algorithm using eq. 
௡௘௫௧ݔ .[11]  (3) = ௖௨௥௥௘௡௧ݔ − ௥௔௬ݐ݆ܿ݁݋ݎ݌ܾ݇ܿܽ ቊܾܽܿ݇ݐ݆ܿ݁݋ݎ݌௥௔௬(ݔ௖௨௥௥௘௡௧) − ݎ݋ݐ݂ܿܽ ݊݋݅ݐܽݖ݈݅ܽ݉ݎ݋௥௔௬݊ݐ݊݁݉ݎݑݏܽ݁݉  ቋ (3) 

Here x is the pixel value, xnext is the pixel new value, xcurrent is the pixel 
last value, backprojectray(xcurrent) is the projection value using xcurrent, 
measurementray is the true projection value, the normalization factor 
can be calculated depending on the pixels and projection intersection. 

ART will not give accurate reconstructed image as the number 
of projections is less than the number of attenuation coefficients in the 
image [ [12]] so we will move to the other constraint related to the L1 
norm of the gradient image, this constrain aims to find the image F in 
gradient domain which satisfy Eq. (4)  [11]. ܨ = arg ݉݅݊ ฮܨ෨ฮ௅ଵ .  (4) 

Where ܨ෨  is the gradient image vector and L1 norm of ܨ෨ (ฮܨ෨ฮ௅ଵ) 
=∑ ฮܨ෨௜ฮே௜ୀଵ  
To minimize L1 norm we can use the gradient descent method shown 
in eq. (5)  [13]. ܨ௡௘௫௧ = ௖௨௥௥௘௡௧ܨ −  ௖௨௥௥௘௡௧  . (5)∆ ߙ
Here F is the image, ߙ is the gradient descent step which could be 
fixed number or variable number related to the error between 
iterations, we use many values shown in results method and ∆ is the 
direction of L1 derivative of the gradient image. 

The derivative of the L1 norm for the gradient descent algorithm 
could be calculated by numerical solution which can be expressed as 
the partial derivative  [7] [10]  [15]  [17].  

 

 
Figure 4: One projection and its intersection weighted matrix  

 



 
 
B. The Algorithm steps 

We use the algorithm shown in Fig.(6) to reconstruct the Shepp-
Logan phantom images. 

 

 

Figure 5: Proposed algorithm flowchart. 

 

Figure 6: Gradient descent algorithm. 

III. RESULTS 

We use CS iterative algorithm to reconstruct a Shepp Logan 
phantom with different controlling parameters using Matlab program. 

We will show the effect of controlling parameters on the 
reconstructed image and the relative error in each case, the root mean 
square error (RMSE) and the relative error are defined  [16] as shown 
in Eq. (6). ܴܧܵܯ = ට(ிೝିிబ)మே = ݎ݋ݎݎ݁ ݁ݒ݅ݐ݈ܴܽ݁ ,  ோெௌாிబതതത . 

 (6) 

 
Here Fr is the reconstructed image, F0 is the true image; N is the 

number of image pixels and ܨ଴തതത is the mean value of pixels defined as ଵே ∑ ଴௜ே௜ୀଵܨ  . 
 

A. ART Versus CS Reconstruction Algorithms 
We used under-sampled projection data in view angle. We 

performed traditional ART and CS iterative reconstruction algorithms 
for 60 view angles using parallel and fan beam projections.  
Reconstructed images for parallel beam projections are shown in 
Fig.(7) and its relative error shown in Fig.(8) and images for fan beam 
are shown in Fig.(9) and its relative error shown in Fig.(10). Images 
reconstructed using CS algorithms have better resolution without noise 
as using traditional ART. 
 

True image CS reconstructed 
image 

ART reconstructed 
image 

   
 

Figure 7: Reconstructed image using ART and CS for parallel 
beam projections. 

 
Figure 8: Relative Error of ART versus CS for parallel beam 

projections. 

True image CS reconstructed 
image 

ART reconstructed 
image 

   
Figure 9: Reconstructed image using ART and CS for fan beam 

projections. 
 

 
Figure 10: Relative Error of ART versus CS for fan beam 

projections. 
B. Controlling Parameters 

There are some controlling parameters affects the quality of the 
reconstructed image, which are: 

1) The Value of Gradient Descent Step  
We performed the algorithm with 60 view angle and parallel 

beam projections with different values of gradient descent step (alpha) 
as shown in Fig. (11), the resolution of the reconstructed images and 
Relative Error affected by the value of gradient descent step, the best 
value for this step is 0.01. Also we performed the algorithm with 60 



view angle but using fan beam projections with different values of 
gradient descent step as shown in Fig.(12), the best value for this step 
with the lowest error is 0.1. 

2) The Number of View Angles : 
We test the algorithm with different numbers of view angles and 

with parallel beam projection for best value of gradient descent step 
=0.05 shown in Fig.(11), the result is shown in Fig.(13). we also test 
the algorithm for fan beam projections with best value of gradient 
descent step =0.1as shown in Fig.(12), the result is shown in Fig.(14), 
for both Relative error results, the lowest view angle (30 view angle) 
give the better results than ART, but as shown we could reconstruct 
images with very low error using 50 view angles. 

 
Figure 11: Relative Error for different values of gradient descent 

step “alpha” for parallel beam projections. 
 

 
Figure 12: Relative Error for different values of gradient descent 

step for fan beam projections. 

 
Figure 13: Relative Error for different view angles for parallel 

beam projections. 
 

 
Figure 14: Relative Error for different view angles for fan beam 

projections 
 

3) Sampling Patterns: 
We test the effect of sampling pattern of view angles on the 

algorithm, we use random uniform distribution with parallel beam 
projection for best value of gradient descent step =0.05 and 60 view 
angle compared with normal random distribution for different values 
of variance as shown in Fig. (15), the best results with low error can be 
obtained using uniform random distribution, using any other 
distribution couldn’t reconstruct images with high resolution. 

In addition to Relative Error and RMSE there exist other metrics 
to quantitatively assess the similarity between reconstructed images 
and the original phantom image. The universal quality index 
(UQI)  [16], which is mathematically defined by modeling the image 
distortion relative to the reference image as a combination of three 
factors: loss of correlation, luminance distortion, and contrast 
distortion. The correlation coefficient (CC)  [16], which is defined as a 
method that employs tracking techniques for accurate measurements of 
changes in images. 

Table (1) shows the Quantitative quality metrics for traditional 
ART and CS iterative algorithm for parallel beam projections and 60 
view angles. 

 

 
Figure 15: Relative Error for different parallel projections 

uniform random sampling and normal random sampling patterns. 
 

Table 1: Quantitative quality metrics 

 RMSE Relative 
Error  

UQI CC 

CS algorithm  0.0110 0.0350 0.9986 0.9975 

ART algorithm 0.0646 0.5315 0.8516 0.9054 

 



IV. DISCUSSION 

The main aim of this paper is to reconstruct an image of digital 
Shepp-Logan phantom using small number of projections with high 
resolution compared to low dose traditional ART technique and to 
study the effect of controlling parameters on the reconstructed image. 
We could reach higher accuracy than others  [17] by selecting optimal 
control parameters using parallel beam also we use CS algorithm to 
reconstruct images using fan beam orientations shown in the above 
results, measuring the relative error is more relevant than RMSE as it 
shows the noise with respect to the mean pixel value ,RMSE and 
quantitative measurements show best results for iterative CS proposed 
algorithm by applying ART update equation and L1 norm for sparse 
image.  

As we mentioned before using any iterative algorithms as ART 
with few number of projections will lead to noisy images as shown in 
Fig.(7) and Fig.(9). To remove these artifacts we applied L1 norm and 
use gradient descent algorithm after ART  algorithm is applied, the 
resolution of the reconstructed image depends on the gradient descent 
step, for large values of  the gradient descent step the algorithm will be 
unable to converge and to find the solution of the required image and 
for small values the algorithm will take long time to converge so the 
optimal case to make the gradient step constant number multiplied by 
the error between the true and calculated projections as shown in Fig. 
(11) and Fig. (12), the results show that we could decrease error to low 
level about 0.01 while it is about 0.06 for traditional ART algorithms, 
the optimal gradient decent step is 0.05 for parallel beam and 0.1 for 
fan beam, using these values we could find the required image with 
high quality and low artifacts, using both orientations give different 
optimal values of alpha due to their different sinograms and different 
artifacts. 

As the view angles increase the quality of image increases and 
relative error decreases as shown in Fig. (13) and Fig. (14) as the large 
number of projections represents the complete data set needed, we 
could reconstruct images with high quality and low relative error 
(about 0.01) from 40 view angles which is less than half the value of 
needed projections for traditional ART for both fan beam and parallel 
beam projections. Also using 30 view angles gives better results than 
traditional ART. 

To reconstruct image using CS and to avoid aliasing we should 
use random distributions, for parallel beam we use uniform random 
sampling in view angles but for fan beam we use uniform random 
sampling for rotation angle, all the above results we use these 
sampling criteria. We test the algorithm for parallel beam and all 
optimal controlling parameters using different sampling patterns 
uniform and normal random distribution, normal random distribution 
wouldn’t give high quality reconstructed image as the main idea of 
reconstruction is to get samples representing data not to be 
concentrated at specific regions as shown in Fig. (15). For normal 
random distribution as the variance decrease we get low quality 
reconstructed image as it doesn’t represent the whole data and uniform 
random distribution gives the best results.  

The RMSE is widely used for measuring reconstruction 
accuracy, whereas the UQI and CC can be used for evaluating the 
pixel-to-pixel similarity between reconstructed and original images. 
When assessing the image’s quality, we demand the RMSE index to be 
as small as possible, while expecting the UQI and CC to have the 
contrary results. 

Table (1) suggested that the CS algorithm with the best 
controlling parameters give reconstructed image more similar to the 
original image than the traditional ART algorithms with low RMSE 
and Relative Error and high UQI and CC. 

The most critical parts in the implementation of CT CS iterative 
algorithm are the sampling criteria, projections formation using 
matrix/line geometry, the selection of the sparse domain and selection 
of iterative algorithm using to solve the sparse constrain. Applying the 
sparsity definition enables us to choose the most suitable sampling 
criteria which were the uniform random sampling as we mentioned 

before and by testing this sampling pattern for both view angles and 
parallel lines, we could reach best results with high resolution 
reconstructed image. For the selection of the iterative algorithm we 
decided to use gradient descent as it is very simple to implement, we 
tried to use the conjugate gradient as it could converge fast but we 
faced a problem for how to apply it to our equations so it could be part 
of the future work. Also using numerical solution for the derivative of 
gradient descent gives approximate solution so we tried to use the 
Fourier transform but we faced some problems in implementation also 
it could be part of the future work .  

V. CONCLUSION 

In Conclusion, We developed a CS iterative algorithm to 
reconstruct an image with view angles less than half of the needed 
projections used in all traditional algorithms; also we compare the 
effect of some controlling parameters on the quality of the 
reconstructed image.  
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