
 

Fig. 1 Spiral images reconstructed 
with conventional gridding (top) and 
new algorithm (bottom). Boxes show 
areas in/outside head used for SARR. 

Iterative Deconvolution-Interpolation Gridding 
 

R. E. Gabr1, P. Aksit2, P. A. Bottomley1,3, A. M. Youssef4, Y. M. Kadah4 
1Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, United States, 2Global Applied Science Laboratory, GE Healthcare, 

Waukesha, WI, United States, 3Division of MR Research, Johns Hopkins University, Baltimore, MD, United States, 4Department of Biomedical Engineering and 
systems, Cairo University, Giza, Egypt 

Introduction 
A convolution-interpolation algorithm-the gridding algorithm-is widely used to reconstruct images from nonuniform samples in k-
space. The gridding algorithm consists of: (1) compensating the data for nonuniform sampling by multiplying by a suitable sampling 
density compensation function (DCF); (2) convolving the compensated data with a small-width kernel sampling the result onto a 
rectilinear grid; (3) Fourier transform (FT) the data into image space; and (4) compensating for signal roll-off introduced by the 
convolution, by dividing by the FT of the convolution window [1].  Although this algorithm is efficient and stable, it is non-optimal 
and artifact-prone [2].  Calculation of the optimal DCF has proved a difficult and long-standing problem, and step (4) results in large 
signal wings at the image periphery. Other gridding solutions often include truncation and/or approximations that affect reconstruction 
accuracy in a non-deterministic way, such as the BURS method [3]. Moreover, the calculation of gridding coefficients and/or the DCF 
is almost always computationally exhaustive [3,4] or requires regularization [3].  This is intolerable in situations where the k-space 
trajectory must be changed.  Here, we present a more accurate, yet simple, solution.  Instead of the convolution-interpolation operation 
which depends on the DCF used, a deconvolution-interpolation process is performed that is more accurate and does not need density 
compensation. The deconvolution is implemented by solving a sparse linear system using the conjugate gradient (CG) method. 
Theory 
Let M be the continuous FT of the object to be imaged. Assume that k-space is well-covered by 
the sampling trajectory and the imaged object is of finite-support.  The nonuniform samples are 
related to the data on the grid with a sinc-function interpolation, that is,  
M(kj) = Σn M(kn) sinc(|kj-kn|), where {kj}j=1..L are the L trajectory sampling locations and 
{kn}n=1..N are the N sampling grid points. Stacking the nonuniform and uniform samples in 
column vectors ms and m, respectively, the interpolation can be written in a matrix form as ms 
= Am, where the dense matrix A contains the sinc interpolation coefficients.  Solving for m is 
impractical as the size of A is prohibitively large.  However, replacing the infinite sinc function 
with a small convolution window, yields the sparse linear system, ms = Cmr, where C is an 
interpolation matrix with a small-width kernel C(k) and mr is a vector of uniform samples.  
This interpolation is accurate since it is performed on a uniform grid. This linear system can be 
inverted efficiently using the CG method, since C is sparse.  The inversion is essentially a 
deconvolution of M(k) with the convolution kernel C(k) sampling the result onto a rectilinear 
grid.  The same sparse-system formulation has been used previously with a quite different 
system matrix [4].  The relationship between mr and the desired true object m is the weighting 
by 1/c(r) caused by the deconvolution, where c(r) is the FT of C(k) and r is the position vector 
in image space. This effect is eliminated by multiplying in the central part by c(r). 
Experiments 
Axial gradient-echo spiral scans of healthy volunteers were done on a 1.5T GE CV/i system 
(GE Healthcare, Waukesha WI; 32 spiral with 4096 samples each; 24 cm FOV; 5mm slices; 
TR/TE = 51/2.5 ms; 60° flip angle).  Images were reconstructed onto a 512x512 grid with a 
Kaiser-Bessel window (width=3 rectilinear grid points; optimal beta parameters) [1]. 
Conventional gridding was implemented with DCF(Kj) = gj.Kj where gj=(gxj,gyi) is the gradient 
vector at kj. The same window was used for the new method but with a beta parameter of 8.3. 
Fig. 1 shows in vivo brain images reconstructed with conventional and new gridding algorithms.  
Artifacts at the periphery of the conventionally gridded image are absent with the new method.  
The signal-to-artifact ratio (SARR), defined as the mean signal in a region of interest over the 
standard deviation in a background region (Fig. 1), is higher at 36.7 for the new algorithm, vs 
32.1 by the conventional method. Within the brain, no difference in intensity levels is evident. 
Ten iterations were sufficient to achieve a convergent solution. 
Conclusions 
The new algorithm provides accurate image reconstruction from arbitrary k-space trajectories without grid subsampling, as is required 
in other methods [1,5]. This saves memory and allows smaller FOV and increased resolution. Density compensation is embedded in 
the deconvolution step.  The inherent regularization in the CG method assures stability of the deconvolution process. Construction of 
the gridding matrix is simple and fast and no regularization is needed. This is useful for changing k-space trajectories. 
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