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ABSTRACT

Independent Component Analysis (ICA) revealed significant treatment of both
structured and random noise. Nevertheless, this technique suffers from a fundamental
limitation of not providing a consistent ordering of the signal components. This
mandates human intervention to pick out the relevant activation components from the
outcome of ICA, which poses a significant obstacle to the practicality of this
technique. In this work, a simple yet robust technique is proposed for ranking the
resultant independent components. This technique adds a second step to ICA based on
white noise (WN) criterion as well as power spectral analysis. The proposed technique
is verified using computer simulations as well as actual real event-related functional
magnetic resonance imaging data from a healthy human volunteer and the results
confirm the practicality and robustness of the proposed method.

KEYWORDS: Functional magnetic resonance imaging, independent components
analysis, white noise criterion, spectral analysis, signals de-noising.

1. INTRODUCTION

Functional MRI “fMRI” based on blood oxygenation level dependent “BOLD”
contrast has evolved into a leading technique for functional brain imaging duc to its
noninvasiveness, high spatial resclution, and relatively high temporal resolution. One
of the most challenging aspects of fMRI is the extraction of the BOLD signal from the
complicated susceptibility-weighted “T*” MR signal. Various noise sources contribute
to the complexity of this susceptibility-weighted signal. Those physiologic in origin
include MR signal modulation due to respiration, the beating of the human heart, and

gross subject movement. These physiological sources can modulate the susceptibility,
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apparent proton densities, and apparent relaxation times. Other potential noise sources
are scanner instability leading to signal drift, signal oscillations, and other complex
image artifacts. '7

The advent of functional magnetic resonance imaging “fMRI” has resulted in
many exciting studies that have exploited its unique capability. It provides a valuable
noninvasive tool for investigating brain function. The different magnetic properties of
oxy-hemoglobin and de-oxy-hemoglobin are used to visualize localized changes in
blood flow, blood volume and blood oxygenation in the brain [1-3]. These in turn,
become indicators for local changes in neural activity. To observe these homodynamic
changes, the subject is exposed to controlled stimuli, which are carefully designed to
affect only certain brain functions then rapid acquisition of a series of brain images is
performed. The sequence of images is analyzed to detect such changes. The result is
expressed in the form of a map of the activated regions, which represents sensory,
motor, and cognitive functions in the brain [4]. fMRI analysis approaches range from
model-based to exploratory, although model-based approaches are by far the most
utilized[S]. Model-based approaches are extremely useful when the time course of the
hemodynamic response can be inferred apriori, however the hemodynamics of the
brain are still being studied and good a priori assumptions are sometimes not available
[6]. Besides, the data are in general very noisy, much statistical research has been
devoted to studying how the weak activation signals may be extracted with optimal
sensitivity. Thus, the use of data-driven analysis in fMRI is inherently attractive
because it does not rely on imposed assumptions about experimental conditions. The
concept of data driven decompositions became familiar since principal component
analysis “PCA” and independent component analysis “ICA” have been introduced to
fMRI data analysis [7-8]. Both ICA and PCA are closely related to projection pursuit
methods [9]. The underlying idea is to find interesting directions or components within
the multi-dimensional data set. Both ICA and PCA use linear transformation to get the
components of the observed signals [10]. The key difference is in the type of the
components obtained. The goal of PCA is to obtain principal components, which are

defined as the uncorrelated direction of highest variance. In ICA however, the stronger
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constraint of statistical independence is imposed. It seeks to obtain statistically
independent components. Hence, PCA algorithms use only second order statistical
information, whileHICA algorithms utilize higher order statistical information for
separating the signals. Moreover, PCA gives projections of the data in the direction of
the maximum variance. The principal components (PCs) are ordered in terms of their
variances. The first PC defines the direction that captures the maximum variance
possible. The second PC defines “in the remaining orthogonal subspace” the direction
of maximum variance, and so forth. This provides a natural ranking for the resulting
components “even though this might not provide information about the usefulness of
the components since the variance of a signal is not necessarily related to the
importance of the variable”. On the other hand, ICA involves an intermediate
whitening step that does not make the ranking based on projection magnitude possible.
Therefore, there is no consensus of how this ordering can be performed [11]. Several
attempts were reported including the use of the value of higher order statistics. These
methods were not proven useful in many applications including fMRI and electro
physiology data [12]. The lack of consistent ordering of components results in
different arrangement of independent components each time the analysis is performed
even on the same data set, which mandates the intervention by the user to select the
“interesting” components out of the analysis result. This is usually a cumbersome task
that takes fairly long time and makes the technique subject dependent. Therefore, an
analysis technique that would allow the robust ordering of independent components
without the intervention of the user would be rather useful. In the present work, we
present a simple yet effective method for functionally ranking the resulting
components of the ICA algorithm. Using a new natural ranking that does not depend
on any model-based fMRI tools is created. It depends on the nature of the data itself,
applied to the outcome of ICA. This new technique enables the elimination of the
limitations of other techniques and provides a robust model-free mechanism for
analyzing fMRI data. The proposed technique is verified using computer simulations
as well as actual real event-related functional magnetic resonance imaging data from a

healthy human volunteer and the results confirm the practicality and robustness of the
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proposed method. This power spectral technique as a post processing leads to provide
a consistent and reproducible ordering of independent components and isolate the
random noise components of the MR signal by ranking the result. Noise components

then can be removed before subsequent reconstruction of the time series data.

2. THEORY

2.1. Independent Component Analysis

Independent Component Analysis is a signal processing technique, created to
separate a number of statistically “independent” sources that have been mixed linearly
without further knowledge of their distributions or dynamics [13].

ICA assumes that there is N statistically independent inputs that have been mixed
linearly in N output channels. Knowledge of joint distributions and statistical
independence of latent variables is assumed [14]. If the matrix M represents the fMRI
time series data in each voxel, then the decomposition can be thought of in terms of
the matrix Equation:

M=WC |, ey
where W is the mixing matrix and C is the matrix containing the component map
voxel values, where M is our data matrix where rows correspond to time and columns
to spatial locations, C is the matrix of the independent components, W is the mixing
matrix. In general, one wishes to solve for Z in the equation C= ZM, where Z is the
inverse matrix of W and is a square matrix of full rank. Each column of Z7' (=W)
returns the time course of modulation of its corresponding component map. These time
courses may be correlated and non-orthogonal, but the distributions of voxel values in
C are as statistically independent as possible. The ICA algorithm determines Z by an
iterative method based on information theory principals, and the matrice§ Cand Z
provide a linear decomposition of the fMRI data. There are two types of ICA that can
be calculated: Spatial ICA, in which the spatial components are constrained to be
independent “C= ZM”, and temporal ICA, in which the time courses of modulation are

constrained to be independent “C= ZM [14,15].
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2.2. White Noise (WN) Criterion

In order to determine which components of the decomposition can be
considered white noise, we utilize an observed property of power spectra estimated by
the multitaper method [15]. Empirically, it has been observed that if the power
spectrum of a time series of random white noise is estimated by a straightforward
Fourier transform with only one taper, the mean power across all frequency bins of the
power spectrum is approximately equal to or greater than the standard deviation of the
power across all frequency bins of the power spectrum. In the case of multitaper
spectral estimation, in which there is a reduction in variance, one finds that the
standard deviation of the power across all frequency bins of the power spectrum is
frequently less than the mean power across all frequency bins of the power spectrum
[15]. The WN criterion was met if the mean power across all frequency bins of the
power spectrum was greater than the standard deviation of the power across all those
frequency bins. If for any given component, if the WN criterion was met, then its
power spectrum was considered essentially the spectrum of white noise and that
component was scored as a relevant contributor to the overall noise content of the MR
signal (i.e., the corresponding time mode component was considered a “noise”
component). All data sets were processed with and without this criterion. If the WN
criterion was not used, then only time-series components that contributed respiration
and cardiac noise were considered noise sources.

The WN criterion was also used as a method for determination of a cutoff
between relevant and non-relevant components in PCA-based denoising methods. This
was defined as the point at which all components higher in rank passed the WN
criterion for being non-structured (random) noise. These components were therefore
labeled as non-relevant and were automatically zeroed for the data sets in which
nonstructural noise was to be removed. Also, if nonstructural noise was to be
considered for removal, then lower order components below the relevancy cutoff were

also subjected to screening by the WN criterion.
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3. METHODOLOGY

The algorithm implemented, all supporting routines were written in Matlab
“math Works, Natick, MA”. This approach was applied to simulated fMRI datasets,
one for event-related fMRI and the other for Block-design. In the simulation studies,
the performance of the present approach was measured when used as a post process
step after PCA/ICA to make its results easier to evaluate. In the experimental studies,
the present approach was applied to activated time courses from experimental data
obtained to illustrate its practical utility.

1) The computer simulations were performed whereby a computer generated ER-fMRI
activation signal was added to an actual baseline data set. The number of epochs was 5
and the length of each epoch was 100. The generated activation was generated using a

signal of the form (see fig.1up to fig.3 for an example):
—t ~t
X () =(1-exp(—))’.exp(—) , 2
(1) = (1 —exp( 1 ) E:XP(TZ) (2)

where T1 and T2 are constants that can be adjusted to obtain the desired shape, and t
represents the sampling times (i.e., the image number within an epoch). This signal
was replicated for each epoch and added to either simulated Gaussian white noise or
experimentally acquired baseline data as shown in Fig.1 and Fig.3. Also a computer
generated Block design activation signal was added to an actual baseline data set as
shown in Fig.4.

2) We added functions to the fastiCA package as a post-processing step as shown in
Fig.5. These functions will be included later with our practical implementation steps
for our proposed technique [16].

3) The WN criterion observation [15] was extended to a rank criterion with help of
correlation between the activation paradigm of the data and the output of the ICA as

individual component to be a new rank method for the ICA output
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Fig.1. (a) experimentally acquired baseline noise.(b) The generated activation,
(c) Simulated activation time course, where signal was replicated for each epoch
and added to experimentally acquired baseline noise.
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Fig.2. Stimulus marked on simulated activation.
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Fig.3. Computer generated ER-fMRI activation signal time course
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Fig.5. Functions has been added to fastICA as a post process step

4) The activation signal seems to be our helper as from the experimental data we have
the information needed to extract the stimulus paradigm activation, where the subject
performed rapid finger movement cued by flashing LED goggles. The study consisted
of 31 epochs, with 64 images per epoch. Temporal data from only 8 epochs of pixels
in both the motor and visual cortices were processed using the new method therefore
the stimulus created for the correlation are shown in Fig. 6-b for the real data which
represented in Fig 6-a, also for simulated data the stimulus created is shown in Fig. 2 .

5) Practical implementation steps
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Fig.6. (a) actual data time course, (b) stimulus marked on the real uncorrupted signal

The following are the steps needed to implement the new technique:

Step 1) select the area of interest to be examined for a real activation, 2x2 pixels at a
time.

Step 2) recall the data and perform PCA /ICA technique for the selected time series
using modified fastiCA module [16].

Step 3) compute the mean power for the output from ICA across all frequency bins
of the power spectrum.

Step 4) compute the standard deviation of the power for the output from ICA across
all those frequency bins of the power spectrum.

Step 5) the power spectra of each component were evaluated with the modified WN
“white noise” criterion.

Step 6) divide the standard deviation by the mean as a ratio.

Step 7) search the signal for WN “white noise” criterion.

471



N. EL-SHABRAWY ET AL

Step 8) classify the ICA output by applying the t-test among all components of the
ICA output.

Step 9) correlatelfhe results with the actual stimulus paradigm activation and get the
hypothesis, as well as the signal significances to the hypothesis,

Step 10) rank the signal according to step “6” and step “9”.

Step 11) arrange the signals in descending order according to the new nature ranking
created from step “10”. ‘

Step 12) the higher the value of the rank the higher the relation with the activation
paradigm stimulus a certain grade is assigned for each IC based on its
relation with the activation paradigm and display the output as shown in
Fig.7 and Fig.8.

Step 13) These components which classified as a noise were therefore labeled as
non-relevant and were automatically zeroed for the data sets in which noise
was to be removed.

Step 14) The components which classified as a signal were therefore labeled as
relevant and were returned a certain activation value to the activation map
corresponding to the probability of correlation with the activation paradigm
stimulus as shown in Fig.10.

Step 15) repeat the steps from 1-14 for the rest of pixels.

4. RESULTS AND DISCUSSION

The proposed technique was verified using computer simulations as described
before in methods as well as actual data from a human volunteer. The computer
simulations were performed whereby a computer generated ER-fMRI activation signal
was added to an actual baseline data set. The baseline data were collected on a healthy
human volunteer using an echo planning imaging “EPI” sequence “TE”echo time” /
TR”repeat time” =25/500 ms”, Matrix=64x64, field of view (FOV) =20 cmx20cm,
slice thickness=5 mm, 640 images on a Siemens Magnetom Vision 1.5 T clinical
scanner. The number of epochs analysised was 8 and the length of each epoch was 64.

The generated activation was designed to include interepoch variations in both the
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magnitude and width of the activation signal in order to test the performance of the
new technique in preserving such variations. The actual data were obtained from an
activation study pefformed on a volunteer using a Siemens 1.5T clinical scanner. In
this study, an oblique slice through the motor and the visual cortices was imaged using
a T2*-weighted EPI sequence (TE/TR= 60/300ms, Flip angle=55°, FOV=22cmX
22cm, slice thickness=5 mm). The subject performed rapid finger movement cued by
flashing LED goggles. The study consisted of 31 epochs, with 64 images per epoch.
Temporal data from only 8 epochs of pixels in both the motor and visual cortices were
processed using the new method. Temporal ICA was applied to process groups of
pixels within a user-specified region of interest of size 2x2. The proposed ranking
method based on the new method was used to order the outcome of ICA, which came
in different order each run. The results of ICA before and after applying the ordering
technique are shown in fig. 7 for simulated data, and fig.8 for an actual real data were
obtained from an activation study performed on a volunteer using a Siemens 1.5 T
clinical scanner. As shown, the components are consistently ordered in these
examples. Furthermore, in each of these examples, even though the order of ICA
components came different from the data before the application of the proposed
technique, the results after its application were exactly the same each time. This
suggests that the addition of the proposed method as a post-processing step after ICA

makes the technique more practical for use in clinical settings.
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Fig.7. The generated ICS without ordering “left side”, the generated ICS
after applying the new technique “right side” for simulated data,
X-axis represent image number, Y-axis represent amplitude.
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after applying the new technique “right side” for real data,
X-axis represent image number, Y-axis represent amplitude.
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5. CONCLUSION

The major. implications of these results can be summarized in a few key
conclusions. The most fundamental finding is that component analysis of the fMRI
BOLD signal, followed by deletion of undesirable components then the reconstruction
of the data, can be used successfully as a way to help separate task-related voxel
variations from non-task-related noise. We demonstrated algorithms that automatically
select ICA components that are more likely to contain noise and mark them for
subsequent deletion. A procedure for noise identification was tested for noise. This
procedure was based on Fourier analysis of the time variation of each component’s
activity, followed by examination of the structure of the power spectrum. Extraction of
various kinds of noise by using ICA is one of the most interesting features of the tested
methods. These results seem to indicate that component-analysis-based on a natural
ranking system depending on the nature of the data avoiding any assumption. This is
different from the other technique that depends on basis function model that may lead
to problems with noise especially in fMRI environment. That is mainly because of the
noise that may have a strong correlation With some signal in that model. So, some
signal that looks like that component can deceive the system and give a very high
correlation with a noisy component while results will convert this high correlation
factor to high grade for this component as an activation response. This gives wrong
result which need applying any measurement technique to measure the similarity
between the data and the model accordingly our proposed technique might be a
valuable addition to the family of post-processing techniques which are used to
improve the recovery of information from the BOLD-based fMRI signal. This may
provide a more complete picture of the extent of each region’s activation by task-
related activit_y. As our proposed technique for ordering the outcome of temporal ICA
is subjected to further correlation with the activation stimulus for the same data. The
power of this technique is that it does not need to correlate with all components of the
output of ICA as in the canonical correlation analysis (CCA) technique but the

correlation here is between the output of ICA based on individuals basis. The results
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obtained in our experiments suggest that this technique to be highly robust, which
makes it suitable as a Post processing step after ICA to make its results easier to

evaluate and the technique more practical to use.
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X axis pixe]l number

Fig.9. Brain cross section before mapping the activation,
X-axis and Y-axis represent pixels number.
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Fig.10 Activation map for returning a 2x2 pixels detected as activated pixels,
X-axis and Y-axis represent pixels number.
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