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ABSTRACT 

 

Using Sparse MRI with random radial trajectories allows MRI images 

reconstruction from a small number of acquired k-space data. This fulfills the demands of 

dynamic MRI. Different random radial trajectories are generated by varying the 

parameters of the added random perturbations to the radial trajectories.  Images 

reconstruction is performed using the non-linear L1 norm reconstruction. Entropy is 

computed for the reconstructed images, as a quantitative measure for the reconstructed 

image quality. Both phantom simulation and real cardiac images are used in the 

experiments of this work. The results show that more sparsely sampled images can be 

reconstructed with higher quality compared to using non-randomly sampled radial k-

space trajectories. 

 

KEYWORDS: Cardiac Magnetic Resonance Imaging (MRI), radial k-space sampling, 

dynamic imaging. 

 

1. INTRODUCTION 

 

Patient motion during MRI cardiac imaging causes artifacts in the reconstructed 

image that obscure anatomical details. The main sources of these artifacts are cardiac and 

respiratory motion. Dynamic MRI captures an object in motion by acquiring a series of 

images at a high frame rate, thereby reducing motion artifacts. Dynamic imaging places 

conflicting demands requiring both high spatial resolution to resolve anatomical detail, 

and high temporal resolution to monitor rapid changes in signal. However, k-space 

sampling that obeys the Nyquist theorem usually precludes simultaneous achievement of 

both aims. k-space undersampling speeds up the acquisition by only sampling part of the 
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required k-space. Sparse MRI is a fast imaging method based on undersampled k-space 

sampling and non-linear reconstruction [1]. This approach is inspired by theoretical 

results in sparse signal recovery [2,3]. It has been shown that if the underlying image is 

compressible it can be recovered from randomly undersampled frequency data, an idea 

known as compressed sensing. It exploits the fact that medical images often have a sparse 

representation in some domain “such as finite differences, wavelets, Fourier, etc.”, where 

the number of coefficients needed to describe the image accurately is significantly 

smaller than the number of pixels in the image. Uniform undersampling of the Fourier 

domain results in aliasing. When the undersampling is random, the aliasing is incoherent 

and acts as additional noise interference in the image representing incoherent interference 

of the sparse transform coefficients. Sparsity is exploited by constraining the 

reconstruction to have a sparse representation and to be consistent with the measured k-

space data [1]. The success of the reconstruction depends on the sparsity of the 

coefficients and that the interference is small, having random statistics. This approach has 

been used with randomly perturbed undersampled spirals [4] and with randomly 

undersampled 3D Fourier Transform “3DFT” trajectories [5]. It has been shown that the 

used non-linear L1 norm reconstruction outperformed conventional linear reconstruction, 

recovering the image even with severe undersampling [4,5]. 

Radial trajectories have many favorable intrinsic properties with respect to the 

demands of dynamic MRI including [6]: 

a) Motion-induced artifacts result predominantly in radial streaks with only low 

intensity near the source of motion and reduce motion-induced ghosting. No 

ghosts displaced along phase-encoding direction are present. 

b) The coverage of the k-space center in each radial line avoids contrast 

continuities and preserves the continuity of the process. Also, oversampling of 

the low spatial frequencies provides intrinsic averaging of the gross features of 

the subject. 

c) By applying a magnitude reconstruction, a reduced sensitivity to statistical 

phase errors may be achieved, although the amplitude of motion-induced 

artifacts increases. 
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Developing an MR sampling pattern is centered on developing the gradient 

waveforms, whose integrals traces out a trajectory in the k-space. In current systems, 

gradients are limited by maximum amplitude and maximum slew rate. Also, physiology 

provides a fundamental limit to gradient system performance as high gradient amplitudes 

and rapid switching can produce peripheral nerve stimulation [7]. Random sampling may 

not be feasible in MR as the k-space trajectories have to be smooth due to these hardware 

and physiologic considerations. Radial trajectories other than being fast and time-

efficient, they result in k-space sampling with a variable density increasing linearly with 

the inverse of the distance from the k-space origin. Therefore, they are good candidates 

for random sampling approximation as they are far from being regular as in Cartesian 

grid sampling despite spanning k-space uniformly [1]. 

In this paper, we introduce the application of Sparse MRI with random radial 

trajectories to exploit the intrinsic advantages of these trajectories with respect to the 

demands of dynamic MRI. Different random radial trajectories are generated by varying 

the parameters of the added random perturbations to the radial trajectories. Images 

reconstruction is performed using the non-linear L1 norm reconstruction. Entropy is then 

computed for the reconstructed images, as a quantitative measure for the reconstructed 

image quality. The obtained results show that more sparsely sampled images can be 

reconstructed with higher quality compared to those obtained using uniformly sampled 

radial k-space trajectories. 

The paper is organized as follows: Section two focuses on the methods applied for 

practical random trajectories generation and image reconstruction. Section three 

describes the data used in image reconstruction. The results and discussions are included 

in section four. The conclusions are presented in section five.  

 

2. METHODOLOGY 

 

The block diagram in Fig. 1 summarizes the main applied steps in this work. This 

section describes these steps in details. 
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Fig. 1. Block diagram for the main steps employed. 

 

2.1 Random Radial Perturbations 

 

Radial lines are perturbed by slight random deviations taken from Gaussian 

distribution with zero mean and varying variances. Different schemes for the random 

perturbations are used in the simulations. These include a) using constant variance along 

radial lines, and b) using linearly increasing variance with the distance from the k-space 

origin. i.e., variance is increased in areas of low sampling density and decreased in areas 

of high sampling density. 

Due to the impracticality of pure random sampling of k-space [1], a practical 

incoherent sampling scheme is aimed to closely mimic the interference properties of pure 

random undersampling. Therefore, the generated random radial trajectories are processed 

using a numerical algorithm to keep the gradients amplitude and slew rate below the 

maximum permissible limits. This algorithm has been used to reshape 2D selective pulses 

in such a way that one or the other of the applied gradients is always near its maximum 

allowable amplitude or slew rate, thereby minimizing pulse duration [8]. It involves 

making discrete steps along the radial trajectory and checking the gradient 

( ) ( ), ( )
x y

g t g t g t =    and the slew rate ( ) ( ), ( )
x y

s t s t s t =    along the way. The ith 

gradient vectors are expressed as 

Random radial 

perturbations with 

different variances 

Processing of trajectories 
for practical gradients 

limitations  

Image reconstruction 

using L1 norm non-

linear algorithm 

Entropy computation 
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where, i steps evenly in time, i.e., ( 1) , 1,2,3....
i

t i t i Nδ= − =  

 γ , the gyromagnetic ratio, is set to 4.8 ms
-1

 G
-1

(or 48 µ s
-1

 T
-1

)  

and t T Nδ =  is set to 10 secµ . 

 tδ  is chosen in order to meet practical sampling rates [8]. 

The discrete slew rate is expressed as the second derivative of k: 

( ) ( ) ( ) ( )
2

1 2
1 2 .

i i i i
s t k t k t k tγ δ − −

 = − +       (2) 

The computed gradient and slew rate magnitudes are compared to maximum limits 

of 0.04T/m and 150T/m/sec (or 4G/cm and 15G/cm/ms) respectively [8]. The k-space 

coordinates are modified in accordance to satisfy these limitations. The generated random 

radial trajectory is first processed using a local median filter along each radial line in 

order to smooth the added variations before applying the practical limits, to preserve the 

shape of the radially emanating trajectories. Corrections are then made to the smoothed 

trajectory to satisfy the practical limitations. Figures 2 to 4 show an example for the 

generated normalized radial k-space trajectories. Figure 2 shows a randomly perturbed 

radial trajectory using added variance of 3. The trajectory smoothed using the median 

filter is shown in Fig. 3. The resulting trajectory after corrections to satisfy the practical 

limitations is shown in Fig. 4. 

 

Fig. 2. Randomly-perturbed radial trajectories using added variance of 3. 

S. M. EL-METWALLY ET AL 

 446 

 

 

Fig. 3. Randomly-perturbed radial trajectories using added  

variance of 3 after applying median filter. 

 

 

Fig. 4. Randomly-perturbed radial trajectories using added  

variance of 3 after practical corrections. 

 

2.2 Gridding Reconstruction 
 

In MRI, gridding has been used routinely with respect to nonuniform, non-

Cartesian sampling of the k-space [9]. Conventional gridding is applied here to compare 

with non-linear L1 norm reconstruction using the randomly perturbed radial trajectories. 

The gridding algorithm is basically performed in four steps: 

a) Precompensate the data with inverse of the sampling density to compensate for the 

varying density of sampling in k-space. The sampling space is partitioned into several 
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cells, each cell representing the neighborhood associated with a sample point. The 

area of each cell is used as the density compensation factor for the corresponding 

sample point [10].  

b) Convolve with a Kaiser-Bessel window and resample onto a Cartesian grid. A 

gridding window of width 3 and β parameter of 9 is used.  

c) Apply an inverse two-dimensional Fourier transformation  

d) Postcompensate to remove the apodization of the convolution kernel by dividing by 

the transform of the Kaiser-Bessel window. 

 

2.3 Non-linear L1 Norm Conjugate- Gradient Reconstruction 

 

Image reconstruction is performed by solving the following constrained 

optimization problem [1]: 

1

2

min ( ) ( )

. . ( )

m TV m

s t NFFT m y

λ α

ε

Ψ +

− <
,    (3) 

where m is the reconstructed image, y is the measured k-space data,  Ψ is the 

sparsifying transform operator, TV or Total-variation is the finite-differences sparsifying 

transform. Minimizing the objective function promotes sparsity by both the specific 

transform and finite-differences at the same time. NFFT stands for the Non-uniform Fast 

Fourier Transform of the image.ε  controls the fidelity of the reconstruction to the 

measured data. The threshold parameter ε  is usually set below the expected noise level. 

α  trades Ψ  sparsity with finite-differences sparsity. λ  is a regularization parameter that 

determines the trade-off between the data consistency and sparsity. 

Equation (3) poses a constrained convex optimization problem. This is converted 

to the unconstrained problem: 

1 22 1
min arg ( ) ( ) ( ),

m

NFFT m y m TV mλ λ− + Ψ +    (4) 

where 
1

λ  and 
2

λ  are the weightings of the sparsity and the total variation terms. 

They represent regularization parameters that determine the trade-off between the data 

consistency, sparsity and total variation. The values of 
1

λ and 
2

λ  can be determined using 

trail and error where Eq. (4) is solved for different values, then the values are chosen 
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such that
2

( )NFFT m y ε− ≈ . An iterative non-linear conjugate gradient descent 

algorithm with backtracking line search is used, following the work in [1]. 

 

2.4 Entropy Minimization 
 

The entropy criterion, E, is defined as [11]: 

1

ln ,
N

j j

j ss ss

B B
E

B B=

 
= −  

 
∑      (5) 

where N is the number of image pixels and Bj is the modulus of the complex value of the 

jth image pixel or the pixel brightness. Bss is given by the sum of squared brightness. 

2

1

N

ss j

j

B B
=

= ∑ .      (6) 

When all the image energy is located in a single pixel and the remaining pixels are 

black, the entropy E = 0. When a 128 x 128 image has a uniform brightness, Bj /Bss 

=1/128 for all the pixels and the entropy E = 621. Therefore, entropy minimization favors 

high contrast.  This entropy criterion favors alterations to the data that tend to increase 

the number of dark pixels. It has been used as a focus criterion to remove motion-induced 

ghosts and blurring from low intensity regions of the image that would otherwise be dark 

[11]. Entropy is used here as a measure of the reconstructed image quality. It is computed 

for the reconstructed images using the non-linear L1 norm reconstruction at the different 

variances added to the randomly perturbed radial trajectories. 

3. EXPERIMENTAL VERIFICATION 

3.1 Phantom Simulation 
 

A 2D numerical SheppLogan phantom is used. The phantom image is designed as 

a linear superposition of elliptical objects, whose FTs are scaled “jinc” functions (jinc x = 

J1(x)/(2x), where J1 is a first-order Bessel function). k-space samples can thus be 

evaluated directly, therefore the phantom simulates realistic k-space sampling and 

truncation.  

Phantom image reconstruction is done using both non-linear conjugate-gradient 

method and the conventional gridding reconstruction. The reconstructed phantom 
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resolution is 160 x 160. k-space undersampling with 8-fold is used. That is, k-space 

consists of 20 radial lines. Each line consists of 512 samples. Practically, each radial line 

is acquired during a Repetition Time “TR” interval, which is relatively long. Therefore, 

the number of samples per line can be increased, as much as permitted by TR, without 

any increase in the overall acquisition time. Image reconstruction is done in the sparse 

finite differences domain using 
1

0λ =  and
2

0.05λ = . This is because the SheppLogan 

phantom represents a piece-wise constant object, and the TV term measures the finite 

differences in the reconstructed image. Therefore, minimizing the objective function is 

equivalent to minimizing the finite differences in the piece-wise constant object.  

 

3.2 MRI Data 
 

Cardiac MRI magnitude images are Fourier transformed at various generated 

random radial trajectories using non-uniform Fourier transform. Undersampling factors 

of 8 and 10 are used. k-space consists of 16 radial lines with 512 samples/line in the case 

of 8-fold acceleration, and consists of 13 radial lines with 512 samples/line in the case of 

10-fold acceleration. The reconstructed image resolution is 128 x 128. Random 

perturbations taken from a Gaussian distribution with zero mean and varying variances 

are added to the generated radial k-space trajectories. Since medical images often have a 

sparse representation in the wavelets domain, where the number of coefficients needed to 

describe the image accurately is significantly smaller than the number of pixels in the 

image, the parameters used in image reconstruction are 
1

0.002λ =  and 
2

0.005λ = . A 

trail and error strategy is followed for these parameters selection such that 

2
( )NFFT m y ε− ≈ . The TV term is included in reconstruction in order to reduce the 

noise level in the reconstructed images. 

 

3.3 Noise Addition 

 

In order to investigate the performance of the non-linear reconstruction in the 

presence of noise, noise is added to the noiseless SheppLogan phantom at different noise 

variances of 0.01, 0.03, 0.05, 0.08, and 0.1 corresponding to Signal-to-Noise Ratios 
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“SNR” of 24, 15, 11, 8, and 6 dB [12]. At each noise level, images are reconstructed 

using sparsity weighting 
1

0λ =  and various TV weightings 
2

λ . Different values of 
2

λ  are 

tried, and the entropy is computed in each time. The 
2

λ  value that results in the lowest 

entropy can then be considered to be the most appropriate for reconstruction at that noise 

level. 

4. RESULTS AND DISCUSSION 
 

The results of simulation phantom reconstruction with 8-fold acceleration are 

shown in Fig. 5. It can be seen that the small ellipses, as pointed to by the arrows, 

become more resolved by increasing the variance of the added random deviations. This is 

also accompanied by an overall decrease in image blurring. Image reconstructed by 

conventional gridding shows much lower quality, compared to those obtained using non-

linear reconstruction. It reveals radial streaks arising due to radial k-space trajectories 

undersampling. However, these radial streaks disappear gradually with increasing the 

variance in the reconstructed images using non-linear reconstruction. Table 1 

demonstrates the computed entropy of the reconstructed phantom at the different 

variances used. It can be noticed that entropy value decreases with added variance 

increase. Linearly-increasing variance shows entropy with slightly higher values 

compared to constant variance.  

Figures 6 and 7 display cardiac image reconstruction using 8-fold and 10-fold 

accelerations, respectively. It can be seen that the fine image details become clearer with 

added random perturbations compared to using the standard non-random radial trajectory. 

Also, as variance increases, more contrast enhancement is noticed. Even at very high 

undersampling of 10-fold, image reconstruction revealed more improvement. Table 2 

demonstrates the computed entropy of the reconstructed images using non-linear 

reconstruction with random radial perturbations at different variances. It can be seen from 

the table that the entropy decreases with the increase of variance. Images reconstructed 

using conventional gridding method show lower quality compared to non-linear 

reconstruction. 
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Figures 8-10 show the results obtained at selected SNRs of 24, 11, and 6 dB. At 

each noise level, the reconstructed images at different TV weightings are shown. Table 3 

displays the computed entropy for the reconstructed images using various TV weightings 

2
λ  at the different noise levels. The lowest entropy obtained is written in bold letters. It 

can be seen that with increasing noise levels, image reconstruction is enhanced by 

increasing 
2

λ  to some limit where the computed entropy is lowest then the reconstructed 

images become worse and entropy increases again. 

Table 1. Entropy computed for phantom simulation with 8-fold acceleration. 

Variance (normalized squared 

spatial frequency m
-2

/m
-2

) 

Entropy 

0 188.0157 

0.5 179.5162 

1 178.2168 

2 169.2816 

3 164.9984 

5 163.9202 

Linearly increasing in the range 

[0-2] 

175.5284 

 

Linearly increasing in the range 

[0-3] 
172.6915 

Linearly increasing in the range 

[0-5] 

167.0321 

 

 

Table 2. Entropy computed for cardiac image reconstruction  

with 8-fold and 10-fold accelerations. 

Entropy Variance 

(normalized 

squared spatial 

frequency m
-2

/m
-2

) 

8-fold 

acceleration 

10-fold acceleration 

0 184.4865 188.2061 

0.5 179.0080 180.7773 

1 178.4872 180.2663 

2 177.7178 179.9855 

3 177.2462 179.2541 

5 176.8527 179.1331 

8 176.3213 178.1366 
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Table 3. Entropy computed for phantom image reconstruction at  

different noise levels using various TV weights 

  TV weights (
2

λ ) 

  0.01 0.05 0.08 0.1 

24 166.1648 168.6608 171.4463 174.0649 

15 176.4939 172.0308 174.1376 175.6731 

11 186.0366 179.1503 177.9645 179.9497 

8 199.8878 191.1116 189.1271 188.5640 

S
N

R
 (

d
B

) 

6 207.9811 199.3539 195.7312 194.3866 

 

Fig. 5. Phantom image reconstruction with 8-fold acceleration. (a) Original image. 

 

(b) Image reconstructed using conventional gridding. Non-linear conjugate 

gradient reconstruction using (c) non-random radial k- space, random radial k-

space with (d) variance=1, (e) variance=3, (f) variance=5, (g) linearly increasing 

variance in the range [0-2], (h) linearly increasing variance in the range [0-3], (i) 

linearly increasing variance in the range [0-5]. 
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Fig. 6. Enlarged view for the region surrounded by the dashed rectangle showing original 

and reconstructed cardiac images at 8-fold acceleration. The heart muscles as 

pointed to by the arrows become more apparent at higher variances. 

 

 
 

Fig. 7. Enlarged view for the region surrounded by the dashed rectangle showing original 

and reconstructed cardiac images at 10-fold acceleration. 
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Fig. 8. Phantom image reconstruction at SNR = 24 dB. (a) Original image. (b) Noisy 

image. Non-linear conjugate gradient reconstruction using (c)
2

0.01λ = , 

(d)
2

0.05λ = , (e)
2

0.08λ = , (f)
2

0.1λ =  

 

Fig. 9. Phantom image reconstruction at SNR = 11 dB. (a) Original image. (b) Noisy 

image. Non-linear conjugate gradient reconstruction using (c)
2

0.01λ = , 

(d)
2

0.05λ = , (e)
2

0.08λ = , (f)
2

0.1λ =  
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Fig. 10. Phantom image reconstruction at SNR = 6 dB. (a) Original image. (b) Noisy 

image. Non-linear conjugate gradient reconstruction using (c)
2

0.01λ = , 

(d)
2

0.05λ = , (e)
2

0.08λ = , (f)
2

0.1λ =  

 

5. CONCLUSIONS  
 

In this paper, the concept of compressed sensing is applied in MRI image 

reconstruction using randomly perturbed radial k-space trajectories. The effect of 

increasing the variance of the added random components has been investigated for image 

reconstruction at different undersampling factors or accelerations. The obtained results 

have shown that using randomly perturbed radial k-space enables more sparsely sampled 

image reconstruction with higher quality compared to using non-randomly sampled radial 

k-space trajectories. Also, image reconstruction at high undersampling rates is enhanced 

by increasing the variance of added random perturbations. The future research should 

include the investigation of using sparsity transform in non-linear reconstruction of 

radially sampled images. Also, a study of varying the non-linear reconstruction 

parameters may be done for different image models such as piece-wise varying and 

smoothly varying models. 
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