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ABSTRACT 

The elimination of motion artifacts in magnetic resonance imaging is a necessary part of 

its application in many areas. In this work, a general model for the origin of motion 

artifacts is developed and techniques based on the areas of signal processing, phase-space 

analysis and registration are utilized to solve this problem. Invariant tissue feature maps 

are generated from sub-band images that are acquired in small fractions of the imaging 

time. Subsequently, the relative motion across the different sub-bands is analyzed to 

assess the motion parameters of a rigid body motion model. Given the motion parameters, 

a gridding procedure is used to correct and re-sample the acquired k-space thus yielding 

artifact-free images. The theory and implementation algorithms of the new approach are 

presented and the effectiveness of the correction is demonstrated by several examples. 
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1. INTRODUCTION 

Accurate diagnosis in medical procedures has become widely attainable by the advent of 

the different medical imaging modalities. Among those, Magnetic Resonance Imaging 

(MRI) is currently one of the most promising non-invasive diagnostic tools in medicine. 

In addition its ability to produce anatomical images of remarkable detail and contrast, it 

can be used to visualize vascular structures, measure blood flow and perfusion, detect 
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neural activation and identify the metabolic information of different areas in the acquired 

images. Also, its inherently volumetric acquisition allows slices at different angles to be 

computed easily which can be advantageous in many applications.  

One of the major limitations in the present MRI technology is its susceptibility to 

substantial artifacts when motion occurs during the image acquisition time. Even though 

fast acquisition methods, such as single-shot imaging, provide a solution to this problem 

for some applications, these techniques are extremely sensitive to magnetic field 

inhomogeneity effects as compared to regular scanning methods and have a generally low 

signal-to-noise ratio. This makes it difficult to accurately correlate the generated images 

with the physical anatomy because of geometric distortion in addition to more profound 

signal loss within the areas of large susceptibility mismatches. Moreover, when these 

imaging sequences are used in such applications as functional magnetic resonance 

imaging (fMRI), where a set of slices are acquired repeatedly, patient motion persists in 

the form of low detectability of activation sites as a result of misregistration of images 

along the sequences. 

To illustrate the origin of this problem, consider a magnetic resonance experiment in 

which an object of signal magnitude spatial distribution )(xf
r

 is imaged. In this case, the 

collected data take the form, 
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where F(.) is the Fourier transform of f(.) and k is the frequency domain parameter 

(conventionally termed the k-space in MRI). The location in k-space is a function of the 

history of the applied time-varying magnetic field gradient of the form: 
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Here γ is the gyromagnetic ratio, and g(.) is the applied magnetic field gradient as a 

function of time. Hence, by controlling the magnetic field gradient in such a way that the 

k-space region of interest is covered via an arbitrary trajectory during the experiment 



time, an image of )(xf
r

 can be reconstructed from the collected data by an inverse Fourier 

transformation. Due to practical constraints from the MRI machine hardware, signal-to-

noise ratio and image contrast of MRI, the imaging time commonly extends to several 

minutes. As a result, different parts of the collected k-space are acquired at different time 

instants. In the ideal scenario, the imaged object does not change during the period of the 

experiment. The image calculated by inverse Fourier transformation is undistorted. 

However, in clinical MRI setups, this scenario is not usually guaranteed because of 

physiological and occasional voluntary patient motion and can be even impossible to 

realize for moving organs such as the heart and abdominal structures. Consequently, the 

constructed images suffer from varying degrees of distortion depending on the 

characteristics of the imaging sequence and the severity of motion during the scan 

duration. In a mathematical form, the acquired data take the form: 
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Here, ),( kx
rr

ξ  is a general function of the initial position x
r

 and time implicitly expressed in 

k
r

. Hence, the inverse problem here becomes the reconstruction of )(xf
r

 given 

)(kF
r

without prior knowledge of ),( kx
rr

ξ , which is fundamentally different and more 

difficult than the original problem in (1) and severe artifacts usually result as shown in 

Fig. 1. 

 

2. LITERATURE REVIEW 

Several attempts to solve the problem of motion artifact in MRI have been reported in the 

literature. In general, the available techniques can be classified into four main categories. 

The first category attempts to suppress relative patient motion among different k-space 

lines within a given image through breath holding and chest strapping or by using cardiac 

and respiratory gating [1]. This minimizes the physiological component of motion 

between these lines at the expense of increased discomfort to the patient and/or 



significantly longer acquisition times. The second category uses averaging of different 

acquisitions to suppress the motion artifacts as well as to improve the signal-to-noise ratio 

of the final image. This can be done by taking the average of the corresponding k-space 

lines in a number of consecutive image acquisitions or more generally by composing a 

weighted average of the two based on optimizing a certain objective function under given 

constraints [1-2]. The third category applies extra magnetic gradient lobes in the imaging 

sequence to eliminate the effects of motion through signal refocusing assuming a simple 

polynomial model for this motion [3-4]. This technique is used to minimize signal loss 

from moving blood and Cerebrospinal Fluid (CSF) within a given voxel. Finally, the 

fourth category assumes simple forms of rigid body motion including translational and 

rotational components and corrects for them in a post-processing step. The motion in this 

category is estimated using navigator echo (only for translational motion) [5-6], or 

through automated techniques [7-9]. The effect of translational motion can be suppressed 

by post-processing through modifying the phase of the k-space lines according to the a 

priori knowledge about the motion [10].  

 

(a) (b) (c)

 
Fig. 1. Examples of motion artifacts: (a) original image, (b) motion artifact due to 

translational motion, and (c) motion artifact due to rotational motion. 

 

In spite of the success that these methods have met in some applications, they represent 

solutions to only a restricted class of artifacts and cannot generally be applied to more 

complex types of motion such as deformable body motions. Moreover, the convergence 

properties of automatic techniques are not generally guaranteed and therefore a general 

lack of robustness of these methods hindered their clinical use outside research facilities. 



As a result, if the patient moves significantly during the experiment, the motion artifact in 

the resultant images cannot be corrected. As a result, the scan has to be repeated at the 

expense of inefficient use of MRI machines and added discomfort to the patient. 

Moreover, this might not even be possible to tolerate in emergency cases. This also 

complicates the procedure of imaging moving organs such as the heart by adding the 

cardiac/respiratory gating, which again contributes to a significant prolongation of the 

examination time. Therefore, a technique for motion artifact suppression that does not 

impose any constraint on the current procedures while robustly constructing images free 

of motion artifact will have a rather profound impact on the current MRI technology and 

many of its clinical applications. 

In this paper, we introduce a new approach to solve the problem of motion artifacts in 

MRI. In this approach, we show the possibility of estimating relative motion between the 

different sub-bands of the collected k-space by tracking invariant tissue signatures within 

each sub-band. The sub-band images are registered to estimate rigid body motion model 

parameters. Then, the estimated motion model parameters are used in a generalized 

reconstruction method to generate artifact-free images using a gridding procedure. Since 

each k-space sub-band is acquired within a much shorter time than the whole image, the 

motion artifact is substantially reduced. We present the theory, implementation and 

results of applying the new method. This method does not require any external monitoring 

or any modification to the currently available clinical imaging protocols and does not 

involve any iterative reconstruction. It is well-suited for direct clinical application as a 

post-processing step in combination with existing clinical protocols. Moreover, the new 

technique stimulates a new research area to develop new imaging protocols that are 

optimized to take full advantage of it in order to reduce imaging time, allow more 

freedom to the patient inside the magnet and/or allow more flexibility for intra-operative 

applications. 

 

 



3. THEORY 

3.1. Generation of Invariant Feature Maps 

Consider the process of imaging a 1-D object f(x) using MRI without loss of generality. 

Under the assumption of piecewise constant signal magnitude within individual pixels, it 

is mathematically possible to express any 1-D magnitude distribution in terms of a finite 

summation of shifted unit step functions of different amplitudes in the form:  
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Hence, when this model is differentiated, the result corresponds to a similar summation of 

a number of shifted delta-functions. These delta-functions represent the edges within the 

image and their distribution is a characteristic feature or a signature of each tissue type. 

Each of these delta functions has a frequency domain representation that is equal to a 

frequency-invariant magnitude multiplied by a linear phase. Hence, windowed versions of 

the k-space at different locations contain similar amounts of information about those 

edges. In other words, given their accurate description of the underlying structures, these 

edges can be considered as invariant signatures of the tissue. That is, they can be verified 

from any finite-size window in the k-space. 

In MRI, images/volumes are constructed by collecting their k-space representations. The 

motion artifacts arise from the fact that different k-space points are collected at different 

instances of time. The relative motion is likely to occur if the data acquisition period is 

long (i.e., more than a few seconds). In order to derive the tissue signature from the 

collected k-space data corresponding to the original image, a differentiation step must be 

performed. This is achieved by multiplying the k-space by a linear function in k, the k-

space frequency variable, from the Fourier Differentiation theorem. That is, 
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This is a motion-safe operation since it does not mix different points in the k-space 

together to derive the result. Consequently, each point in the k-space of the differentiated 

image maintains a unique acquisition time exactly like the original k-space. 

 

3.2. Phase Space Decomposition 

Given the nature of the data acquisition in MRI, it is reasonable to assume that the relative 

motion within any localized collection of k-space points is negligible. For example, if we 

sample an N×N k-space on a rectangular grid in a row-by-row fashion, it is possible to 

assume that the relative motion within any consecutive M < N rows is negligible (similar 

examples can be applied to spiral imaging or any other general non-rectangular grid 

sampling with a more general form). In this case, the collected k-space is divided into a 

number of sub-bands, each representing a snap-shot of the imaged object within the 

acquisition period [7]. 

Several methods can be used to perform this k-space division or what we call the phase 

space analysis. As an example, consider the one-dimensional case without loss of 

generality. Any one dimensional signal can be divided into independent segments by 

windowing. That is, multiplying the signal with shifted versions of a finite width window 

such that the sum of all shifted windows adds up to unity everywhere within the signal 

support. In our application, these windows are required to be of much narrower width 

compared to the signal length and they are allowed to overlap. The straightforward choice 

of such windows corresponds to a set of non-overlapping gate functions that collectively 

cover the entire length of the signal. This corresponds to the example mentioned above in 

the case of a rectangular sampling grid. For a 1-D function F(k) without loss of generality, 

the phase-space decomposition takes the form: 
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where (.)∏  is the gate function, ki is the center of sub-band i, ∆k is the uniform width of 

the sub-bands and L is the number of sub-bands. Consequently, the sub-band images fi(x) 

obtained as the inverse Fourier transformations of Fi(k) can be expressed as: 
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That is, the sum of delta-functions in (5) is converted to a sum of Sinc functions centered 

and peaking at exactly the same locations as the original delta-functions. An illustration of 

the sub-band images derived from this decomposition is shown in Fig. 2. 

 

Fig. 2. Example of sub-band images exhibiting different degrees of motion. 

 

3.3. Motion Estimation Using Sub-band Image Registration 

Since moving structures tend to have well-defined boundaries, their outlines persist in the 

invariant feature maps. Hence, by tracking those structures, it is possible to follow and 

estimate the motion across different sub-band images. In particular, image registration is 

applied between consequent sub-band images to yield the rigid-body motion model 

parameters. Given the known high computational complexity associated with 

conventional 2D correlation-based registration techniques (since they involve whole 

image rotation and multiplication in every step), we present a new approach to this 



registration problem that enables fast and accurate implementation for practical use. 

Given the set of sub-band images to be registered, we start by aligning the centers of 

gravity of all images at the center of the image matrix as with other registration methods. 

Then, the registration procedure needs to compute the rotation angle around this center to 

fully describe the transformation matrix between the two images. Unlike previous 

methods that rely on rotating the whole image and optimizing a matching measure, the 

new method uses a different approach. A hypothetical circular perimeter around the 

object is considered such that its diameter is equal to the maximum of the two image 

dimensions (if rectangular slices are considered in the general case). The sum of all 

intensity values on each diameter of this circle at uniform angular steps within the range 

of practically realizable angles from -φ to φ (where φ is usually less than 30° under 

practical head coils in the MRI scanner) are computed. These values represent a 

projection from the two dimensional image to a one-dimensional signal given by the sum 

values indexed by the angle at which they were computed. Assuming that the imaged 

object is contained within this circle throughout the experiment and that this object does 

not exhibit circular symmetry, the detection of the rotational motion becomes a simple 

registration of two signals instead of two images in the case of in-plane patient motion. In 

order to avoid artifacts from partial volume effects, the diameter values to be used are 

computed using bilinear interpolation from their accurate floating-point coordinates. This 

helps eliminate this known source of bias especially for steep angles. The new technique 

presents a fast registration procedure with a computational complexity of O(L . N
2
) where 

L is the number of sub-band images and N is the maximum dimension of the image. The 

accuracy of the new method can be shown to be better than conventional methods because 

the partial volume artifacts resulting from having to rotate one image repeatedly to align it 

to another is eliminated. The developed method is illustrated in Fig. 3 where rotational 

motion estimation is simplified by computing diameter sum onto a circular perimeter 

centered at object center of gravity (left). The sum vs. angle curves are obtained and shift 

is used to estimate rotation by direct one-dimensional correlation (right). 



 

Fig. 3. Motion estimation technique based on aligning diameter sum curves. 

 

3.4. Motion Corrected Reconstruction 

With the complexity of the motion model considered in this work, the reconstruction of 

corrected images by motion compensation is not generally an easy problem. For example, 

rotational motion causes sampling non-uniformities that may be severe in some cases. 

Therefore, a more general form of reconstruction is used to take this problem into 

consideration. In particular, given the estimated motion model parameters, each k-space 

point in each sub-band image is associated with a certain location in the k-space of the 

corrected image and need not fall on a rectangular grid. Therefore, a gridding procedure 

similar to the one used for spiral imaging reconstruction is used to obtain a uniformly 

sampled k-space of the corrected image [11]. In this procedure, each point is convolved 

with a Kaiser-Bessel window of finite size and the results are added together and re-

sampled on a rectangular grid. To compensate for the generally non-uniform sampling 

density, each k-space point is normalized by dividing by the amount of energy 

accumulated within each k-space point from different windows. Alternatively, optimal 

reconstruction methods based on sparse matrix solution to trade-off reconstruction speed 

and accuracy can be used [12-13]. Subsequently, the corrected image is computed by an 
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inverse Fourier transformation operation. A block diagram of the proposed method is 

shown in Fig. 4. 

 

Fig. 4. Block diagram of the proposed motion estimation method. 

 

4. EXPERIMENTAL VERIFICATION 

The proposed technique was implemented to correct computer simulated motion artifacts 

of a Shepp-Logan phantom [14] and real human brain images that include different and 

random affine transformations. The motion was assumed to be negligible for each 8 or 16 

consecutive rows of the 256×256 k-space, with the usual MRI convention of rows along 

the read-out direction and columns along the phase encoding direction. This amounts to 

partitioning the k-space into 32 or 16 sub-band images respectively. The distorted images 

were differentiated along the phase encoding direction by multiplying the k-space by jky 

prior to the decomposition into sub-band images. The different sub-band images are 

registered to estimate the parameters of the rigid body transformation relating each 

consecutive pair of sub-band images. Then, a gridding procedure was used to compute a 

uniformly sampled k-space, which was then used to reconstruct the corrected image by 

inverse Fourier transformation. 

Segmented Image Acquisition 

Decomposition into Sub-band Images 

Reconstruction from Nonuniform Samples 

Motion Model Estimation 

Corrected Image 



 

5. RESULTS AND DISCUSSION 

The results of applying the new technique are shown in Figs. 5-6. In Fig. 5, examples of 

the estimated translation and rotation are compared to their actual values used in the 

computer simulation to verify the developed theory.  As can be seen, the estimated values 

track closely the true values thus indicating the validity of the proposed model. In Fig. 6, 

several examples of applying the new method to correct images of different 

characteristics including human brain images of different contrasts are illustrated. The 

quality of the correction is visually evident especially near the areas indicated by the 

arrows. Generally speaking, the ghosting artifacts were almost completely removed and 

the ringing artifacts became much less prominent compared to the original images before 

the correction procedure.  

It should be noted that the phase-space decomposition used here was chosen in such a 

way because of the spatial invariance of the motion model assumed. In particular, the 

spatial localization properties of this decomposition were not useful to exploit. However, 

if a more general spatially variant motion model is considered, the proposed model can be 

directly extended to include space/k-space localization where the motion parameters from 

different spatial domain windows are tracked independently and a motion map at any 

instant can be computed. This model can be rather useful for such applications as heart 

imaging where the different chambers may undergo different motions simultaneously, and 

in abdominal imaging where the different structures undergo different displacements with 

respiration.  

It should be noted that the computational complexity of the proposed technique is an 

order of magnitude lower than the leading post-processing method in the literature [9]. 

Given that this reduction was obtained by taking advantage of the nature of practical 

segmented k-space acquisition, the performance obtained from both methods was 

identical. This is expected given that patient motion within each segment (~10 ms) is 

negligible in practice.   
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Fig. 5. Example motion estimation results comparing estimated vs. actual parameters. 

 

6. CONCLUSIONS 

The theory and implementation algorithms for a new method for motion artifact reduction 

in magnetic resonance imaging were developed. By tracking the motion between different 

sub-band images, fast estimation of the rigid-body motion during the data acquisition 

period can be performed without external monitoring. The estimated motion model is 

subsequently used in a generalized reconstruction procedure based on gridding to yield 

the corrected image. The results of applying the new technique support the theory and 
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demonstrate the potential of the new technique to alleviate one of the fundamental 

problems in the present MRI which is motion sensitivity.  

 

 

Fig. 6. The distorted images (left) and the corrected images using the new method (right). 
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