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1.  ABSTRACT

The estimation of diffusion tensors in diffusion tensor imaging (DTI) is based on the assumption that each voxel is homogeneous
and can be represented by a single tensor. As a result, estimation errors arise particularly in voxels with partial voluming of white
matter or gray matter with cerebrospinal fluid (CSF) and voxels where fibers cross. Several authors have explored the possibility
of solving for multiple tensors. Several authors analyzed the problem from the point of view of the number of unknowns and
concluded that the solution is rather difficult due to the large number of unknowns and the nonlinearity of the equations.
However, their approach was only helpful in eliminating some of the sources of artifacts in the DTI data but offered only a
qualitative description of the model components. We implemented three strategies gradient, Differentiation and exhaustive
algorithms to solve and compare between their estimations at various conditions of signal to noise ratios (SNR).

2. INTRODUCTION

Diffusion tensor imaging (DTI) is a non-invasive method of characterizing tissue micro-structure. Diffusion imaging
attempts to characterize the manner by which the water molecules within a particular location move within a given
amount of time. Using a simple pulse gradient spin echo (PGSE) imaging sequence, it is possible to obtain a change
of the MR signal that is related to the diffusivity of water in a certain direction’. The advantage of this modality lies
in the fact that the changes in water diffusion, produced by alterations in brain biochemistry, can be observed on
diffusion welghted (DW) images long before the effects of ischemic injury can be seen on conventional T1, or T2
weighted images®. Measurement of the diffusion tensor (D) within a voxel enables the mobility of water to be
charactenzed along orthotropic axes, allows a macroscopic voxel-averaged description of fiber structure
orientation® and fully quantitative evaluation of the microstructural features of healthy and diseased tissue’. D is
estimated using a set of diffusion-weighted images®. The basic techniques in diffusion tensor xmagmg attempt to
characterize the 3-D diffusion phenomena in terms of a 3-D Gaussian probability distribution®. Therefore, such
representation is sufficient in terms of a 3x3 symmetnc tensor, or the so-called “cigar-shaped” diffusion tensor
representation. This tensor is usually computed using a 3-D sampling of the b-space of measurement in the
diffusion-weighted experiment’. While requiring only six equations to completely determine the diffusion tensor,
more measurements are usually obtained and a least-squares solution is calculated for the tensor.

Recent studies revealed several deviations from this simplified scenario, because the tensor model is incapable,
however, of resolving multiple fiber orientations within an individual voxel. This shortcoming of the tensor model
stems from the fact that the tensor possesses only a single orientational maximum, i.e., the major eigenvalue of the
diffusion tensor. At the millimeter-scale resolution typical of DTI, the volume of cerebral white matter containing
such intravoxel orientational heterogeneity (IVOH) may be considerable given the widespread divergence and
convergence of fascicles. The abundance of IVOH at the millimeter scale can be further appreciated by considering
the ubiquity of oblate “pancake-shaped” diffusion tensors in DTI, a hypothesized indicator of IVOH. Given the
obstacle that IVOH (particularly fiber crossing) poses to white matter tractography algorithms, we sought to
determine whether high angular resolution, high b-value diffusion gradient sampling could resolve such intravoxel
heterogenelty
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Several authors reported this non-mono-exponential behavior for the diffusion-induced attenuation in brain tissue in
water and NAA signals. Their study was based on a 1-D diffusion experiment and the results were fitted to bi- or tri-
exponential functions. They indicated that high b values reveal more complex behavior and therefore their fit
depended on the value of b used in the measurement.

Basser et al.” discussed the possibility of mixture modeling of diffusion. Even though they indicated that this would
present a more complete representation of the process, they argued that there too many issues that need to be
resolved before such modeling can be performed in practice. In particular, their hypothetical discussion indicated
that such modeling would require a large amount of data to enable the estimation of model parameters and involve
the computation of too many parameters. They suggested also that several problems had to be addressed in such
experiments that included optimization of diffusion gradient directions and model order selection. They concluded
that this area had many aspects that were yet tc be investigated. Hsu et al.® proposed a two-compartment model for
the diffusion in fibers of the myocardium. They reported two fast and slow components in their study while
assuming a slow-exchange process between the two. Inglis et al.’ reported biexponential diffusion tensor
measurements. TheP/ hypothesized that these components may represent the intra- and extra-cellular components in
tissues. Clark et al.'’ reported variations of the apparent diffusion coefficient with the value of diffusion time. Their
hypothesis was that such variations are important indicators of restricted flow, which present a potentially large
diagnostic value. In a later study by the same group, Clark ef al."" reported results of a two-tensor model for
diffusion in the human brain. They measured the parameters of a mixture model composed of two weighted tensors.
Their results indicated the presence of fast and slow diffusion components, and that each can be modeled by a
unique tensor. They indicated that the use of high b value was essential to reveal the slow component of diffusion.

Frank'? reported a method for identifying the anisotropy in high angular resolution diffusion-weighted (HARD)
imaging data without computing the actual tensor. Another study by the same author'® developed a methodology for
characterizing HARD data by decomposition into spherical harmonics. This approach allowed several modes of
diffusion to be decomposed into separate channels that are different from those for eddy current artifacts. He studied
the case of two fibers under different conditions. The proposed an extension of his method to characterize multiple
fiber scenarios. Given the complexity of such situations and the limitations on the spherical harmonics definitions in
terms of rotations only, this might not be practical in many cases. Wang Zhan et al. % introduce a study to develop an
alternative based on getting a circular spectzal decomposition technique. The basic premise of this method is to
determine the ADC values on the unit circle spanned by the major and median eigenvectors of the diffusion tensor,
and then apply a 1D Fourier-transform onto this circle They assumed that the effective diffusion anisotropy of a
single fiber typically exhibits a cylindrical symmetry about its longitudinal axis, and therefore the scalar ADC
distribution of a single-fiber system The plane embedding this sampling circle should include the fiber’s longitudinal
axis that corresponds to the major eigenvector. The circular ADC distribution of a single fiber is comprised of a
constant offset equal to the average of the major and median eigenvalues, plus a sinusoid function with an angular
frequency of 2. The partial volume effects were been taken into account if two fibers occupy the same voxel. Under
the assumption that there is no exchange between the two diffusion compartments and there is equal signal
contribution from the two fibers. Tuch ef al.® noted that the DTI measurements could only resolve the imaging
situations where the white matter fibers are strongly aligned. They presented evidence from high angular resolution
diffusion measurements to show that the diffusion process can be modeled as independent mixture of ideal diffusion
processes. They presented results for the case of a mixture of two diffusion tensors. The methodology used to obtain
the mixture parameters was based on minimizing an error function using gradient descent technique. Kadah ef al”
utilize a multi-compartmental model to represent the physical make-up of imaging pixels. Based on an analytical
expression of apparent diffusion tensor, the mixture model parameters are calculated using global nonlinear least
squares methods. Given the characteristics of axonal membranes, the diffusion of water inside each axon is preferred
along the direction of the axon than across it.

Tournier et al.'® have proposed a technique that is zble to estimate the distribution of fiber orientations directly from
the diffusion-weighted data, using the concept of spherical deconvolution. This technique requires a response
function and associated low-pass filter (to mitigate the effects of noise). The optimal shape for these functions will in
general depend on factors such as the SNR, the number of diffusion-encoding directions used, the b-value, and
physiological factors such as the level of maturation of the brain. Their objective was estimating and optimizing
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these functions, using a minimum entropy concept, to cnsure that the results provided by the technique are robust
and reproducible .In addition, they proposed a normalized version of the entropy as a natural alternative measure of
anisotropy for non-tensor derived fiber orientation distributions. Another method was proposed by the same group"’
to estimate the fiber orientation distribution (FOD) directly from high angular resolution diffusion-weighted data,
using the concept of spherical deconvolution. This technique was used to estimate the FOD adequately even in
regions containing multiple fiber populations, where diffusion tensor based techniques are known to be deficient,
They apply the bootstrap concept to the spherical deconvolution method to assess the precision of the various
estimated fiber orientations. The spherical deconvolution technique estimates the FOD by assuming a response
Junction (the diffusion profile for a typical fiber bundle) and deconvolving it from the diffusion-weighted signal
profile over spherical coordinates. The response function and filter parameters used for the spherical deconvolution
were estimated from the data themselves using a minimum entropy principle.

Observing that the diffusion along nerve fibers tend to be significantly larger that that in other directions (Basser et
al.'®), track fiber directions were computed from diffusion tensor data. The basic idea is to eigen-decompose the
diffusion tensor and use the eigenvector corresponding to the largest eigenvalue as the most likely fiber direction in
a given pixel. This simplistic representation of the problem is often challenged by real data where fiber direction
heterogeneity is common. As a result, several studies indicated practical problems with this approach (cf. Mori and
van Zijl"®). In general, the heterogeneity results in situations where the direction of the fiber cannot be determined.
For example, when the diffusion ellipsoid takes the form of a pancake shape rather than a cigar shape. In such cases,
the tracking algorithms terminate at these points resulting in undesired disconnections in the resulting fiber tracks.
Poupon ef al.?° reported problems with the tracking results when crossing fibers are encountered. They proposed a
methodology whereby some a priori knowledge about the fiber tracks are embedded in the fiber tracking procedure
to regularize the calculated fiber directions. Similar regularization was proposed by Bammer et al.?! where they used
a continuous representation based on B-spline modeling,

After the diffusion tensor principal directions are determined, the problem of finding the fiber paths from the
diffusion vector field (or the so called tractography problem) is a challenging one. Several techniques were proposed
to do that based on line propagation or energy minimization implemented in different manners to try to overcome
the limitations posed by noise, limited resolution and direction heterogeneity of fibers within the resolution cell (cf.
Mori and van Zijl"®, Lori et al.%). The general limitations of the available techniques are the speed of axonal
reconstruction, robustness in the presence of anisotropy in the diffusion tensor (e.g., the pancake shaped tensor
case), as well as the difficulty of validating the outcome and the different constraints used in this processing. None
of the available tracking methods provided a vision for how tracking should be done in case axonal intersections are
resolved within resolution cells. By comparison to the conventional situations, this problem seems far more
challenging since it involves adding another dimension to the original formulation representing axonal anisotropy.

The goal of this work is to simulate the three methodologies Tuch et al.®, Differentiation and Kadah et al."” to solve
multi-compartmental model to represent the physical make-up of imaging pixels. Based on an analytical expression
of apparent diffusion tensor, the mixture model parameters are calculated at different Signal to noise Ratios and
compared with each other.

2. METHODS

2.1. Problem formulation
Assuming Gaussian diffusion, the diffusion signal from a single diffusion compartment is given by:

£(g,) = exp(-q. Dq,7), (1]
where E(qy) is the normalized diffusion signal magnitude for the diffusion gradient wave-vector q,=ydg, ¥ is the
gyromagnetic ratio, 8 is the diffusion gradient duration. g, is the Ath diffusion gradient, 1 is the effective diffusion

time, and D is the apparent diffusion tensor . To model multiple compartments, if we assume that: the inhomogeneity
consists of a discrete number of homogeneous regions;, the regions are in slow exchange, i.e., separated by a
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distance much greater than the diffusion mixing length; and the diffusion within each region is Gaussian, i.e., fully
described by a tensor, then we can express the diffusion function as a finite mixture of Gaussian

T
E(q,) =Y. [ exp(-q' Dq,7), 2]
Consider the problem of estimating the composition of a voxel with two distinct components (without loss of

generality). In this case, the number of unknowns to fully describe the model is 13 (2 symmetric tensors and their
partial volume ratios that add to one).

E(q;) = fyexp(~¢i" Dig,7) + (1~ f,) exp(=4," D,4,7). Bl
Unlike the problem of estimating a single tensor, the equations here are nonlinear. The attenuation equation for each
tensor resembles a sample of a 3D Gaussian function with a covariance matrix equal to the diffusion tensor
evaluated at a point determined by the diffusion gradient direction at a radius equal to the square root of the b-value.
Hence, the problem of estimating multiple tenscrs becomes one of 3D Gaussian mixture modeling from samples
determined by the diffusion gradient vector sampling. This estimation problem is nonlinear and therefore only
iterative estimation methods have been proposed in the literature. Given the convergence issues associated with such
methods and their generally high computational burden, another more stable strategy is needed to solve this problem
in practice. Note that for any given parameter estimation accuracy, there exists a finite number of possible solution
that are determined by the a priori information about parameter ranges and the desired accuracy. Hence, the problem
of finding the solution to this problem amounts to a combinatorial optimization problem. This means that a globally
optimal solution can be found by exhaustive search or one of the more efficient random search strategies such as
simulated annealing or genetic algorithms. Nevertheless, the computational effort involved in such techniques is
prohibitive.

We tried to estimate a model of two tensors using the three introduced methods. The first was presented by Tuch et

al.® who were able to detect diffusion signals with multiple discrete maxima/ minima as a function of gradient
orientation, indicating the presence of multiple underlying fiber populations. The second is based on the
differentiation of the signal with respect to the b values .And the third was presented by Kadah et al.*® who project
the problem into a number of 1D problems and then synthesizes the solution to the original problem from the 1D
solutions, their problem can be simplified even further by utilizing a sampling strategy in such a way to convert the
problem into the sum of two exponentials.

2.2. The gradient algorithm('

They use the traditional method for solving Gaussian mixture problems of this type is the expectation maximization
(EM) algorithm. However, they needed to solve the mixture problem with physiological constraints on the
eigenvalues. Given the inability of the EM algorithm to handle such hard constraints, a gradient descent scheme was
employed with multiple restarts (six restarts maximum) to solve the mixture model by solving the eigenvectors and
volume fractions that give the lowest error between the predicted and observed diffusion .The eigenvalues of the
individual tensors can be specified a priori or restricted to a particular range in order to prevent the algorithm from
over fitting with unphysiological eigenvalues. Multiple restarts were employed to prevent the algorithm from
settling on local minima. Approximately half of the iterations found the global minimum. The eigenvalues were
specified at (1, Ay, A3) =(1.5, 0.4, 0.4) me/ms based on reported normal values. The eigenvalues were preset in
order to prevent the individual tensor fits from assuming oblate forms.

The error function to be minimized 1s

-

x= Y (E@)-E@) =Y T AE@)-E@,) | - o

&

where £ is the predicted diffusion signal based on the multi tensor model, E L(gw)is the predicted diffusion signal
from compartment j (Eq. [1]), and £ is the observed diffusion signal. To ensure that the volume fractions are
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properly bounded (fi € [0,1]) and normalized (Z f =1)the volume fractions are calculated through the soft-max
i

transform.

Y expn,’
The tensors Dj are parameterized in terms of the Euler angles a;
The gradient with respect to the Euler angles is

OR; R
> i——Z(E(qk) E@ /(409 (G208 + R, Ao

where Ry is the column matrix of eigenvectors and A ) is the dlagonal matrix of eigenvalues for tensor Dj.

T

)a, (6]

The gradient with respect to the volume fraction parameters is

ox _ e"p”j 2Z":[(E(q,‘)-E(q,,))Z(I—6,-,-)(133(qk)-E(qk))wpﬂil. (7

on, (O expm,)

where 8% =1 ifi =j,and 0 ifi#].

2.3. The Differentiation algorithm

We developed this method after the observing that the measurements in diffusion tensor imaging are usually
obtained for uniformly distributed values of b. Recalling that the Attenuation values are direct functions of the
square root of b, the above formula can be simplified for this case such that,

E@®) = fiexp(-b/7))+ (- f)exp(-b/7,), (8]
Where 7, = ”(%TDx'Qk)
Hence, our problem is now to estimate exponentially decaying components, which is a rather common problem in

many fields. In particular, we can describe the system described by E(b) using a homogeneous second-order
differential equation in the form,

E'()+a,E'(B)+E®)=0, [9]
Where

E®) = Leoxp(-b /5y~ S5 e 12,y E"®) = Tt expb i) + E= I expb /2. 10)
7, T, 11 7,
Since the values of E(b) are available for several values of b and that its first and second order derivative can be
obtained numerically from these values using the forward or central numerical differentiation formulas or using the
frequency domain method using the differentiation property of the Fourier transform. In our simulations, we used
the central numerical differentiation we can formulate a linear system to estimate the coefficients of the differential
equation as,

E'(b) E(b) E"(b,)

E'(b,) E(b,) {al]z_ E"(b,) (1]
: : a, P

E'(b,) E(b,) E"(b,)

Once the coefficients of the equations are computed, the second-degree polynomial characteristic equation is solved
to obtain the roots corresponding to the exponential factors. Then, it is straight forward to compute the magnitudes
from solving the linear equations obtained by substituting the estimated variances. Besides the important
simplification in separating between the problems of estimating the exponential factors and the magnitudes.
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2.4. The Exhaustive algorithm **

Instead of attempting the solution in the 14 D space of this problem, this method projects the problem into a number
of 1D problems and then synthesizes the solution to the original problem from the 1D solutions. .for a projection
direction given by angles 8 and ¢ with the x and y axes respectively and where D; is the diffusion tensor for one of
the components. Moreover, the problem can be simplified even further by utilizing a sampling strategy in such a
way to convert the problem into the sum of two exponentials. This problem is solved using a robust strategy in
which the exponential decay constants are estimated using exhaustive search and the magnitude functions are
estimated using linear system solution based on the choice of the decay constants. Given that the range of decay
constants for human applications is rather limited, this strategy has superior speed to other strategies based on
nonlinear least squares methods while offering the global solution to the problem. Once the 1D model is estimated,
it can be used to provide an equation for each diffusion tensor separately as identified by its partial volume ratio.
After sufficient equations are collected, the equations for each tensor are solved independently to obtain the tensor.
In case of a 3-tensor model, the same procedure is followed at an additional computational cost that varies linearly
with the number of tensors. The computed tensors are used to compute a new estimate of the component partial
volume ratios based on the whole data set rather than each projection separately. Given that these ratios are the most
affected by noise, the estimation process is started again with this new estimate plugged in for all projections and a
new solution is estimated. This process is repeated until the partial volume ratio stabilizes.

2.5. Parameters Estimations

The influence of noise on the estimates of the two tensor model was calculated using the three precedent defined
algorithms was studied by Monte Carlo computer simulation, written using Matlab. We choose to made simulations
on two compartments of white matter (2 fibers), because it gives most error than if we have different compartments
as gray matter and cerebro-spinal fluid.

A simulation started by assigning the eigenvalues of the two Fibers. Then try to estimate them with the changment
of the separation Angle between the two fibers. For each degree of Signal to noise ratio the following simulation
procedures have been performed. The diffusion tensor in the principal coordinate was defined by assigning the
eigenvalues to the diagonal elements of a 3x3 diagonal matrix (Ddig). Its representation, D, in the laboratory frame
was obtained by applying the rotation matrix associated with the orientation to the diagonal matrix [4].

The six ADC values along the directions defined by the diffusion tensor imaging scheme were determined from the
tensor components, D;, in the laboratory frame and the diffusion weighted signal intensities, So and Sb, in 6
noncollinear magnetic field gradient directions ((0.910,0.416,0.000), (0.000,0.910,0.416), (0.416,0.000,0.916),
(0.916,-0.416,0.000), (0.000,0.916,-0.416), (-0.416,0.000,0.916)) and their corres-ponding to b values are
(250,500,750,1000,1250,1500,1750,2000 s/mm?*) were computed from the known ADC and b values with the

" changment of the separation angle between the 2 fibers [4]. White Gaussian distributed random noise (WGN (0,1))
was added to the ideal signal , but with modifications in the density to give the required value of the signal to noise
ratio (SNR). The previous was made SNR used were 25, 35 and 45dB and no noise added signal Noise perturbed
signal intensities were used to recalculate the noise affected ADC values [4]. The diffusion tensor components, D,
and the Mean square attenuation Error were recalculated. At each SNR level 10000 replicate simulations were
performed. The same was repeated with changing the gradient directions to 12, 30 and 90 gradient directions®.
Experimental results were also obtained from data sets collected from a normal human volunteer on a 3T Siemens
Trio system using a double spin-echo sequence with 8 b-values spanning the range [0,1500] at 30 directions. Both
scans were repeated 4 times to investigate the effect of SNR. The total scan time for the 12-direction scan was
approximately 30 minutes for the 30-direction scan. The fractional anisotropy' is computed for both components of
the 2-tensor model to illustrate the convergence in 30-direction acquisitions.
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4. RESULTS AND DISCUSSION

Figures 1, 2, 3 and 4 shows the changment in the estimation error using the gradient algorithm. At no noise, as the
number of gradients increase, the error in estimation increases. The error in Estimation is very high that decreases
very slowly with the increase of the SNR. It is also clear that there no deviation in Estimates at low and high SNR.

Figures 5, 6, 7 and 8 shows the changment in the estimation error using the Differentiation algorithm. At no noise,
as the number of gradients increase, the error in estimation increases. The error in Estimation and the standard
deviation decreases with the increase of the SNR. It is also clear that instability in Estimation occurs at 6 and 12
directions, although they have better estimation than 30 and 90 gradient at no noise.

So, there must be some constraints in the starting point entering the conjugate gradient descent part to search minima
to improve the algorithm.

Figures 9, 10, 11 and 12 shows the changment in the estimation error using the Exhaustive algorithm. At no noise,
as the number of gradients increase, the error in estimation increases. The error in Estimation and the standard
deviation decreases with the increase of the SNR. For the Exhaustive Algorithm, In general, the 6 directions gives
the least mean square error then the 12 gradient directions, we can direct the cause to the condition number of the
gradient which were 1.00 for the 6 directions, 1.00 for 12 directions, 1.02 for 30 directions and 1.09 for 90
directions. Whish didn’t appear in both Tuch et al. and differentiation algorithms.

As a general result for gradient algorithm, the error decreases with the increase of the separation angle, but for the

differentiation and Exhaustive the error increases with the increasing of the separation angle. The error in

Exhaustive algorithm is better than both differentiation and gradient algorithms.

For the differentiation method, the instability appears with the decrease of the SNR which isn’t found in both the

gradient descent and the Exhaustive because the computations in the differentiation are more than that of the
. Exhaustive method. We can say the same for the gradient algorithm. And generally, as increasing the number of

gradient directions, the error in estimation decreases in the three algorithms.

5. CONCLUSIONS

We developed Two new methods for multi-tensor modeling the differentiation and the exhaustive algorithms, then
we compared them with the gradient descent algorithm developed by Tuch [6], and finally, we used Monte Carlo
simulations to estimate the effect of noise o their estimation.

For the gradient algorithm, the signal must be with more than 45 dB and the number of gradients be at least 12
directions to get least error and decrease the standard deviation in Tensors estimation. For the differentiation
algorithm, The signal must be with more than 45 dB and the number of gradients be at least 30 directions to get least
error and decrease the standard deviation in Tensors estimation And for the Exhaustive method” to multiple
exponential for the is straightforward, the computational complexity of the developed method can be shown to
depend linearly on the number of components. The signal must be with at least 45 dB and the number of gradients is
12 directions to get least error and decrease the standard deviation in Tensors estimation. When extending the
Gradient Algorithm to find more than two fibers, instability was found in the model simulations but the extension of
the differentiation method the root-finding task of the third-degree polynomial is not as simple as with the second-
degree case. The extension for the exhaustive algorithm, the computation time is linear with the number of
components. And no need for priori information for the calculations of tensors for both differentiation and
Exhaustive algorithms. The differentiation method can be used to calculate the tensors faster, but the Exhaustive
Algorithm is used to calculate the tensors more accurate fibers detection.
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Figure 1: Estimated Attenuation Error in case of 6 gradient directions using the gradient algorithm at different SNR
((a) no noise, (b) 25dB, (c) 35dB,(d) 45dB).
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Figure 2: Estimated Attenuation Error in case of 12 gradient directions using the gradient algorithm at different SNR
((a) no noise, (b)25dB, (¢) 35dB,(d) 45dB).
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Figure 3: Estimated Attenuation Error in case of 30 gradient directions using the gradient algorithm at different SNR
((a) no noise, (b)25dB, (c) 35dB,(d) 45dB).
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Figure 4: Estimated Attenuation Error in case of 90 gradient directions using the gradient algorithm at different SNR
((a) no noise, (b)25dB, (c) 35dB.(d) 45dB).
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Figure 5: Estimated Attenuation Error in case of 6 gradient directions using the differentiation method at different SNR
((a) no noise, (b)25dB, (c) 35dB,(d) 45dB).
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Figure 6: Estimated Attenuation Error in case of 12 gradient directions using the differentiation method at different SNR
((a) no noise, (b)25dB, (¢) 35dB,(d) 45dB).
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Figure 7: Estimated Attenuation Error in case of 30 gradient directions using the differentiation method at different SNR

((a) no noise, (b)25dB, (c) 35dB,(d) 45dB).
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Figure 8: Estimated Attenuation Error in case of 90 gradient directions using the differentiation method at different SNR
((a) no noise, (b)25dB, (c) 35dB,(d) 45dB).
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Figure 9: Estimated Attenuation Error in case of 6 gradient directions using the Exhaustive. Algorithm at different SNR
((a) no noise, (b)25dB, (c) 35dB,(d) 45dB).
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Figure 10: Estimated Attenuation Error in case of 12 gradient directions using the Exhaustive Algorithm at different SNR
((a) no noise, (b)25dB, (c) 35dB,(d) 45dB).
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Figure 11: Estimated Attenuation Error in case of 30 gradient directions using the Exhaustive Algorithm at different SNR
((a) no noise, (b)25dB, (¢) 35dB,(d) 45dB).
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Figure 12: Estimated Attenuation Error in case of 90 gradient directions using the Exhaustive Algorithm at different SNR
((a) no noise, (b)25dB. (¢) 35dB.(d) 45dB).
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Figure 13: Estimated Tensors for the slice (a), Single Tensor Estimation (b),
Two tensor Estimation using Gradient descent Algorithm (c), Differentiation
Algorithm (d), Exhaustive Algorithm (e).



