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Abstract 

 
        Understanding gene interactions in complex living systems can be seen as the ultimate goal of the 

systems biology revolution. Hence, to fully understand disease ontology and to reduce the cost of drug 

development, gene regulatory networks (GRN) have to be constructed. During the last decade, many 

GRN inference algorithms like ‘Bayesian network’ that are based on genome-wide data have been 

developed to unravel the complexity of gene regulation.  Recently, many of structure learning 

algorithms were used to learn Bayesian network that have shown promise in gene
 
regulatory network 

reconstruction. In this paper we apply different structure learning algorithms on actual microarray data 

to obtain a better understanding of their relative strengths and weaknesses on the system biology 

community and we evaluate their outputs from different perspectives. 

  
 

1. Introduction 

 
         As basic building blocks of life, genes, as well as their products

 
(proteins), do not work 

independently. Instead, in order for
 
a cell to function properly, they interact with each other and

 
form a 

complicated network. Gene networks represent the relationship
 
between sets of genes that coordinate to 

achieve different tasks. 

With the advent of high-throughput microarray technologies,
 
mRNA expression levels of tens of 

thousands of genes can now
 
be measured simultaneously. Construction of gene networks from

 
these 

experimental data will greatly facilitate cellular functional
 
dissection at the molecular level. 

a variety of computational methods have been considered
 
for reconstructing gene networks from 

observational gene expression
 
data including, for example, linear models

 
[1] and Boolean network 

models [2] , Bayesian network
 
(BN) [3]. Bayesian network methods have shown promise in gene

 

regulatory network reconstruction for the following reasons: (1) the sound probabilistic semantics
 

allows BNs to deal with the noises that are inherent in experimental
 
measurements; (2) BNs can handle 

missing data and permit the
 
incomplete knowledge about the biological system and (3) BNs

 
are capable 

of integrating prior biological knowledge into the
 
system.  

Generally, a BN is a graphical representation of the dependence
 
structure between multiple interacting 

quantities. This graphical
 
representation is more commonly called a directed acyclic graph

 
(DAG) as 

shown in Figure 1. The nodes or the vertices of the DAG represent the random
 
variables in the network 

while the edges connecting the vertices
 
represent the causal influence of one node on the other. 

BN-based
 
gene network inference requires the learning of the BN structure,

 
which is an optimization 

problem in the space of the DAGs. Many
 
structure learning methods have been proposed in the 

literature, and it is important to understand their relative merits and shortcomings. Although there are a 

great many algorithms for learning Bayesian networks from data, they can be
 
categorized as either 

conditional independence (CI) test-based
 
methods or scoring-based methods. The CI-based methods 

analyze
 
the dependence and independence relationships among variables

 
via CI tests and construct the 

networks that characterize these
 
relationships. The scoring-based methods consist of two components: 

(1) a scoring function that assesses
 
how well a network fits the data and (2) a search method to

 
find 
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networks with high scores.  Acid [4], conducted a comparative study of
 
different structure learning 

algorithms on data from an emergency
 
medical service. 

In the present paper we apply currently available Structure learning algorithms on actual microarray 

data to obtain a better understanding of their relative strengths and weaknesses on the system biology 

community and we have carried out a series of experiments to evaluate their behavior from different 

perspectives. 

 

 

 
Fig. 1. An example of a simple Bayesian network structure modified from[using]. This network structure implies 

several conditional statements: I(A;E),I(B;D|A,E),I(C;A,D,E|B),I(D;B,C,E|A),I(E;A,D). The network structure also 

implies that  the joint distribution has the product form P(A,B,C,D,E)=P(A)P(B|A,E)P(C|B)P(D|A)P(E) 

 

2. Methodology 

 
2.1. The learning Algorithms 
We used several algorithms for learning the structure of a Bayesian network from the data set. The 

selected algorithms are driven by different principles and/or metrics, so the resulting models may differ 

in their result and the relationships they extract. The structure learning algorithms were used in this 

comparison are: K2 algorithm [5], Markov Chain Monte Carlo (MCMC)[6], Bayesian Network Power 

Constructor (BNPC)[7] and Greedy Search in the Markov Equivalent Space (GSMES)[8]. An overview 

of these algorithms is presented in [7]. 

2.1.1 K2 algorithm 

The K2 Algorithm [5] is a greedy search algorithm that learns the network structure of the BN from the 

data presented to it. It attempts to select the network structure that maximizes the network’s posterior 

probability given the experimental data. The K2 algorithm reduces this computational complexity by 

requiring a prior ordering of nodes as an input, from which the network structure will be constructed. 

The ordering is such that if node Xi comes prior to node Xj in the ordering, then node Xj cannot be a 

parent of node Xi. In other words, the potential parent set of node Xi can include only those nodes that 

precede it in the input ordering. 

2.1.2 MCMC 

Markov chain Monte Carlo (MCMC) methods, are a class of algorithms for sampling from probability 

distributions based on constructing a Markov chain that has the desired distribution as its equilibrium 

distribution. The state of the chain after a large number of steps is then used as a sample from the 

desired distribution. The quality of the sample improves as a function of the number of steps. We can 

use a Markov Chain Monte Carlo (MCMC) algorithm called Metropolis-Hastings (MH) to search the 

space of all DAGs[6]. 



  

 Academy of Scientific Research and Technology  

27
th

 National Radio Science Conference 

Faculty of Electronic Engineering, Menoufia Univ., Menouf, Egypt 

16-18 March 2010 

  

 

    

  

2.1.3 BNPC 

The BN Power Constructor (BNPC), uses independence tests and mutual information [7]. This 

algorithm has a three-phase operation: drafting, thickening, and thinning. In the first phase, the 

algorithm computes mutual information of each pair of nodes as a measure of closeness, and creates a 

draft based on this information. In the second phase, the algorithm adds arcs when the pairs of nodes 

are not conditionally independent on a certain conditioning set. In the third phase, each arc is examined 

using conditional independence tests and will be removed if the two nodes of the arc are conditionally 

independent. 

 

2.1.4 GSMES  

Recent works have shown the interest of searching in the Markov equivalent space . It has proved that a 

greedy search in this space (with an equivalent score) is more likely to converge than in the DAGs 

space [8]. This method works in two steps. First, it starts with an empty graph and adds arcs until the 

score cannot be improved, and then it tries to suppress some irrelevant arcs. 

 

2.2. The Data set  
The structure learning algorithms was tested with synthetic data samples

 
randomly generated from Raf 

signaling network, depicted in Figure 2. The random generation
 
of data samples was done to ensure the 

robustness of the algorithms. We used the sampling function which was implemented in Bayesnet 

Toolbox[9]. Raf network includes 11 nodes and 20 arcs. Raf is a critical signalling protein involved in 

regulating cellular proliferation in human immune system cells. The deregulation of the Raf pathway 

can lead to carcinogenesis, and the pathway has therefore been extensively studied in the literature 

[10]. 

2.3. The Comparison Methodology  
The comparison methodology used in this paper is similar with the method was used in [11]. The 

existence of the
 
known network structures allows us to define three important

 
terms, which indicate the 

performance of the algorithm (in terms
 
of the number of graphical errors in the learnt structure).  

• Correct edges(C): Edges present in the original network and  in
 
the learnt network structure. 

• Missing
 
edges (M): Edges present in the original network but

 
not in

 
the learnt network 

structure.
 
 

• Wrongly oriented edges (WO):
 
Edges present in the learnt network

 
structure, but having 

opposite
 
orientation when compared with

 
the corresponding edge in the

 
original network 

structure.
 
 

• Wrongly connected edges (WC):
 
Edges not present in the original

 
network but included in the

 

learnt network structure.
 
 

 

3. Results and Discussion 
The simulations of these structure learning algorithms in our comparative evaluation study were carried 

out with the Bayesnet
 
Toolbox[9] and  Structure Learning Package [12]. The tests are carried on an 

Fig. 2. Raf signaling pathway. The graph shows the currently accepted signaling network, taken from [10]. 
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Intel Core Due 1.8
 
GHz CPU and 1 GB RAM. Table 1 shows the parameters for each candidate 

learning algorithms. Table 2 &3 show the performances of the algorithms for the Raf
 
networks with 

1000 and 100 data samples generated
 
respectively. Table 2 & 3 report the mean results (the results 

averaged
 
over 100 trial runs).  

Table 2 and 3 show that these algorithms differ significantly in their predictability power and how 

could use larger data set improve algorithms performance except for BNPC and GSMES which is 

against our expectation. We attempt to contact the corresponding authors to explain these results. Also 

the low performance of the small data set promotes the importance of solving the dimensionality 

reduction of the gene reverse engineering algorithms where the numbers of experiments are minimal.   

For the k2 algorithm we present the results obtained with the correct
 
order (of which we have the 

knowledge, since the network structure
 
is known), order known from Maximum Weight Spanning Tree 

(MWST) [13] and with the random order. The results for K2 with
 
correct order are the optimal results 

one can get. K2 algorithms outperform the learning algorithms. For its result with known order about 

17 over 20 edges were covered perfectly.  Also its result with random order outperforms the tested 

algorithms. Moreover the results of k2 algorithm getting order from MWST directed the authors to 

develop a new algorithm to get network order.  

GSMES is the only method which has wrong orientation edges. 

 
Table 1 

The parameters for each structure learning algorithms 

See [10] for more details about them. 

Learning Algorithm Parameters setting 

K2 (known order)  

K2(order from 

MWST) 

K2 (random order) 

 

max_fan_in = 2 

 

MCMC Nsamples=100*11; burnin=5*11 

GSMES __________ 

BNPC epsilon=0.05 

 

Table2 
Comparative performance for Raf network with 1000 data samples generated randomly 100 times. 

Learning Algorithm C M WO WC 

K2 (known order)  17.12 2.88 0 0.16 

K2(order from 

MWST) 

12.49 7.51 0 7.35 

K2 (random order) 8.43 11.57 0 10.86 

MCMC 5.86 14.14 0 13.84 

GSMES 9.82 10.18 1.72 10.31 

BNPC 2.35 17.65 0 5.08 

 

Table 3 
Comparative performance for Raf network with 100 data samples generated randomly 100 times. 

Learning Algorithm C M WO WC 

K2 (known order)  12.82 7.18 0 2.82 

K2(order from 

MWST) 

8.81 11.19 0 6.29 

K2 (random order) 5.76 14.24 0 9.51 

MCMC 3.98 16 0 12.19 

GSMES 9.18 10.82 1.51 8.91 

BNPC 1.97 18.03 0 2.1 
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4. Conclusion 

In this paper we aim to compare the structure learning algorithms performance on a gene expression 

data. We see how the data set size could alter their performance. Also we show the importance of 

developing the correct network order algorithms. For simulated data was used here, the true structure of 

the regulatory network is known; this allows us, in principle, to faithfully evaluate the prediction 

results. However, the sampling approach used for data-generation is a simplification of real molecular 

biological processes, and this might lead to systematic deviations and a biased evaluation. We can 

overcome this using real laboratory data. 
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