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Abstract 

Global outbreaks of human influenza arise from influenza A viruses with novel Hemagglutinin (HA) 

molecules to which humans have no immunity. So understanding of the origin and evolution of HA genes is of 

particular importance. Here, genomic signatures of the HA protein in different hosts was identified and associative 

classification for host-typing was conducted. We therefore conducted multiple-sequence alignment and detecting 

the most statistically significant differences between human, avian and swine group of sequences using VESPA, 

then applying class associative rule mining to identify amino acid–conserving positions that are specific to host 

species, called signatures. We applied strict thresholds to select only markers which are highly preserved in each 

influenza virus host isolates over time. Also, the two Sample sequence logo server was used to identify and 

confirm significant variations between the hosts. Host-specific signatures have created from scanning 1500 

sequences of HA from human, swine and avian influenza A viruses. A total of 9, 31, 11, 6, 22, and 31 most 

informative positions of 560 amino acid residues yielded significant differences between Avian vs. Human, 

Human vs. Avian, Human vs. Swine, Swine vs. Human, Avian vs. Swine, and Swine vs. Avian respectively. 

Positions 438K, 458N and 286V were associated with avian, human and swine respectively, with support and 

confidence of (90.7% and 79.5%), (82.8% and 92.9%) and (51.4% and 98%) respectively. Host-specific class 

association rules aid in the prediction of prognostic biomarkers and improve the accuracy of prognosis.  
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I. INTRODUCTION 

Influenza A viruses belong to the Orthomyxoviridae family of negative sense, single-stranded, segmented 

RNA viruses. Influenza A viral genome consists of 8 segments, including: HA (hemagglutinin), NA 

(neuraminidase), NP (nucleoprotein), M (two matrix proteins, M1 and M2), NS (two distinct non-structural 

proteins, NS1 and NEP), PA (RNA polymerase), PB1 (RNA polymerase and PB1-F2 protein), and PB2 (RNA 

polymerase) [1, 2]. The hemagglutinin (HA) of influenza A viruses is a major surface glycoprotein that is 

responsible for attachment of the virus to the cell surface of oligosaccharide receptors. All known subtypes of 

influenza A viruses are found among wild avian species that serve as primary reservoirs for these agents [2].  

In general, an influenza virus infects only a single species; however, whole viruses may occasionally be 

transmitted from one species to another, and genetic reassortment between viruses from two different hosts can 

produce a new virus capable of infecting a third host. Avian influenza viruses are not readily introduced into 

humans [3], possibly because humans do not possess the a(2,3)-sialyllactose (NeuAc-2,3Gal) receptors required 

for attachment of the viruses to epithelial cells. However, individual viral genes can be transmitted between 

humans and avian species, as demonstrated by avian human reassortant viruses that caused the 1957 and 1968 

influenza pandemics [4, 5]. This finding suggested that an intermediate host may be needed for genetic 

reassortment of human and avian viruses. Pigs are considered a logical candidate for this role because they can be 

infected by either avian or human viruses [6, 7] and because they possess both NeuAc-2,3Gal and NeuAc-2,6Gal 

receptors. In addition, there is good evidence that pigs are more frequently involved in interspecies transmission 

of influenza A viruses than are other animals [6, 8, 9]. 

Such studies indicate host range restriction of influenza viruses. The viruses that caused the 1957 and 1968 

influenza pandemics were reassortant viruses of human and avian influenza viruses [5]. Avian influenza virus 

genes were somehow introduced into the human populations, breaking through the host range restriction. To 

elucidate the mechanism by which pandemic influenza virus strains are generated, we must first understand the 

molecular basis of host range restriction of influenza virus and how such restriction is breached. The amino acids 

that make up the receptor-binding site (RBS) are highly conserved, even among the HAs of different subtypes of 

avian influenza virus; however those of human viruses display distinct variability. In particular, the residues at 
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positions 138, 190, 194, 225, 226, and 228 are highly conserved in the avian RBS, whereas human HAs harbor 

substitutions at these positions [10] . 

In H2 and H3 influenza virus strains, residues at positions 226 and 228 in the HA correlate with the 

preferential recognition of the SA-Gal linkage by HA and the host species from which the virus was isolated. HAs 

with Leu at position 226 (Leu-226) and Ser-228 (human viruses) preferentially recognize SAa2,6Gal, whereas 

those with Gln-226 and Gly-228 (avian and equine viruses) recognize SAa2,3Gal [11].  

Although the HA genes play a critical role in host specific infection, but many research efforts have focused 

specifically on the persistent markers and host specificity markers found only on the more heavily conserved 

internal proteins. [12] Found sixteen positions in the influenza genome associated with human host specificity. 

The markers were found on the non-structural protein 1 (NS1), nonstructural protein 2 (NS2), matrix protein 1 

(MP1), nucleoprotein (NP), acidic protein (PA), and the basic polymerase 2 (PB2) protein. Recently, large-scale 

sequence analyses revealed „signature‟ amino acids at specific positions in viral proteins that distinguish human 

influenza viruses from avian influenza viruses [13-15]. These host lineage-specific amino acids were mainly 

found in components of the viral RNA polymerase complex, such as PB2, PA and NP, essential for viral genome 

replication [16, 17]. It is likely that these amino acids contribute to the host-range restriction of influenza viruses 

[18, 19];  however, their biological significance remains to be established, with the exception of the amino acids at 

positions 627 and 701 of PB2, whose importance in virulence has been demonstrated in a rodent model [20, 21]. 

Data mining has the potential to provide the necessary tools for better understanding of gene expression, drug 

design, and other emerging problems in genomics and proteomics. Association rule mining is an important task in 

data mining that finds correlations between items in a database. The association algorithm is commonly used to 

identify large and frequent item sets and mine hidden relationships among items [22]. The concept can be applied 

in many fields other than market basket analysis. The association algorithm has also been employed to mine gene 

expression data [23] and medical data [24]. The method is extended here to mine the association rules which are 

then applied to identify different host classes. The current prediction scheme emphasizes on influenza host typing 

and signature. The associative classification  technique was chosen because it builds more accurate and easily 

interpretable set of rules than traditional classification approaches [25]. 

Here, several computational approaches for finding specific genetic signatures characteristic of human, avian 

and swine influenza A viral genomes in HA gene were used. Detecting the most statistically significant 

differences between human, avian and swine group of sequences was done using the VESPA [26], available from 

the HCV database, which gave the most variable positions and their frequencies between human, avian and swine. 

Two Sample logos server was used to identify and confirm significant variations between the hosts for each 

subtype and statistical significance assessed [27] . Distinct amino acid residues between human, swine and avian 

influenza viruses were selected as potential host-associated signatures. Class association rules were generated for 

the sites with statistically significant variations between different hosts in both the comparative sequence logo and 

VESPA. We subsequently validated the robustness of those signatures with human, avian and swine sequences 

downloaded from Influenza Virus Resources at the National Center for Biotechnology Information (NCBI) [28].  

II. MATERIALS AND METHODS 

Our workflow for finding markers  is composed of sequence collection and sorting, multiple sequence 

alignments, informative site identification and feature selection by using comparative sequence logos  and viral 

epidemiology signature pattern analysis (VESPA) for positional enumeration of amino acids in each host group 

followed by generation of class association rules followed by selection of the best set of rules. 

1. SEQUENCE COLLECTION AND ANALYSIS 

All sequences were downloaded from the NCBI's Influenza Virus Resources (http://www.ncbi.nlm.nih. 

gov/genomes/FLU/FLU.html), with including sequences from laboratory-adapted viruses and pandemic (H1N1) 

2009 sequences within human host. And force the downloaded sequences to be non redundant and complete 

isolation of HA segments. Part of the data is used for training and the remaining part is used for testing. We used 

amino acid sequences because they are known to give more reliable results than nucleotide sequences when the 

sequence divergence is high [29]. 

To compare the genomic patterns of avian, swine and human influenza viruses with each others, we 

downloaded 1500 protein sequences of HA from NCBI's Influenza Virus Resources, isolated from various host 

species (500 for each host). They were grouped according to host type, and cover all the viral subtypes found in 

that host. Downloaded FASTA format sequences were parsed into each category such as accession number, 
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subtype, gene, host, occurring year, and other parameters. The signatures obtained from analyzing the primary 

dataset, have been validated and tested using human, avian or swine test data sets. 

2. MULTIPLE SEQUENCE ALIGNMENT (MSA) 

One of the cornerstones of modern bioinformatics is the comparison or alignment of protein sequences. With 

the aid of multiple sequence alignments, biologists are able to study the sequence patterns conserved through 

evolution and the ancestral relationships between different organisms. Sequences can be aligned across their entire 

length (global alignment) or only in certain regions (local alignment) [30].The most widely used approach to 

multiple sequence alignments uses a heuristic search known as progressive technique (also known as the 

hierarchical or tree method), that builds up a final MSA by combining pairwise alignments beginning with the 

most similar pair and progressing to the most distantly related [31]. All progressive alignment methods require 

two stages: a first stage in which the relationships between the sequences are represented as a tree, called a guide 

tree, and a second step in which the MSA is the most popular progressive alignment method has been the Clustal 

series of programs [30]. The rationale behind the development of the Clustal series has been to provide robust, 

portable programs that are capable of providing good, biologically accurate alignments within a reasonable time 

limit. Each group of training sets was collectively aligned using Clustal X program which supports multiple 

sequence alignment for protein sequences through window graphical user interface [32, 33] and built by adding 

the sequences sequentially to the growing MSA produced a consensus sequence representing the highly conserved 

regions from the aligned sequences. 

3. PATTERN DISCOVERY AND FEATURE SELECTION 

Feature selection techniques have become an apparent need in many bioinformatics applications. In addition to 

the large pool of techniques that have already been developed in the machine learning and data mining fields, 

specific applications in bioinformatics have led to a wealth of newly proposed techniques. Apart from the basic 

features that just represent the nucleotide or amino acid at each position in a sequence, as many of them will be 

irrelevant or redundant, feature selection techniques are then applied to focus on the subset of relevant variables. 

VESPA program can be used to quickly detect amino acids which characterize differences between two groups 

of sequences. It compares two groups of sequences and looks for a "signature" pattern, or the set of amino acids 

that is conserved among each set, but differing between the sets [26]. It will pick out those distinguishing amino 

acids, and calculate their frequencies in each set. The sequences should all be of the same length and a threshold 

for the minimum degree of conservation of signature amino acids in the query set should be adjusted.  

Two Sample Logo calculates statistical significance of the relative position-specific symbol frequencies between 

two sets of aligned sequences [27]. For example, sequences that are known to share a sequence motif may be 

locally aligned including positions upstream or downstream from the motif. All aligned sequences in both samples 

are required to be of the same length, so dash characters ("-") should be used to pad the positions in case some 

sequences are shorter.  

 

4.Class association rules 

The association rule model represents rules where a set of items was associated with each other. For instance, a 

rule could specify a certain product that was frequently bought in combination with other products. The rules were 

extracted from some large and frequently occurring itemsets. An itemset was regarded as frequent if the 

possibility of its occurrence exceeded a specified minimal support criterion. The accuracy of the rules is measured 

by their support and confidence. The support of the rule is the relative frequency of transactions that the rule can 

be applied to, confidence which is the number of cases in which the rule is correct relative to the number of cases 

in which it is applicable (and thus is equivalent to an estimate of the conditional probability of the consequent of 

the rule given its antecedent). To select interesting rules from the set of all possible rules, a minimum support and 

a minimum confidence are fixed. 

In this study, Class association rules were generated for the sites with statistically significant variations between 

the host groups in both the VESPA and comparative sequence logo, those whose support and confidence are 

above 40% were retained. 

III. RESULTS  

Protein multiple sequence alignments (MSAs) for 1500 sequences of HA for different hosts, were performed 

all together and then sequences of each specific host were extracted separately. Break down the result of 
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alignment into three sets (human, avian and swine) for comparison. Each two groups of sequences were compared 

at every position looking for a "signature" pattern in the positive (query) set relative to the negative (background) 

set. Six different comparisons between hosts were generated as human vs. avian, human vs. swine, avian vs. swine 

and vice versa. Positional variations between different hosts in HA were compared using a number of tools: 

VESPA and comparative sequence logos (see methods for elaboration). Tables (1-6) in additional file, showed the 

most informative positions which are relatively variable in one group than the other and their relative frequencies. 

Informative class association rules with a certain threshold of support and confidence were generated from the 

VESPA and comparative sequence logos results. The complete set of rules was shown in tables (1-6) in the 

additional file with their support and confidence. A support threshold value of 80% was set herein to indicate that 

for each host, the attribute must appear 400 times in 500 instances and the threshold of confidence was 0.4. 

A total of 9, 31, 11, 6, 22, and 31 most informative positions of 630 amino acid residues in HA, yielded 

significant differences between Avian vs. Human, Human vs. Avian, Human vs. Swine, Swine vs. Human, avian 

vs. swine, and swine vs. avian respectively (tables (1-6) in additional file).  

Table1 Positional variations of HA for human, avian and swine with their support and confidence 

Positio

n 

Human Avian Swine 

Substitutio

n 

Suppor

t 

Confidenc

e 

Substitutio

n 

Suppor

t 

Confidenc

e 

Substitutio

n 

Suppor

t 

Confidenc

e 

10 L 80.3% 42.6% I 70.3% 81.6% L 91.4% 48.4% 

33 T 82.1% 45.8% Q 63.1% 75.9% T 93.1% 51.9% 

133 R 82.4% 39.1% K 64.8% 73.2% R 93.8% 44.4% 

147 E 82.8% 41.8% Q 66.9% 75.2% E 93.8% 47.4% 

149 F 82.8% 37.8% I 59% 75% F 96.9% 44.2% 

181 L 82.8% 41.9% V 62.4% 76.1% L 93.8% 47.5% 

198 L 82.4% 47.4% I 71.4% 69.5% L 81.7% 47% 

205 N 82.4% 48.6% T 85.2% 80.2% N 74.5% 43.9% 

258 R 82.4% 45.6% N 90.7% 79.5% R 89.7% 49.6% 

264 I 82.8% 57.6% M 67.9% 43.7% M 70.3% 45.2% 

267 Y 82.4% 40.3% F 62.4% 75.7% Y 95.2% 35.7% 

274 G 81.7% 39.2% N 68.3% 77.3% G 96.6% 46.4% 

285 L 83.1% 40% F 72.4% 78.4% L 96.9% 46.7% 

286 I 99% 40.8% I 95.9% 39.5% V 51.4% 98% 

287 A 99% 40.3% A 99.3% 40.4% V 51.4% 97.4% 

292 F 83.1% 45% Y 76.6% 79% F 93.4% 50.6% 

297 - 82.8% 41.7% V 65.5% 77.2% - 96.9% 48.9% 

331 K 62.8% 98.4% N 84.1% 65% D 51.0% 94.9% 

354 Q 82.8% 40.1% H 70.7%  75.4% Q 94.1% 45.6% 

356 V 82.4% 52.2% I 69.3% 50% I 51.7% 37.3% 

388 Q 82.8% 44.8% E 70.7% 77.6% Q 93.8% 50.8% 

438 K 82.8% 92.9% E 76.6% 76.8% K 92.8% 48.1% 

463 H 50.6% 66.7% E 90% 79.8% T 75.9% 67.5% 

483 V 82.4% 44.2% M 73.1% 78.2% V 93.1% 50% 

501 L 82.8% 40.3% M 72.4% 76.6% L 95.2% 46.4% 

519 E 83.1% 39.9% D 63.8% 76.1% E 93.8% 45% 

581 G 97.2% 40.3% G 97.6% 40.5% R 51.0% 98% 

603 L 82.1% 47.6% V 55.5% 79.3% L 83.1% 48.2% 

 

Table 2 list of the most informative rules obtained with highest support and confidence. 

Position Rule Support Confidence 

438K K  Human 82.8% 92.9% 

458N N Avian 90.7% 79.5% 

463E EAvian 90% 79.8% 

205T TAvian 85.2% 80.2% 

603L LAvian 83.1% 79.3% 

286V VSwine 51.4% 98% 

 

Three signature residues at positions 331 and 463 of HA (yellow highlight in table1) exhibited a dominant 

change between the three hosts (human, avian or swine) with strong support in avian and moderate support in 

human and swine viruses. Avian signature showed the largest number of informative positions, Positions 10, 
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33,133, 147, 149, 181, 198, 205, 258, 267, 267, 274, 285, 292, 297, 354, 388, 438 and 603  were informative for 

finding signatures both for human vs. avian and swine vs. avian. These positions found to separate the two classes 

(human/swine or avian) with support varied between 59% and 99.3% (table 1). While positions 264 and 356 (gray 

highlight in table1) were informative for finding signatures both for human vs. avian and human vs. swine. These 

positions found to separate the two classes (human or avian/swine) with support of 82.8% and 82.4% respectively. 

Positions 286, 287 and 581 (blue highlight in table1) were informative for finding signatures both for swine vs. 

human and swine vs. avian. These positions found to separate the two classes (swine or avian/human) but their 

support was not much higher than 55.5%. This finding indicates that the swine strains are less distinct from avian 

and human strains. Table 2 listed the most informative rules obtained with highest support and confidence.  

Rule support and confidence are the two measures of rule interestingness. They respectively reflect the 

usefulness and certainty of discovered rules. For example, a support of 90% for an association rule in position 463 

means that 90% of sequences under analysis show that  “E”  and “Avian”  occur together. A confidence of 79.8% 

means that 79.8% of the sequences that contain the residue “E” at the same position also found in avian. 

Typically, association rules are considered interesting if they satisfy both minimum support threshold and a 

minimum confidence threshold. Such threshold can be set by users or domain experts.  

  

  

  

  
Figure 1 Six comparative sequence logos for human vs. avian, human vs. swine, avian vs. swine and vice versa 

The graphical motif representation enables a quick identification of positions that are clearly different by their 

length, and can therefore be incorporated in the classifier. Figure1 showed six comparative sequence logos for 

human vs. avian, human vs. swine, avian vs. swine and vice versa. In the figure, the letters in the middle bar 

represent conserved positions. The totally empty positions represent variations within each group but no 

considerable variations between the two groups. Comparative sequence logos confirm the results of comparing 

each two host groups using VESPA (tables 1-6 in additional file). Almost all positions coincided with the 

comparative sequence logo and signature pattern analysis.  However comparative logos added some signature 

positions such as positions 482,490 and 501were statistically significant in avian vs. human signature. 

IV. DISCUSSION 

We proposed a computational approach capable of indicating species-associated signatures in studying human,   

avian and swine influenza viral genomes. This study focused specifically on the persistent markers, and host 

specificity markers were found only in the surface glycoprotein HA, because of immune pressure and because of 
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the receptor specificity of the HA receptor binding site. This approach using class association rules extracted from 

the VESPA results and confirmed by comparative sequence logos can help increase the sensitivity and specificity 

of genetic biomarker discovery in general. These class association rules, which are position and amino acid 

specific, proved more appropriate and gave high support and confidence.  

The approach for defining host specificity markers presented in [12] which predicted positions in the genome 

associated with human host specificity however, these studies failed to find host markers in the surface 

glycoproteins HA and NA or in the polymerase protein PB1. All amino acid markers from the HA, NA, and PB1 

genes, as well as the alternate transcripts NS2, M2, and PB1-F2, were either poor-quality host discriminators. 

Thus, it may be that residues in HA, NA, PB1, and PB1-F2 are simply less host differentiating than are other 

genes. Other recent work in [15] looked more broadly for human markers beyond the pandemic conserved regions 

but their approach of looking for species-associated signatures by entropy is less useful for HA and NA genes. 

The genetic diversity that exists in either human or avian viruses for these 2 gene segments can markedly boost 

their respective entropy to more negative values, thus making it difficult to find residues conserved enough for 

identifying such signatures .  

To identify host specific amino acids that distinguish between human, avian and swine influenza isolates, we 

first compared HA sequences of human, avian and swine viruses with each other and found potentially important 

sites that may be related to host tropism and immune responses. These sites may be important for evolutional 

process in different hosts and host adaptation. 

Positions 10, 33,133, 147, 149, 181, 198, 205, 258, 267, 267, 274, 285, 292, 297, 354, 388, and 438 were 

found to separate the two classes (human/swine or avian) with support varied between 59% and 99.3%, while 

positions 264 and 356 were found to separate the two classes (human or avian/swine) with support of 82.8% and 

82.4% respectively.  And Positions 286, 287, 581 and 603 were found to separate the two classes (swine or 

avian/human) but their support was not much higher than 55.5%. This finding indicates that the swine strains are 

less distinct from avian and human strains. Notably from table1, that none of these positions could differentiate 

the three host classes at the same time, except for positions 331 and 463 of HA (yellow highlight in table1) 

exhibited a dominant change between the three hosts (human, avian or swine) with strong support in avian and 

moderate support in human and swine viruses. Some markers had little impact on distinguishing the functional 

classes by themselves; however in combination with other markers they improved class prediction. These findings 

demonstrate the importance of these residues for receptor specificity and for host range restriction of the virus. 

Our methods are designed to identify strictly conserved residues that persist over time and will not capture 

seasonal changes or even changes between pandemic isolates which is a challenge with HA. For that any 

classification errors appeared to be due to recent reassortment events that suggest the presence of influenza 

genomes that are a mix of both human and avian strains. Conner et al. reported 6 amino positions that distinguish 

human and avian influenza viral sequences [11], none of them were identified in this study because our study 

mixing all HA subtypes into one class that has been found in human, avian or swine which would substantially 

alter the reported set of persistent markers. In addition to the data limitations, accurate alignments of HA is 

hampered by high variability, and despite the care taken in manual editing, false-negative errors may occur due to 

alignment errors. Although we intended to analyze a comprehensive set of avian versus human influenza A viral 

genomes, the available sequences are predominated by H5N1 in avian viruses and H3N2 in human viruses. The 

short supply of sequences other than those 2 subtypes may inevitably cause a certain amount of bias in our results.  

Nevertheless, these positions may be important for evolutional process in different hosts and host adaptation. 

 

V. CONCLUSIONS 

Recent large-scale sequence analyses revealed „signature‟ amino acids at specific positions in viral proteins 

that distinguish human influenza viruses from avian or swine viruses. One might expect, a priori, to find host 

markers in the surface glycoprotein HA because of immune pressure and because of the receptor specificity of the 

HA receptor binding site. Genome wide comparison of human vs. avian, human vs. swine, avian vs. swine and 

vice versa using VESPA and comparative sequence logos, would show the evolutionary differences between them 

and thus provide information for studying mechanism of influenza viral infection and replication in different host 

species. Informative class association rules with a certain threshold of support and confidence were generated to 

improve prognosis prediction. Pattern and variability analysis on the hole HA sequences are performed, to extract 

its most important motifs. These host markers has been confirmed and validated by human, avian and swine test 

sets. Host-specific class association rules for avian gave better support and confidence than human or swine. 

Positions 205T, 286V, 438K, 458N, 463E and 603L have given the best support and confidence, and would thus 

aid in the prediction of prognostic biomarkers and improve the accuracy of prognosis. 
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