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ABSTRACT 
Magnetic resonance imaging (MRI) has been used extensively for clinical purposes to depict anatomy because 

of its non-invasive nature to human body. It is always desirable to enhance the resolution of MR images in order 
to confirm the presence of any suspicious behavior inside the body while keeping the imaging time short. At 
present, MR imaging is often limited by high noise levels, significant imaging artifacts  and/or long data 
acquisition (scan) times. Advanced image reconstruction algorithms can mitigate these limitations and improve 
image quality. In this paper we aim to enhance image quality and shorten imaging time using Compressed sensing 
(CS) and parallel computing techniques.
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I. INTRODUCTION
One of the main drawbacks of MRI scans is the time it takes to acquire the scan. During this time the patient 

must remain completely still, which often requires general anaesthesia. Compressed sensing allows the MRI scan 
to sample much less densely, which lowers sensing time[1]. Compressed sensing method replaces the 
conventional sampling and reconstruction operations with a more general linear measurement scheme coupled 
with an optimization in order to acquire certain kinds of signals at a rate significantly below Nyquist. And it goals 
to reduce the number of measurements required to completely describe a signal by exploiting its compressibility. 
This at the cost of much higher image reconstruction times.

Image reconstruction is a complicated process in which a large number of calculations is needed to retrieve 
information that has been lost or obscured in the imaging process itself. Sequential techniques for image 
reconstruction programs take long time to end the process. So we aim at finding bottle nicks which consume time 
and optimize it using OpenMP and Intel Parallel Studio to speed up the reconstruction process.

In this paper, we proposed an accelerated reconstruction procedure for combining CS with parallel computing 
techniques using OpenMP and widely available multicore CPUs to accelerate the image reconstruction. The 
results show that the reconstruction algorithm can benefit significantly from the parallel computing and multicore 
architecture.

II. MATERIAL AND METHODS

A. Intel Parallel Advisor - Survey Tool -
Intel® Parallel Studio is a comprehensive tool suite that provides C/C++ developers using Microsoft Visual 

Studio with tools for serial and threaded application design. Offering innovative features and capabilities, the suite 
equips developers to design, build and debug, verify, and tune their applications. first step in parallel process is to 
find bottle necks within our code ,Survey tool which is one of intel parallel advisor tools enables us to identify 
those hot spots as shown in table 1 
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Table 1 Survey Tool output attributes

Total time % Self time Total time

shows the top-down running 
total for the program, starting at 
100%.

shows the time used by that function or loop. Show the total time consumed in 
this function 

B. Compressed sensing 
The second step in parallel process is to redesign those hot spots to be in a parallelizable form can benefit 

from OpenMP work sharing techniques. This step requires deep understanding of CS algorithm.
Based on the CS theory, an image x can be reconstructed from a reduced set of incomplete
k-space data y, where [1]

y= ɸ x                                                                    (1)

with ɸ being the randomly sampled Fourier transform operator.
Given x of length N, only M measurements (M<N) is required to fully recover x when x is K-sparse (K<M<N). 

However, three conditions named CS1-3 are to be satisfied for the this statement to be true[1]
1) Sparsity which means that the desired signal has a sparse representation in a known transform domain. 

while the sparsity of the image is the percentage of transform coefficients sufficient for diagnostic-quality 
reconstruction. In our case we found that brain images have a good sparse representation in the wavelet 
domain at reconstructions involving 5-10% of the coefficients.

2) Incoherence which means that undersampled sampling space must generate noise-like aliasing in that 
transform domain. There are numerous ways to design incoherent sampling trajectories. We focus on 
Cartesian sampling because it is by far the most widely used in practice. It is simple and also highly 
robust to numerous sources of imperfection. Non-uniform undersampling of phase
encodes in Cartesian imaging has been proposed in the past as an acceleration method because it 
produces incoherent artifacts[1] and that is exactly what we are looking for. Undersampling phase-
encode lines offers pure randomness in the phase-encode dimensions, and a scan time reduction that is 
exactly proportional to the undersampling. Finally, implementation of such an undersampling scheme is 
simple and requires only minor modifications to existing pulse sequences.

3) Non-linear Reconstruction, We now describe in more detail the processes of nonlinear image 
reconstruction appropriate to the CS setting. let Ψ denote the linear operator that transforms from pixel 
representation into a sparse representation, The reconstruction is obtained by solving the following 
constrained optimization problem[1]

minimize || Ψx ||1        (2)
s.t. || ɸx − y||2 < ɛ

Here  y is the measured  k-space data from the scanner and  ɛ controls the fidelity of the reconstruction to the 
measured data. The threshold parameter ɛ is usually set below the expected noise level.
The objective function in Eq. 2 is the 1 norm, which is defined as [1]

                ||x||1 = Σ |xi|                      (3)   

Minimizing || Ψx ||1 promotes sparsity [2]. The constraint || ɸx − y||2 < ɛ enforces data consistency. 
Eq. 2 finds a solution which is compressible by the transform . When finite-differences is used as a sparsifying 
transform, the objective in Eq. 2 is often referred to as Total-Variation (TV)[3], since it is the sum of the absolute 
variations in the image. The objective then is usually written as TV (x). Even when using other sparsifying 
transforms in the objective, it is often useful to include a TV penalty as well (4). This can be considered as 
requiring the image to be sparse by both the specific transform and finite-differences at the same time. In this case 
Eq. 2 [1] is written as
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minimize || Ψx ||1 + α TV (x)            (4)
s.t. || ɸx − y||2 < ɛ

where α trades Ψ  sparsity with finite-differences sparsity. Special purpose methods for solving Eq. 4 have been a 
focus of research interest since CS was first introduced. we are interested in iteratively reweighted least 
squares[5],[6] because iterative methods can benefit from our parallel approach . The algorithm was tested on a 
platform that contained a standard Intel Corei7-2630QM CPU @ 2.00GHz, with 6-GB DDR2 memory.

figure 1, CS flow chart 

figure 1 show the flow chart  of our implementation , we begin with k-space data and apply inverse fourier to 
obtain image (a) , then we check the sparsity using L1-norm such that minimum L1-norm corresponding to 
highest sparsity. if the image sparse we go directly to non linear image reconstruction technique , if not we need to 
transform the image to a different domain in which it has sparse representation. it's all about finding the right  Ψ 
like STFT[8], Gabor[9], Wavelet Transform[10].

B. OpenMP

OpenMP is a shared-memory application programming interface (API) whose features are based on prior 
efforts to facilitate shared-memory parallel programming[11]. OpenMP is intended to be suitable for 
implementation on a broad range of SMP architectures. OpenMP comprised of three primary API components: 
Compiler Directives, Runtime Library Routines and Environment Variables. Multithreaded programs can be 
written in various ways, some of which permit complex interactions between threads. OpenMP attempts to 
provide ease of programming and to help us avoid a number of potential programming errors, by offering a 
structured approach to multithreaded programming. It supports the so-called fork-join programming model as 
shown in figure(2)

 
 

figure 2, fork-join model of OpenMP
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Methods

1) We take advantage of modern parallel architectures in designing our parallel version of CS algorithm.
The main data structures in CS is 2D matrices. Due to element wise operations , we can advantage of the 
element-level parallelism. we can divide data element among threads without concern of data 
dependency. fortunately most loops in CS do not contain data-dependency, which helps maintain high 
vector efficiency.

2) We have composite loops, in order to keep data dependency and better memory access we choose to 
parallel the inner-most loop, it guarantees sequential memory access unlike the outer-most loop which 
requires access non sequential memory location 

3) OpenMP has three schedule to handle loops: static, dynamic and guided. static schedule provides good 
load balancing. dynamic schedule may provide better load balancing, but it costs high thread 
communication overhead.

4) It is not trivial to parallelize FFT due to its non sequential memory access patterns and bit-reversal 
element shuffling. However, this has been studied for decades and optimization techniques are well 
known as shown[7],details of which are out of scope of this paper.

5) We have bottlenecks which composed of three arithmetic operation for two input matrices, A and B, and 
two output matrices, C and D. first we try the trivial solution of computing each stage before proceeding 
to the next stage. but we found it inefficient due to high memory traffic as each stage needs to sweep 
through the entire matrix 

6) Back to the element level, we can read in one element from A and B and perform the three arithmetic 
operation while the data kept in the register then store the result in C and D. this optimization is called 
loop fusion

III. Results

Table 2 lists the total reconstruction time for all experiments including time cost for file read and output file write 
using two cores leads to significant reduction in the computation time per core, with the reduction factor of about 
1.2. In addition, using eight cores gives the shortest reconstruction time, where the average reduction factor is 
about 2.1.

Table 2 total reconstruction time across different hardware 

Size Cores 

512 * 512
1 2 4 8

1010 840 591 480

figure 2a shows the reconstructed image from serial compressed sensing[12] while figure 3b shows the 
reconstructed image from parallel algorithm. Note that the image reconstruction quality with the proposed 

algorithm is close to the one from the serial algorithm.
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Figure 3 (a) reconstructed image form serial algorithm , (b) reconstructed image form parallel algorithm 

IV. CONCLUSION
In this work, we developed a new implementation of the CS algorithm based on a parallel computing 

architecture. The new implementation offers less data dependency and more convenient structure to parallel 
computing approach. The new method was implemented to reconstruct real MRI images and results indicate 
significant reduction in time with reasonable image quality. This shows the potential of the new method to be 
used in medical image reconstruction algorithms with high complexity to speed up the reconstruction and utilize 
the already available processing power in newer personal computers.
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