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ABSTRACT 

In conventional diffusion tensor imaging (DTI) based on magnetic resonance data, each voxel is assumed to contain a 
single component having diffusion properties that can be fully represented by a single tensor. In spite of its apparent 
lack of generality, this assumption has been widely used in clinical and research purpose. This resulted in situations 
where correct interpretation of data was hampered by mixing of components and/or tractography Even though this 
assumption can be valid in some cases, the general case involves mixing of components resulting in significant 
deviation from the single tensor model. Hence, a strategy that allows the decomposition of data based on a mixture 
model has the potential of enhancing the diagnostic value of DTI. This work aims at developing a stable solution for the 
most general problem of multi-component modeling of diffusion tensor imaging data. This model does not include any 
assumptions about the nature or volume ratio of any of the components and utilizes a projection pursuit based strategy 
whereby a combination of exhaustive search and least-squares estimation is used to estimate 1D projections of the 
solution. Then, such solutions are combined to compute the multidimensional components in a fast and robust manner. 
The new method is demonstrated by both computer simulations and real diffusion-weighted data. The preliminary 
results indicate the success of the new method and its potential to enhance the interpretation of DTI data sets.   
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1. INTRODUCTION 

Among the unique features of magnetic resonance imaging (MRI) is its ability to characterize several microscopic 
phenomena in vivo and noninvasively1. An interesting example is the mapping of diffusion. In its most basic form, 
diffusion imaging attempts to characterize the manner by which the water molecules within a particular location move 
within a given amount of time. Using a simple pulse gradient spin echo (PGSE) imaging sequence, it is possible to 
obtain a change of the MR signal that is related to the diffusivity of water in a certain direction2. Given that such 
diffusivity parameters vary with the geometry of the internal/external cellular space, it has an important value in 
discriminating between different tissue types as well as identifying abnormal variations in pathological states.  
 
In order to avoid non-unique variations in measuring diffusivity parameters with the positioning of the subject, a more 
general characterization of the diffusion process was introduced based on diffusion tensors. The basic techniques in 
diffusion tensor imaging attempt to characterize the 3-D diffusion phenomena in terms of a 3-D Gaussian probability 
distribution3. Therefore, such representation is sufficient in terms of a 3×3 symmetric tensor, or the so-called “cigar-
shaped” diffusion tensor representation. This tensor is usually computed using a 3-D sampling of the b-space (the space 
of the diffusion experiment b-values1) of measurement in the diffusion-weighted experiment4. While requiring only six 
equations to completely determine the diffusion tensor, more measurements are usually obtained and a least-squares 
solution is calculated for the tensor. Recent studies revealed several deviations from this simplified scenario. Several 
authors reported a non-mono-exponential behavior for the diffusion-induced attenuation in brain tissue in water and 
NAA signals3. Their study was based on a 1-D diffusion experiment and the results were fitted to bi- or tri-exponential 
functions. They indicated that high b values reveal more complex behavior and therefore their fit depended on the value 
of b used in the measurement. Hsu et al.5 proposed a two-compartment model for the diffusion in fibers of the 
myocardium. They reported two fast and slow components in their study while assuming a slow-exchange process 
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between the two. Inglis et al.6 reported bi-exponential diffusion tensor measurements. They hypothesized that these 
components may represent the intra- and extra-cellular components in tissues. Clark et al.7 reported variations of the 
apparent diffusion coefficient with the value of diffusion time. Their hypothesis was that such variations are important 
indicators of restricted flow, which present a potentially large diagnostic value. In a later study by the same group, Clark 
et al.8 reported results of a two-tensor model for diffusion in the human brain. They measured the parameters of a 
mixture model composed of two weighted tensors. Their results indicated the presence of fast and slow diffusion 
components, and that each can be modeled by a unique tensor. They indicated that the use of high b value was essential 
to reveal the slow component of diffusion. Tuch et al.9 noted that the DTI measurements could only resolve the imaging 
situations where the white matter fibers are strongly aligned. They presented evidence from high angular resolution 
diffusion measurements to show that the diffusion process can be modeled as independent mixture of ideal diffusion 
processes. They presented results for the case of a mixture of two diffusion tensors. The methodology used to obtain the 
mixture parameters was based on minimizing an error function using gradient descent technique. Beaulieu10 discussed 
the possible sources that would cause diffusion to be anisotropic including geometric, structural and pathological 
conditions. His study concluded that the presence of such processes as restricted diffusion in certain directions may be 
used to account for the measured anisotropy in DTI measurements. Frank11 reported a method for identifying the 
anisotropy in high angular resolution diffusion-weighted (HARD) imaging data without computing the actual tensor. 
Another study by the same author12 developed a methodology for characterizing HARD data by decomposition into 
spherical harmonics. This approach allowed several modes of diffusion to be decomposed into separate channels that are 
different from those for eddy current artifacts. He studied the case of two fibers under different conditions and proposed 
an extension of his method to characterize multiple fiber scenarios. Given the complexity of such situations and the 
limitations on the spherical harmonics definitions in terms of rotations only, this might not be practical in many cases. 
Basser and Jones3 discussed the possibility of mixture modeling of diffusion. Even though they indicated that this would 
present a more complete representation of the process, they argued that there are too many issues that need to be 
resolved before such modeling can be performed in practice. In particular, their hypothetical discussion indicated that 
such modeling would require a large amount of data to enable the estimation of model parameters and involve the 
computation of too many parameters. They suggested also that several problems had to be addressed in such 
experiments that included optimization of diffusion gradient directions and model order selection. They concluded that 
this area had many aspects that were yet to be investigated.  
 
Observing that the diffusion along nerve fibers tend to be significantly larger than in other directions (Basser et al.13), 
track fiber directions were computed from diffusion tensor data. The basic idea is to eigen-decompose the diffusion 
tensor and use the eigenvector corresponding to the largest eigenvalue as the most likely fiber direction in a given pixel. 
This simplistic representation of the problem is often unsuitable for real data where fiber direction heterogeneity is 
common. As a result, several studies indicated practical problems with this approach (cf. Mori and van Zijl14). In 
general, ambiguity arises in situations where the direction of the fiber cannot be determined. For example, in voxels 
where the estimated diffusion ellipsoid takes the form of a pancake shape rather than a cigar shape, the tracking 
algorithms terminate, resulting in undesired disconnections in the resulting fiber tracks. Poupon et al.15 reported 
problems with the tracking results when crossing fibers are encountered. They proposed a methodology whereby some a 
priori knowledge about the fiber tracks are embedded in the fiber tracking procedure to regularize the calculated fiber 
directions. Similar regularization was proposed by Bammer et al.16 where they used a continuous representation based 
on B-spline modeling.  
 
After the diffusion tensor principal directions are determined, the problem of finding the fiber paths from the diffusion 
vector field (or the so called tractography problem) is a challenging one. Several techniques were proposed to do that 
based on line propagation or energy minimization implemented in different manners to try to overcome the limitations 
posed by noise, limited resolution and direction heterogeneity of fibers within the resolution cell (cf. Mori and van 
Zijl14, Lori et al.17). The general limitations of the available techniques are the speed of axonal reconstruction, 
robustness in the presence of anisotropy in the diffusion tensor (e.g., the pancake shaped tensor case), as well as the 
difficulty of validating the outcome and the different constraints used in this processing. None of the available tracking 
methods provided a vision for how tracking should be done in case axonal intersections are resolved within resolution 
cells. By comparison to the conventional situations, this problem seems far more challenging since it involves adding 
another dimension to the original formulation representing axonal anisotropy.  
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The goal of this work is to derive the methodology and apparatus for multi-axon fiber tracking based on high angular 
resolution diffusion-weighted acquisitions. We utilize a multi-compartmental model to represent the physical make-up 
of imaging pixels. Based on an analytical expression of apparent diffusion tensor, the mixture model parameters are 
calculated using global nonlinear least squares methods. Given the characteristics of axonal membranes, the diffusion of 
water inside each axon is preferred along the direction of the axon than across it. Therefore, the diffusion from 
individual axons appears as a cigar-shape tensor. The presence of many fibers in the same direction results in an 
effective tensor that has the same shape as one of them. This simplified case is usually in fiber tracking. Here, we allow 
heterogeneity to be included in the analysis by proposing a pixel model with multiple tensors instead of one. Given the 
nonlinearity of the parameter estimation problem here, global nonlinear least-squares methods are utilized to compute 
the solution.  

2. METHODS 

2.1. Problem formulation 
Consider the problem of estimating the composition of a voxel with two distinct components (without loss of generality 
for multiple components). In this case, the number of unknowns to fully describe the model is 13 (2 symmetric tensors 
and their partial volume ratios that sum to one). Unlike the problem of estimating a single tensor, the equations here are 
nonlinear and therefore only iterative techniques can be utilized. We observe that the attenuation equation for each 
tensor resembles a sample of a 3D Gaussian function with a covariance matrix equal to the diffusion tensor evaluated at 
a point determined by the diffusion gradient direction at a radius equal to the square root of the b-value. Hence, the 
problem of estimating multiple tensors becomes one of 3D Gaussian mixture modeling from samples determined by the 
diffusion gradient vector sampling.   
 
To overcome this difficult estimation, we propose the use of projection pursuit regression (PPR), a robust statistical tool 
that allows the estimation of such mixture models18-19. Instead of attempting the solution in the high dimensional space 
of this problem, PPR projects the problem into a number of 1D problems and then synthesizes the solution to the 
original problem space. Moreover, the problem can be simplified further by utilizing a sampling strategy that converts 
the problem into the sum of two exponentials. This problem is solved using a robust strategy in which the exponential 
decay constants are estimated using exhaustive search and the magnitude functions are estimated using linear system 
solution based on the choice of the decay constants. Given that the range of decay constants for human applications is 
rather limited, this strategy has superior speed to nonlinear least squares methods while offering the global solution to 
the problem. Once the 1D model is estimated, it can be used to provide an equation for each diffusion tensor separately 
as identified by its partial volume ratio. For example, we identify the components with the larger partial volume ratio as 
component #1 in all projections and utilize such projections to reconstruct its tensor the same way the single-tensor 
method works. Then, the second tensor is computed based on projections with second largest partial volume ratio and so 
on for other components (if exist). The computed tensors are used to compute a new estimate of the component partial 
volume ratios based on the whole data set rather than each projection separately. Given that these ratios are the most 
affected by noise, the estimation process is started again with this new estimate plugged in for all projections and a new 
solution is estimated. This process is repeated until the partial volume ratio stabilizes. In the general case of a N-tensor 
model, the same procedure is followed at a computational cost that varies linearly with the number of tensors N.  The 
following subsections detail the multi-tensor model estimation. 

2.2. Estimation of 3D Gaussian function from its 1D projections 

The NMR signal attenuation due to diffusion when applying a gradient defined by the direction x
r

 is given by, 

( )xDxxE T rrr ⋅⋅⋅−= πexp)(      (1) 

Here, D is the diffusion tensor and ubx
rr ⋅≡ π/ , with a unit vector u

r

 in the direction of the gradients at an applied 
b-value of b. In order to proceed with the projection pursuit strategy, we must to be able to relate the characteristics of 
the diffusion tensor D to the one-dimensional projection of this function at an arbitrary direction. In order to compute 
this projection, we start with a 3D Gaussian function perfectly aligned with the coordinate axes and apply the rotation 
transformation to obtain the general formulation of the problem. Then, we utilize the projection-slice theorem to 
simplify the derivation of the projection integral. We start with the simplest form of the diffusion attenuation defined as, 
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The Fourier transformation of this function is given by, 
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Here, we used the separability property to derive the 3D Gaussian Fourier transformation given the 1D transformation 
result. Consider now a diffusion tensor in a general direction given by, 

RRD T Λ=  ,      (4) 
where R is an orthogonal transformation. Then, the Fourier transformation of this general case is given by, 

{ } ( )TTT fRRfxE
rr

r 1exp)( −Λ⋅−=ℑ π .    (5) 
From the projection-slice theorem, the projection along a particular direction corresponds to a slice in the Fourier 

domain. Suppose that we would like to obtain the projection along the line that makes angles ( )ϕφθ ,,  with the 
coordinate axes respectively. We first notice that two angles are only sufficient to fully describe the required rotation 
given that the summation of the squares of the cosines of the three angles is equal to unity. To simplify the computation 
of the slice line (representing the Fourier transformation of the projection in the spatial domain), we apply a rotational 
transformation corresponding to the reverse of the line angle to align this line along the fx axis. This rotation is computed 
as, 
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Hence, the line slice can be given as, 
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Hence, the projection in the spatial domain can be given as, 

( ).exp 22 σπ xprojection ⋅−=     (8) 

Hence, if we measure the variance σ2 of the projection function along at least six directions, we can directly compute the 
inverse of the diffusion tensor and subsequently the diffusion tensor.  
 

2.3. Estimation of components from projections 
Assuming a two-component model without loss of generality, the projection along any given direction can be given as, 

)exp()exp()( 2
2

2
2

2
1

2
1 σπασπα xxxp −⋅+−⋅=  .   (9) 

Here, the relative amplitudes are given by α1 and α2 and the variances are generally different for both components and 
vary with projection direction. The x value is known and can be computed given the b-value and the direction of 
diffusion gradients. The 1D component estimation problem amounts to the estimation of α1, α2, σ1 and σ2 given p(x). 
Notice that the component amplitudes are the same between projections. This property will be used to aid in the labeling 
of components among different projections. This estimation problem is nonlinear and therefore only iterative estimation 
methods have been proposed in the literature. Given the convergence issues associated with such methods and their 
generally high computational burden, another more stable strategy is needed to solve this problem in practice. Note that 
for any given parameter estimation accuracy, there exists a finite number of possible solution that are determined by the 
a priori information about parameter ranges and the desired accuracy. Hence, the problem of finding the solution to this 
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problem amounts to a combinatorial optimization problem. This means that a globally optimal solution can be found by 
exhaustive search or one of the more efficient random search strategies such as simulated annealing or genetic 
algorithms. Nevertheless, the computational effort involved in such techniques is prohibitive. Here, we combine 
exhaustive search and least squares estimation to obtain a more efficient implementation while maintaining the 
robustness and global optimality. In particular, instead of attempting to find all parameters by exhaustive search, we 
limit this strategy to those parameters of more importance in terms of accuracy and compute the remaining ones using 
least-squares estimation. This is implemented as follows: 

Step 1. Take the variances to be the parameters estimated by exhaustive search while the partial volume ratios are 
estimated from them by least squares. 

Step 2. Generate a list of possible values for the variances within the range from 0 to the maximum eigenvalue of 
the diffusion tensors of interest with the desired accuracy as the step. 

Step 3. Plug in values for the variances in the equation from the list and compute the least-squares solution to the 
partial volume ratios for such values and compute the value of the residual error with such values plugged in. 

Step 4. Loop on all possible variance values in the list and repeat step c and find the combination of values that 
generate the lowest error. Consider such combination to be the solution. 

This method allows an order of magnitude saving in computation time while providing a solution with sufficient 
accuracy. 
 
Once the individual component estimates from projections are computed, the projections of each component are used to 
estimate the component tensor in very much the same way as the single-tensor estimation is performed. One problem 
arises in this part because of component labeling. The basic assumption of the model that the partial volume ratios 
remain the same in projections may not be practical given the superimposed noise and other sources of error in DTI. In 
other words, partial volume ratios from different projections are different in practice. To solve this problem, an initial 
labeling is obtained whereby the first component is calculated from the projection components having the larger partial 
volume ratio, while the second component is calculated from the components with the smaller one. Once the two tensors 
are computed using this strategy, a least squares estimate for the partial volume ratios is computed while imposing the 
constraint of unit summation upon their values. Then, the calculated values are used in a second iteration of the 
procedure above to update the projection variances while imposing the same partial volume ratios obtained from the 
first iteration. A second estimate of the partial volume ratios is computed at the end of the second iteration and this 
process is repeated until estimates from two successive iterations differ by a predetermined tolerance. In this case, the 
estimates represent the global solution that is not biased by error within individual projections.  
 
It should be noted that the extension of this method to multiple exponential is straightforward. The computational 
complexity of the developed method can be shown to depend linearly on the number of components. This allows the 
possibility of addressing more challenging tasks. We still gain the separation between the problems of estimating the 
variances and the magnitudes. Moreover, the same direct magnitude estimation method can still be applied in this case 
once the roots are calculated. This can, at least in principle, reduce the require complexity dramatically.   

2.4. Projection direction selection 
Continuing from the above to use the simpler multi-exponential model, the problem of determining the best directions 
for projecting the multi-component model will be addressed in very much the same way. Instead of seeking the 
directions representing the maximum non-Gaussianity as in the original formulation of the projection pursuit regression, 
we now see those directions representing the sharpest difference between the exponential decay constants. An excellent 
direction index for this purpose is the quantity under the square root in the second-degree characteristic polynomial root 
formula. Observing that this quantity is zero for equal roots and gets larger as the roots get apart, the maximization of 
this index provides a more efficient alternative to the kurtosis or other higher order moment optimization in the original 
Gaussian mixture model.  

3. RESULTS AND DISCUSSION 

To verify the new method, computer simulations were conducted to assess the accuracy of model estimation under 
different SNR and voxel tensor composition. The simulation parameters were as follows: the acquisition of one half of a 
cubic volume of size 8×8×8 voxels that fully covers the 3D extent of the diffusion attenuation. The data were projected 
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onto a number of directions that uniformly sample the space. For convenience, these directions were taken to be similar 
to those used in DTI acquisition as either 6, 12, 30 or 90 directions. Instead of selecting a few directions in the original 
PPR formulation, all directions are taken into consideration with a weighting corresponding to the model error. Also, 
within each 1D estimation procedure, a regularization step is implemented to verify that the partial volume ratio of all 
components is above a certain threshold value. This is necessary since it is likely that the component projections may 
have similar decay at some directions resulting in ill-conditioned solution. The simulation results of a model composed 
of both white matter (WM) and CSF are shown in Fig. 1. Notice that for SNR above 50 dB the estimation error of the 
tensors is below 10%. The model estimation procedure for each voxel was performed within an average of less than 1 
sec (based on a 2 GHz P4 computer with 512MB RAM), which is reasonable for practical purposes. 
 
Experimental results were also obtained from data sets collected from a normal human volunteer on a 3T Siemens Trio 
system using a double spin-echo sequence with 8 b-values spanning the range [0,1500] at 12 and 30 directions. Both 
scans were repeated 4 times to investigate the effect of SNR. The total scan time for the 12-direction scan was 12 
minutes while it was approximately 30 minutes for the 30-direction scan. The iterative estimation procedure is 
illustrated for a single voxel in Figs. 2-3 where the fractional anisotropy1 is computed for both components of the 2-
tensor model to illustrate the convergence in both the 12- and 30-direction acquisitions. The estimation error for both 
cases is also shown in Fig. 3 where the convergence appears to occur within a few iterations. Table 1 shows the values 
of partial volume ratios obtained in such iteration, which also shows an important role for such iteration to significantly 
improve the accuracy of the results. The tensor field results from experimental data with 30 diffusion gradient directions 
and 4 averages are shown in Fig. 4 where the new method is compared to the 1-tensor model visually and using an error 
measure of the fitting accuracy. The tensors are drawn in such a way to show CSF tensors as points and white matter 
tensors as lines. As can be shown, the areas that show partial voluming at the interfaces of the CSF areas show 
significant improvement in model error when the 2-tensor model is used. A detailed view of another slice is shown in 
Figs. 5-6 where the tensor field is more visible. The average reduction in model error over the whole ROI was 30.1% for 
the 30-direction data set and 8.9% for the 12-direction data set (individual voxels exhibit error rates that are up to 80% 
lower in some cases).  
 
With the encouraging results obtained, several applications should be addressed to verify the clinical utility of the new 
method. Examples include the removal of the effect of CSF contamination in both white matter and gray matter voxels, 
which cause significant problems in fiber tracking. Also, the ability of the new method to resolve crossing fibers needs 
to be verified with a controlled experiment where a known fiber crossing is present (e.g., a specially constructed 
phantom).  
 
In spite of the visible improvement in residual error obtained with the new model, it is important to address several 
issues related to the regularization of the model to avoid erroneous interpretation of the results. For example, a threshold 
must be set for the partial volume ratio below which the component is discarded as nuisance. This can be done through a 
penalty term in the objective function that rewards lower order models. Also, given that the component characteristics in 
neurological applications are usually known a priori, it is advantageous to take such information into account in 
estimating the model whereby resulting tensors are penalized for their distance from the nearest component. This allows 
a clear segmentation of the data set as well which can be an important tool in subsequent fiber tracking. 

4. CONCLUSIONS  

A new fast and robust method to estimate a diffusion mixture model is presented. The main advantage of this approach 
is the elimination of dependence on a priori knowledge about the tensor composition, which allows more flexibility in 
practical applications. The new solution strategy offers a stable method to compute a multi-component model for 
diffusion tensor imaging data that is optimal in the least-squares sense. Preliminary results from computer simulations as 
well as experimental data acquired from normal human volunteers seem encouraging and suggest several uses of the 
new method is resolving partial volume problems of white matter/gray matter with cerebrospinal fluid as well as 
sensitivity to detect multiple white matter fibers.   
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Figure 1: Monte Carlo simulations for the effect of noise on the multi-component model estimation 

 

 
Figure (2): Illustration of the solution convergence in 2-tensor modeling as represented by the FA of components for both 12-
direction and 30 direction data acquisition schemes. 
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Figure (3): Illustration of the solution convergence in 2-tensor modeling as represented by the estimation error compared to 1-tensor 
modeling for both 12-direction and 30 direction data acquisition schemes. 
 
 

Iteration Partial Volume Ratio Model Estimation Error 
1 0.875628 3.06825 
2 0.937119 1.74754 
3 0.955467 0.918910 
4 0.961860 0.709180 
5 0.973721 0.627891 
6 0.970746 0.535916 
7 0.969907 0.556192 
8 0.969907 0.556192 

Table 1: Illustration of the iteration to find the correct partial volume ratio 
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Figure 4:  Results of the new 2-tensor modeling method (left) compared to the conventional 1-tensor modeling (right) showing the 
computed tensor field (top) and the residual error map (bottom). A significant reduction in errors is visible in regions where partial 
voluming is likely to occur such as near CSF.  
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Fig. (5):  Detailed results from real data for 12-direction (left) and 30-direction (right) acquisitions with anatomical images (top), 1-
tensor model (middle) and 2-tensor model (bottom).  
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Figure (6): Estimation error maps from real data for 12-direction (left) and 30-direction (right) acquisitions with 1-tensor model error 
map (top) and 2-tensor model error map (bottom). 
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