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Characterisation of electrocardiogram
signals based on blind source
separation

M. I. Owis A.-B. M. Youssef Y. M. Kadah

Biomedical Engineering Department, Cairo University, Giza, Egypt

Abstract—Blind source separation assumes that the acquired signal is composed of
a weighted sum of a number of basic components corresponding to a number of
limited sources. This work poses the problem of ECG signal diagnosis in the form of
a blind source separation problem. In particular, a large number of ECG signals
undergo two of the most commonly used blind source separation techniques,
namely, principal component analysis (PCA) and independent component analysis
(ICA), so that the basic components underlying this complex signal can be identified.
Given that such techniques are sensitive to signal shift, a simple transformation is
used that computes the magnitude of the Fourier transformation of ECG signals. This
allows the phase components corresponding to such shifts to be removed. Using the
magnitude of the projection of a given ECG signal onto these basic components as
features, it was shown that accurate arrhythmia detection and classification were
possible. The proposed strategies were applied to a large number of independent 3s
intervals of ECG signals consisting of 320 training samples and 160 test samples
from the MIT-BIH database. The samples equally represent five different ECG signal
types, including normal, ventricular couplet, ventricular tachycardia, ventricular
bigeminy and ventricular fibrillation. The intervals analysed were windowed using
either a rectangular or a Hamming window. The methods demonstrated a detection
rate of sensitivity 98% at specificity of 100% using nearest neighbour classification of
features from ICA and a rectangular window. Lower classification rates were
obtained using the same classifier with features from either PCA or ICA and a
rectangular window. The results demonstrate the potential of the new method for
clinical use.

Keywords—Principal component analysis, Independent component analysis, Arrhyth-

mia detection, ECG, Statistical classifiers
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1 Introduction

THE EARLY detection of ECG arrhythmia is important for timely
management of the patient. It relies on the ability to detect
variations in ECG morphology within a small time aperture to
detect the presence of any such abnormalities and to identify
their type. The current techniques of arrhythmia detection rely
on direct (through correlation measurement) or indirect (through
quantitative features) comparison between the current ECG
signal and samples from a database containing the arrhythmia
types of interest. Encouraging results have been obtained using
autocorrelation function (GUILLEN et al, 1989), frequency-
domain features (MINAMI et al., 1999), time-frequency analysis
(AFONSO and TOMPKINS, 1995) and wavelet transform
(KHADRA et al., 1997).

The blind source separation problem has received an
increasing amount of interest, in the past ten years, in the area
of signal analysis. This problem assumes the acquired signal to
be composed of a weighted sum of a number of basic
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components corresponding to a number of limited sources.
The solution to this problem consists of a set of basic com-
ponents that correspond to an optimised basis set for the
particular problem at hand. The advantages of using such
components, rather than any other arbitrary choice for the
basis functions, include the ability to reduce the number of
features significantly, in addition to separating the components
that correspond to noise. This makes the use of such techniques
desirable for biomedical signals (OUDA et al., 2001).

Blind source separation techniques have been applied in
several aspects of ECG signal processing. Examples of such
applications include separating fetal and maternal ECG signals
(ZARZOSO et al., 1997; DE LATHAUWER et al., 2000), analysis of
the ST segment for ischaemia detection (STAMKOPOULOS et al.,
1998) and identification of humans using ECG (BIEL et al.,
2001). They have been also used in related areas to diagnose
peripheral vascular disease from multiple blood flow measure-
ments (PANERAI ef al., 1988). In all these techniques, the
measurements were either acquired simultaneously or gated to
a certain reference point in the signal (e.g. the R point). Although
the blind source separation-based techniques were shown to be
successful in the above applications, their use in ECG signal
classification has not been addressed in the literature.

In this paper, we pose the problem of ECG signal classifica-
tion as a blind source separation problem. A large database of
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ECG signal samples was utilised to compute the basic
components of the ECG signals using principal component
analysis (PCA) and independent component analysis (ICA).
The signals were preprocessed to obtain the magnitude of their
Fourier transformation, to reduce the number of components
resulting from different shifts of the same signal. The ECG
signal window at hand was projected onto such components, and
the projection magnitudes were considered as signal features.
Feature vectors from all signals in the training database were
collected and used to define the feature space of the problem.
Subsequent featurcs from the test set were classified to the
closest type within that feature space using statistical classifica-
tion techniques. The implementation details and the results are
presented and discussed to assess the performance of the new
technique and its practicality for clinical use.

2 Methods
2.1 Shift invariance transformation

The detection of ECG arrhythmia type relies on observing
changes in the ECG signal characteristics as computed from a
short window of the signal. This window is generally taken as a
moving window that covers a number of seconds of signal,
starting from the current sample and moving back in time. This
results in unknown phase shift to the ECG signal within the
sample window. Moreover, even if the signal window is
synchronised to the onset of an R point, heart rate variability
prevents the direct comparison of windows obtained from
different patients or at different times for the same patient.

Given the sensitivity of PCA /ICA-based techniques to the
presence of such practical conditions, their direct use in the
analysis of ECG signals has been limited. To overcome this
limitation, we propose to apply a simple transformation whereby
the magnitude of the Fourier transformation of the signal is used
instead of the time-domain signal. As the relative delay between
samples is manifested as linear phase in the frequency domain,
the proposed transformation yields the same result for all circular
shifts of a given signal. Given the periodic nature of the ECG
signal, windows with different starting points generally approx-
imatc circular shifts of the same signal. As a result, such
windows provide similar outputs after this transformation.
This alleviates the need for a reference point and allows flexible
choice of sample windows.

In our implementation, two types of window were used to
select 3 s intervals from the ECG signals, namely, rectangular
and Hamming. Although the use of tapered windows such as the
Hamming window is the standard in Fourier transformation
procedures because of their better side lobe suppression char-
acteristics, the use of a rectangular window in this application
was justified for two reasons. First, the Fourier shift theorem
holds only approximately when a non-rectangular window is
applied (BRACEWELL, 1984). Secondly, the application of the
discrete Fourier transformation using a rectangular window
amounts to an orthogonal transformation that preserves
2-norm distance between signals in both the time and frequency
domains (GoLUB and VAN LOAN, 1993). This also keeps noise
within individual frequency bins uncorrelated (PAPOULIS,
1991). Therefore the comparison between the results of the
two types of windowing function is of interest in this application.

The length of the window functions used was taken as the
number of samples within the selected 3s interval (i.e. 750
points for ventricular fibrillation samples and 1080 points in all
other ECG signal types). As ECG signals are real, the magnitude
of the Fourier transformation of the sample windows of the
training (or design) database is symmetric. Therefore half of the
points in the Fourier transformed data were considered redun-
dant and subsequently excluded from further analysis.
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2.2 Principal component analvsis (PCA)

Principal component analysis is analogous to Fourier analysis
in that the data are described in terms of the coefficients of a
predetermined orthogonal set. Rather than using complex
exponentials, the orthogonal set in PCA is determined adap-
tively based on the analysed data set. In particular, PCA derives
the directions of a set of orthogonal vectors that point in the
direction of the highest variance of the data. The principal
components are calculated as the eigenvectors of the covariance
matrix of the data (GERBRANDS, 1981). The eigenvalues denote
the variances corresponding to these eigenvectors. Hence, PCA
is an efficient technique for dimensionality reduction in multi-
variate statistical analysis.

Given a data matrix X of size m x n, composed of m n-point
sample windows, let a centred matrix Z be computed as
Z=(X—FE{X}), where E{X} is the matrix of mean vectors.
Then, PCA is defined as (GERBRANDS, 1981)

Y=B"7Z and K_ = BAB' )
where A is a diagonal matrix with eigenvalues of the covariance
matrix K, on the diagonal (with eigenvalucs ranked such that
/=272 -+ 24,), and the columns of B are the corre-
sponding eigenvectors. The output of the PCA transform is
uncorrelated vectors. The covariance matrix of the output ¥ is
K. =E{ YY7} = A. Owing to the orthogonality of the matrix B,
(1) can be rewritten as Z = BY, where the matrices are m xn,
m xm and m x n, respectively. In general, principal component
analysis can be used for dimensionality reduction by truncation
of the signal components corresponding to the smallest eigen-
values. This can be described as Z' = B'Y’, where the matrices
are m xn, m X q and ¢g X n, respectively, with ¢ <n. In this case,
the selection of the number of eigenvalues allows the inclusion
of as much of the variability of the original data as needed. The
efficiency of this approximation is estimated by the ratio of the
chosen variance to the total system variance, as follows:

2l
21

For feature extraction, each centred sample is represented by its
projections on the ¢ principal components, computed as the
inner product between the centred sample and each of the
computed eigenvectors.

E= 2)

2.3 Independent component analysis (ICA)

Independent component analysis (ICA) is a more general
form of PCA, whereby higher-order statistics arc used in
addition to second-order moments, which PCA relics on, to
determine the basis vectors (HYVARINEN ef al., 2001). Let v;,
i=1,...,m, be the measured signals, and let s;, j=1,...,r, be
the signals from independent components (1Cs) with zero mean
and unit variance. The basic problem in ICA is to estimate the
mixing matrix 4 and the matrix of realisations of the indepen-
dent components S, such that the matrix of measured signals
V' =A-8. The major constraint of this problem is for r to be less
than m. In most cases, r 1s assumed known, and often r = m.

The basic algorithms for computing the independent compo-
nents rely on measuring the non-Gaussianity of the different
vectors within the whitened subspace of signals of interest. The
most common method for this purpose is the use of the fourth
central moment or kurtosis (HYVARINEN and OsA, 1997). The
value of kurtosis is zero for Gaussian random vectors and it
assumes non-zero values for other distributions. Therefore the
iterative maximisation of the kurtosis enables the non-Gaussian
components (or independent components) corresponding to the
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true underlying sources to be estimated. In this work, a fast fixed-
point algorithm was used to perform this task (HYVARINEN ez al.,
2001; HYVARINEN and OJa, 1997).

The matrix of data vectors ¥ is first whitencd using PCA. The
whitened data matrix X is defined by X=M V=
M-A-S=B-S, where M is the whitening matrix. The
problem of finding an arbitrary full-rank matrix A4 is reduced
to the simpler problem of finding an orthogonal matrix.
Subsequently, this matrix can be used to compute the indepen-
dent components as .S = B - X. In other words, we are lookmg
for an orthogonal matrix W’ such that the matrix WX is
composed of good estimates of the independent components.
To estimate all independent components, an orthogonalising
projection is added to the iteration to remove the previously
estimated components. This is implemented using a Gram—
Schmidt procedure, whereby the previously estimated compo-
nents compose an orthonormal basis of a subspace of the same
dimension as the number of components (GOLUB and VAN
LoAN, 1984). This basis set is used to remove all components
within this subspace from all subsequent independent compo-
nents. This step is necessary to satisfy the constraint of
uncorrelatedness of independent components, given the ortho-
gonality of independent components in the whitened space
(HYVARINEN et al., 2001).

For feature-extraction purposcs, each centred sample is
represented by its projections on ¢ independent components in
a similar fashion to the PCA. Nevertheless, there is no direct way
to order the independent components based on their contribu-
tion, unlike the case of principal components, as a result of the
whitening operation.

To identify those independent components that provide the
best discrimination between pathologies, we sort the indepen-
dent components based on a two-step approach. In the first step,
atable of p-values of the standard two-sample 7-test, between all
possible pairs of classes within the five classes of intercst, is
constructed based on the training data samples and a particular
independent component. This results in a table containing ten
distinct values. The second step involves the calculation of the
number of p-values in this table above 5% (i.e. not statistically
significant at the 5% level), which we will call here the
discrimination index (DI). The independent components
are then sorted according to this number. This ensures that the
selected number of independent components will contain
the ones that are most discriminating.

In this paper, the number of independent components is
selected based on the discrimination index, whereby the first
group contains those independent components with onc or fewer
p-values more than 5%, the second group contains those with
two or fewer, and so on. The reason for this approach is to
eliminate any bias in the classification outcome as a result of the
arbitrary selection of independent components within the group
having the same discrimination index.

2.4 Signal classification

The feature vectors obtained from PCA and ICA obtained
from both the rectangular and Hamming windows are used to
classify the different arrhythmia types using three types of
statistical classifier, namely, minimum distance classifier, Bayes
minimum-error classifier and voting k-nearest neighbour
(KADAH ef al., 1996). The available data set was divided into
training (design) and test subsets. The results of this classifica-
tion are expressed in terms of the sensitivity and specificity of the
outcomes. The sensitivity is computed as the conditional prob-
ability of detecting an abnormal rhythm when there is, in fact, an
arrhythmia. On the other hand, the specificity is the probability
of correct detection of the normal rhythm.
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The minimum distance classifier assumes the classes to be
similar in distribution and lincarly separable. Hence, the decision
hyperplanes are allocated halfway between the centres of
clusters of different classes. Test samples are classified by
each being assigned to the class that has the nearcst mean
vector to its feature vector. In a more general form, the Bayes
minimum-error decision rule classifies an observation (i.e. a test
sample) to the class that has the highest a posteriori probability
among the five classes. The data set is assumed to have a
Gaussian conditional density function, and the « priori prob-
abilities are assumed to be equal for the five types. On the other
hand, the voting k-nearest neighbour (kNN) technique is non-
parametric and assigns a test sample to the class of the majority
of its & closest neighbours. Here, we consider the nearest-
neighbour classifier (i.e. A=1). The proposed classifiers arc
utilised either to classify the two-class problem simply to detect
abnormal rhythm (i.e. normal against abnormal), which we will
call the detection problem, or to classify the five diffcrent classes
of signal, which we call the classification problem.

3 Results

The proposed feature estimation techniques were imple-
mented and applied to a large number of ECG signals obtained
from the MIT-BIH arrhythmia database. The data set used for this
work consisted of five different types, including normal (NR),
ventricular couplet (VC), ventricular tachycardia (VT), ventri-
cular bigeminy (VB) and ventricular fibrillation (VF). Each type
was represented by 64 independent 3 s long signals in the training
(design) data set. The testing data set consisted of another 32
independent signals of the same length from each type. The
sampling rate of the VF signals was 250 5dmplus and the
other signals were sampled at 360 sampless . The signals were
Fourier transformed and reduced to include only the components
corresponding to positive frequencies, described above.

To obtain the same size for all signals, only the first 375
frequency components were used in the subsequent analysis.
This was achieved by simply truncating the number of frequency
componems beyond 375 when the sampling rate was 360
sampless ™', Given that the sampling window length in time
was the same, the frequency bin size was the same between the
different sampling rates, and the above procedure was correct.

The PCA and ICA procedures were applied to compute a total
of 320 principal and independent components, as the available
data matrix was 320 x 375, given the number of training vectors
and the length of the feature vector. The results of using both
rectangular and Hamming windows were computed. Fig. 1
demonstrates the averaged 375-point spectrum for cach of the
five ECG signal types using a rectangular window. In Figs 2
and 3, the first 20 principal components and 20 sample
independent components are illustrated.

Table 1 demonstrates the encrgy-packing property of the
PCA, whereby a small percentage of all principal components
account for most of the energy for both the rectangular
and Hamming windows. The results for both the detection
and classification problems using PCA, when rectangular and
Hamming windows were used, are shown in Tables 2-7, using
different numbers of principal components to demonstrate the
efficiency of the technique. The detection and classification
results using ICA for both rectangular and Hamming windows
are shown in Tables 8--13. the number of independent compo-
nents used is a dircct function of the discrimination index (DI)
described above.

The Bayes minimum-error classifier was computed up to the
value of components that allowed the covariance matrix to have
a stable inverse. As a result, its results contained one entry in the
case of ICA results. As can be obscrved from the results, the
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nearest-neighbour classifier seemed to provide the best results,
followed by the minimum-distance classifier. On the other hand,
the results of the Bayes minimum-error classifier were rather
poor and suggest that the distribution of the clusters may not be
Gaussian as this technique assumes.

The first observation on the results is that the accuracy of the
results improves as the number of principal/independent
components increases, up to a certain value. After that, the
accuracy may slightly deteriorate for some cases (see for
example Tables 6, 7, 10 and 13). This indicates that there is
indeed a part of the signal that contributes random noise to the
classification problem. This is particularly evident in the case of
PCA, where the additional principal components above a certain
limit are associated with very small eigenvalues. This means that
these components do not contribute much to the signal and can
be ignored in the detection/classification process. This is
apparent from the fact that the results seem to saturate beyond
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Plot of average positive half of specorum of each of five ECG signal classes considered in this work, using a rectangular window

a certain number of components. Hence, these results sugges’t the
value of using either PCA or ICA for noise suppression and
dimensionality reduction prior to classification with any other
technique.

When we compare the results of using rectangular against
Hamming windows, several observations can be made. First, the
energy compactness of the Hamming window appears to be
better than that of the rectangular window. Also, the detection
results are generally considered better with the Hamming
window than with the rectangular window. Nevertheless, the
best detection result was obtained from the nearest-neighbour
classification of ICA features using a rectangular window.
Moreover, the classification results demonstrate a supertor
performance for the rectangular window. Table 14 shows a
summary of the performance comparison of both windows.
These results seem to support our hypothesis about the advan-
tages of using the rectangular window.
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Fig. 3. Plot of 20 sample independent components obtained from all signals in training data set

Table | Efficiency of reducing dimensionality using PCA

q 320 100 80 60 40 30 20 15 10 5
Efficiency (rectangular) 100 99.97 99.92 99.7 99.1 98.2 96.0 93.3 88.3 78.4
Efficiency (Hamming) 100 99.98 99.95 99.8 99.4 98.7 96.9 95.2 91.8 83.4

Table 2 Minimum-distance  classifier  results  for detection
problem (PCA)

Rectangular Hamming
q specificity, % sensitivity, % specificity, % sensitivity, %
5 68.8 95.3 65.6 96.1
10 71.9 94.5 75.0 96.1
15-320 71.9 943 78.1 96.1

Tuble 3 Bayes minimum-error classifier results for detection
problem (PCA)

Rectangular Hamming

q specificity, %  sensitivity, %  specificity, %  sensitivity, %

S 65.6 914 59.4 93.8
10 56.3 96.9 56.3 100
15 40.6 98.4 46.9 100
20 46.9 99.2 344 100
30 344 100 40.6 100
40 313 100 344 99.2

4 Discussion

The results of PCA and ICA appear to become closer as
the number of components included in the feature vector
increases. This is a direct result of the fact that both PCA and
ICA provide a complete basis set of vectors to describe the
space of ECG signals. The differences between the two
techniques are only apparent in the specific directions of
each of these vectors. These differences tend to make the
spanned subspaces obtained using the two techniques rather
different when a small number of vectors are used. In the
extreme case, when all vectors (in this case 375) are used, we
can find an orthogonal transformation to transform the feature
vector based on PCA to that based on ICA. Given that the
classification techniques used here rely primarily on the
Euclidean distance in assigning class membership, and as
orthogonal transformations preserve Euclidean distance, it is
not surprising to see that the classification results match in
this special case and to realise the convergence of the two sets
of results to the same solution.

The three classifiers implemented in this work appear to
provide substantially different receiver operating characteris-
tics, demonstrating the compromise between detection rates

Tuble 4 Nearest-neighbour classifier results for detection problem (PCA)

Rectangular Hamming
q specificity, % sensitivity, % specificity, % sensitivity, %
5 59.4 94.5 65.6 97.7
10 75.0 93.0 75.0 96.9
15 90.6 96.1 87.5 97.7
20 93.8 96.1 93.8 96.9
30 96.9 96.1 90.7 97.7
40 96.9 96.9 90.7 96.1
60-320 96.9 97.7 90.7 97.7
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Table 5 Minimum-distance classifier sensitivity (%) results for classification problem (PCA)

Rectangular Hamming
q NR vC VT VB VF NR vC VT VB VF
5 68.8 68.8 53.1 21.9 78.1 65.6 62.5 56.3 6.25 78.1
10 71.9 71.9 56.3 25.0 81.3 75 62.5 59.4 6.25 81.3
15-320 71.9 75.0 56.3 25.0 81.3 78.1 62.5 59.4 9.4 81.3
Table 6  Bayes minimum-error classifier sensitivity (%) results for classification problem (PCA)
Rectangular Hamming
q NR vC VT VB VF NR vC VT VB VF
5 65.6 78.1 62.5 46.9 71.9 59.4 68.8 65.6 71.9 68.8
10 56.3 65.6 71.9 68.8 78.1 56.3 68.8 84.4 81.3 84.4
15 40.6 65.6 81.3 81.3 75.0 46.9 62.5 87.5 75.0 87.5
20 46.9 65.6 84.4 62.5 87.5 34.4 59.4 87.5 87.5 93.8
30 344 53.1 81.3 68.8 90.6 40.6 50.0 87.5 84.4 100
40 31.3 40.6 84.4 71.9 87.5 344 56.3 81.3 81.3 90.7
Tuble 7 Nearest-neighbour classifier sensitivity (%) results for classification problem (PCA)
Rectangular Hamming .
q NR Ve VT VB VF NR \Ye VT VB VF
5 59.4 53.1 65.6 56.3 71.9 65.6 59.4 68.8 84.4 75.0
10 75.0 71.9 71.9 71.9 78.1 75.0 59.4 68.8 84.4 84.4
15 90.6 75.0 68.8 84.4 81.3 87.5 59.4 75.0 84.4 90.6
20 93.8 78.1 68.8 84.4 87.5 93.8 62.5 84.4 87.5 90.6
30 96.9 75.0 71.9 84.4 87.5 90.6 71.9 75.0 93.8 90.6
40 96.9 71.9 75.0 87.5 87.5 90.6 68.8 75.0 90.6 87.5
60 96.9 68.8 71.9 84.4 90.6 90.6 68.8 75.0 90.6 90.6
80 96.9 68.8 71.9 81.3 87.5 90.6 71.9 75.0 90.6 90.6
100-320 96.9 68.8 71.9 81.3 90.6 90.6 71.9 75.0 90.6 90.6
Table 8 Minimum-distance classifier results for detection problem (ICA)
Rectangular Hamming

DI q specificity, % sensitivity, % q specificity, % sensitivity, %

1 13 71.9 85.2 35 75.0 78.9

2 99 84.4 80.5 138 68.8 85.2

3 162 75.0 96.9 203 87.5 84.4

4 219 78.1 96.9 240 75.0 96.1
5-10 249-320 78.1 96.1 253-320 81.3 96.1

and false-alarm rates. The optimisation of this classification is
beyond the scope of this paper. Nevertheless, the results of
these classifiers provide a general conclusion about the
classification accuracy and the upper limits in the sensitivity
and specificity values obtainable using the proposed features.

The signal window length for this analysis can be arbitrarily
chosen, provided it is less than 10s. This is to satisfy the
ANSI/AAMI EC13-1992 standard, which requires alarms for

abnormal ECG signals to be activated within 10 s of their onset.
Although increasing the window to the maximum possible size
is desirable to obtain a better resolution in the frequency domain,
this selection was made to ensure signal stationarity within the
analysis window (WANG et al., 1998). The use of two sampling
rate variations of the number of points within this duration was
not found to be crucial, as long as the ECG signal was
sufficiently sampled.

Tuble 9  Bayes minimum-error classifier results for detection problem (ICA4)

Rectangular

Hamming

specificity, %

sensitivity, % q

specificity, % sensitivity, %
p Y

53.1 93.0

35 46.9 98.4
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Tuble 10

Nearest-neighbour classifier results for detection problem (ICA)

Rectangular Hamming
DI q specificity, % sensitivity, % q specificity, % sensitivity, %
1 13 71.9 95.3 35 65.6 95.3
2 99 90.6 96.9 138 87.5 97.7
3 162 96.9 97.7 203 96.9 98.4
4 219 100 97.7 240 96.9 98.4
5 249 100 98.4 253 93.8 97.7
6—-10 265-320 100 97.7 276-320 93.8 96.9
Table 11 Minimum-distance classifier sensitivity (%) results for classification problem (ICA)
Rectangular Hamming
DI q NR vC VT VB VF q NR vC VT VB VF
1 13 719 688 594 375 531 35 75.0 438 406 250 469
2 99 844 625 625 531 469 138 688 469 594 5311 563
3 162 75.0 781 531 219 844 203 875 531 656 563 50.0
4 219 750 750 563 188 844 240 750 594 594 63 844
5-10 249-320  78.1 781 563 219 875 253-320 813 594 594 94 813

Table 12 Bayves minimum-error classifier sensitivity (%) results for classification problem (ICA)

Rectangular Hamming
DI q NR vC VT VB VF q NR vC VT VB VF
1 13 53.1 65.6 68.8 59.4 65.6 35 46.9 62.5 68.8 78.1 46.9
Table 13 Nearest-neighbour classifier sensitivity (%) results for classification problem (ICA)
Rectangular Hamming
DI q NR vC VT VB VF q NR vC VT VB VF
1 13 719 594 594 59.4 656 35 65.6 469 469 625 75.0
2 99 90.6 563 656 719 875 138 87.5 625 688 688 844
3 162 969 688 688 719 875 203 969 625 750 906  96.9
4 219 100 68.8 688 844 875 240 938 688 750 938 938
5 249 100 688 719 813 906 253 938 656 688 90.6 90.6
6-10 265-320 100 656 719 813 906 276-320 938 719 750 906 906

Table 14 Summary of best performance of windowing functions in

detection and classification problems using PCA and ICA as features

Detection Classification

Classifier results PCA ICA PCA ICA
Minimum-distance specificity Hamming Hamming

sensitivity Hamming rectangular rectangular rectangular
Bayes specificity rectangular rectangular

sensitivity Hamming Hamming rectangular rectangular
Nearest-neighbour specificity rectangular rectangular

sensitivity Hamming rectangular rectangular rectangular

It should be noted that the proposed methods classify ECG
samples based on the presence and strength of the frequency
components and ignoring their relative delays. This logic is
particularly justified in those cases in which the heart rate
becomes higher, as in tachycardia and fibrillation, where the
frequency components become significantly different. Even
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though the intuitive justification in the other arrhythmia types
may not be obvious, the results demonstrate the presence of
significant differences between these types using only the
magnitude information. The question of whether the inclusion

of phase information would provide better discrimination
remains for future work.
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The results show that the use of PCA demonstrates a
significant degree of energy compaction of the training
samples. This result is not surprising and is similar to that of
the previous work by SILIPO et al. (1995) and LAGUNA ef al.
(1999). However, the proposed transformation cannot directly
be used for such applications as data compression for ECG
signals, as the phase part of the signals was ignored. A more
useful transformation for this application would be the discrete
cosine transformation, whereby a (2N-1)-point symmetric signal
is composed using the N-point ECG sample window. The
analysis of such an implementation is beyond the scope of this
paper.

5 Conclusions

Two blind source separation techniques were used to derive
ECG signal features for arrhythmia detection and classification.
A large database of ECG signals was used to compute a set of
basic signal components that compose any ECG signal, using
PCA and ICA. A set of features was obtained by projection of a
given ECG signal onto the subspace of those basic signals,
which were subsequently used for arrhythmia detection and
classification using conventional statistical methods. The results
indicate the value of such features for practical use in clinical
settings.
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