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Abstract–Four types of ventricular arrhythmias (PVC, 
VB, VT and VF) were considered; a new matrix, Phase 
space density matrix, was generated from the 
reconstructed state space of the ECG signal, and a 
number of features were extracted from its contents to be 
used in the classification process, Three statistical 
classifiers are used in the classification, results confirmed 
the robustness of the new technique and demonstrate its 
value as a diagnostic tool, where sensitivity was 96.15%, 
76.92%, 84.62%, and 100% for PVC, VT, VB, VF 
respectively. 
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I. INTRODUCTION 

Cardiac arrhythmias are considered among the most 
fatal conditions of the human physiology [1]. In many cases 
when such abnormalities are correctly diagnosed early 
enough, it is possible to find ways to treat the patient prevent 
further complications of the case. As a result, the detection 
and classification of such conditions have received a great 
deal of research work since the introduction of 
electrocardiography and later of computerized diagnostic 
system [2]. In particular, it is of prime importance to 
differentiate potentially lethal arrhythmias such as ventricular 
fibrillation (VF) and ventricular tachycardia (VT), from more 
benign problems as manifested in superventricular 
tachycardia (SVT) [3]. Therefore, the development of 
accurate noninvasive techniques for assessing the risk of 
lethal arrhythmias is essential to reducing mortality from 
cardiac deaths.  

Various detection algorithms have been reported, 
which can be classified as linear techniques such as 
sequential hypothesis testing[4], Autoregressive Modeling of 
ECG signal[5], frequency domain features[6], wavelet 
analysis[7],[8], and nonlinear techniques, which uses the 
concept of chaotic systems to describe and extract some 
features from the ECG signal [14]. All these methods exhibit 
advantages and disadvantages, some being too difficult to 
implement and compute for AEDs and ICDs, and some 
having low specificity in differentiating between various 
types of arrhythmias. In this paper we proposed a novel 
technique to be used in arrhythmia classification, which take 
into consideration the problem of characterizing the nonlinear 
dynamics (chaos theory) of the ECG signal and its variation 
with different arrhythmia types, where a new matrix, Phase 
Space Density Matrix, was reconstructed from the phase 
space trajectory of the ECG signals and some features was 
extracted from this matrix to be used in arrhythmia detection 
and classification. The proposed implementations were used 
to compute these features for a large number of independent 
ECG signals belonging to five different ECG signal types 
from the  MIT-BIH  arrhythmia  Database [9]. The results are  

studied to detect statistically significant differences among 
different arrhythmia types. Finally, statistical classification 
techniques are used to assess the possibility 
 

II. PHASE DENSITY MATRIX 

In this method a two-dimensional phase space 
trajectory of the ECG signal was reconstructed using the time 
delay method, where the delay time τ was calculated from 
the first minimum of the average mutual information function 
[10]. The resulting phase space can be obtained by using the 
ECG signal )(kx and its delayed version )( τ+kx : 
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The phase space plot for two dimension phase space is 
obtained by plotting row 2 of the reconstructed matrix against 
row1. The values in the matrix are normalized between 0 and 
1, and then the phase space area is divided into small square 
areas of equal size such that the phase space is divided into a 
grid of N x N squares. A phase space density matrix C is now 
obtained with its elements C(i, j) equal to the number of 
phase space points falling in a grid. The points in the phase 
space were restricted to a specific region of the phase space 
for each type of arrhythmia. The phase space plots and the 
corresponding phase space density plots for the NSR, PVC, 
VT, VB and VF signals are shown in Fig. 1 and Fig. 2 
respectively. It is observed that the distribution of phase 
space points for NSR and different types of arrhythmias were 
clearly different as shown in Fig.2.  

If we divide the phase space plots of the ECG signal 
into a grid of 20x20 squares, then we will have 400 elements 
that is too much to be used as a features vector in the 
classification process, so a reduced number of features can be 
calculated based on the co-occurrence matrix, a method used 
for the purpose of texture discrimination [11], some of these 
features are defined by the equations that follow, where 

yx µµ , and yx σσ , denote the mean and standard deviations 

of the row and column sums of the density matrix, 
respectively. 
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∑
=

−=
N

ji

jiCjiCON
1,

2 ),(.)(   (2) 

b. The Angular Second Moment (ASM) 
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c. The entropy (ENT) 
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Figure 1 The phase space plots of (a) NSR,  (b) PVC,  (c) VB,  (d) VT and  (e) VF signals 

     

   
 

Figure 2  Phase space density plots of(a) NSR, (b) PVC, (c) VB, (d) VT and (e) VF signals 
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d. The Correlation (COR) 
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e. Maximum density: 
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f. Inverse difference moment:  
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III. RESULTS AND DISCUSSION  

The ECG signals used in this paper were obtained 
from the MIT-BIH arrhythmia database [9]; the data set was 
composed of five different types including normal sinus 
rhythm (NSR), premature ventricular couplet (PVC), 
ventricular bigeminy (VB), ventricular tachycardia (VT), and 
ventricular fibrillation (VF). The data set was divided into 
learning and testing data set, 52 independent signals for the 
learning set of each type and 26 independent signals for the 
test set of each type with each signal length 3 sec. All the 
signals were resampled at 360 samples/s.  

The two dimension phase space trajectory of the ECG 
signals was reconstructed using the delay time embedding 
method, where the delay was chosen to be 5 samples which 
calculated from the first minimum of the mutual information 
function [10],[12]. Then the phase space plots of the signals 
were divided into a grid of 20x20 squares and the numbers of 
points C(i,j) within each square was computed to form the 
phase space density matrix C. The six features from the 
density matrix (CON, ASM, ENT, COR, MAX, and Inverse 
difference moment) were extracted to form the features 
vectors. I used the significance test in this paper to assess the 
use of the parameters extracted from the new technique for 
discriminating between different ECG signal types. Results 
of significance test for each feature were shown in tables I-VI 
 

TABLE I. P-values of t-test for CON. 
Type PVC VT VB VF 
NR <1.0e-16 <1.0e-16 <1.0e-16 <1.0e-16 

PVC  <1.0e-16 0.0013 0.7691 
VT   0.056 0.0002 
VB    0.0092 

 
TABLE II. P-values of t-test for ASM. 

Type PVC VT VB VF 
NR <1.0e-16 <1.0e-16 0.0006 <1.0e-16 

PVC  <1.0e-16 <1.0e-16 <1.0e-16 
VT   0.0037 <1.0e-16 
VB    <1.0e-16 

 

 

TABLE III. P-values of t-test for ENT. 
Type PVC VT VB VF 
NR 0.133 <1.0e-16 0.0006 <1.0e-16 

PVC  <1.0e-16 <1.0e-16 <1.0e-16 
VT   <1.0e-16 <1.0e-16 
VB    <1.0e-16 

TABLE IV. P-values of t-test for COR. 
Type PVC VT VB VF 
NR <1.0e-16 0.8116 0.0735 <1.0e-16 

PVC  0.004 0.0001 <1.0e-16 
VT   0.1938 <1.0e-16 
VB    <1.0e-16 

TABLE V. P-values of t-test for MAX. 
Type PVC VT VB VF 
NR <1.0e-16 0.0038 0.3664 <1.0e-16 

PVC  <1.0e-16 <1.0e-16 <1.0e-16 
VT   0.051 <1.0e-16 
VB    <1.0e-16 

TABLE VI. P-values of t-test for Inverse 
difference moment. 

Type PVC VT VB VF 
NR 0.0129 <1.0e-16 0.0062 <1.0e-16 

PVC  <1.0e-16 <1.0e-16 <1.0e-16 
VT   <1.0e-16 <1.0e-16 
VB    <1.0e-16 

 
As indicated from Tables I-VI, the results confirm 

that normal ECG signals can be statistically differentiated 
from abnormal by using the extracted features of the phase 
space density matrix. The very low p-values suggest the 
rejection of the null hypothesis and hence the presence of a 
significant difference. For example, when using ASM and the 
Inverse difference moment, there is significant difference 
between all pairs of arrhythmia types at 5% level, but when 
using CON, there is significant difference between all pairs at 
5% level except between VT and VB which are significant at 
the 10% level, and between PVC and VF which are no 
statistically significant difference between them (shown in 
boldface inside the table). Also the other features show a very 
significant difference between some arrhythmia types and no 
statistically significant difference between other types. So we 
can merge all of these features in one vector to be used in the 
detection and classification process of different arrhythmias 
types. three statistical classifiers are used in this paper; 
minimum distance classifier, Bayes minimum-error classifier, 
and voting k-nearest neighbor (k-NN) classifier [13][14]. 

In the classification process we first tried to use each 
feature separately but the result was not be good, but when 
we combined all the features extracted from the proposed 
technique the results showed the robustness of the new 
technique in the detection of abnormality of the ECG signal. 
Classification results for only normal versus abnormal ECG 
shown in Table VII, and the results of applying the three 
statistical classifiers to classify the 5 different ECG types are 
listed in Table VIII.  
 
 
 



TABLE VII. Results of the three classifiers (Detection) 
Classifier Specificity Sensitivity 
Min. distance 50.0000 82.6923 
Bayes 96.1538 99.0385 
K-NN (K=2) 79.1667 95.7895 

 
TABLE VIII. Results of the three classifiers (Classification) 

 Min. 
Distance Bayes K-NN 

(K=2) 
Specificity  50.0000 96.1538 86.3636 

Sensitivity for PVC 61.5385 96.1538 77.7778 

Sensitivity for VT 57.6923 76.9231 76.9231 

Sensitivity for VB 23.0769 84.6154 87.5000 

Sensitivity for VF 100.0000 100.000 100.000 
 

Results of the detection and classification process 
showed that Bayes minimum-error classifier seems to provide 
the best results which means that the clusters follow a 
Gaussian distribution, followed by the k-nearest neighbor 
classifier (the best at k=2). And the results of minimum 
distance classifier were rather poor which means that the 
classes are not linearly separable. 
 

IV. CONCLUSIONS 

Applying nonlinear signal processing techniques to 
signals like ECG provides very useful information for 
detection of cardiac abnormalities. The proposed technique 
have been shown to be effective for the classification of 
cardiac arrhythmias in critically ill patients as shown in the 
results of a large data set of actual ECG signals from five 
different classes, which indicate the value of such techniques 
in the diagnosis of heart disease in intensive care units (ICU). 
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