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ABSTRACT

In magnetic resonance imaging (MRI), data is collected as
spectrum samples. The acquisition time is proportional to the
number of the spectrum lines. Therefore, only few lines of the
data space may be required in order to track rapid changes of an
object. In the current techniques, the missed lines may be
zeroed or replaced by the corresponding lines in a reference
image, which is acquired a priori for the same anatomical
cross-section. However, this always comes at the expensc of the
spatial-resolution. In this study, we propose an extrapolation
iterative algorithm to provide an improved estimate of the
missed  lines. Additional spatial and spatial-frequency
constraints of the reference image are incorporated to enhance
the convergence and obtain a better estimate of the initial
conditions of the iterations. Results from simulated data verity
the theory and indicate that the algorithm may provide better
reconstruction in dynamic imaging studies.
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1. INTRODUCTION

Several MRI applications involve imaging a dynamic
object to reveal its temporal behavior. Examples include
monitoring tumor uptake of a contrast agent, functional MRI,
and cardiac imaging. In such applications, it is often difficult to
achieve the desired temporal resolution while maintaining the
desired spatial resolution and field-of-view (FOV). Most of the
dynamic imaging techniques begin with acquiring a full spatial
resolution image, called reference image, then continue to
acquire dynamic images at high temporal resolutions. The basic
idea of reducing the acquisition time in these techniques is to
assume the presence of some common information between the
reference image and the subsequent dynamic images.
Therefore, information from the reference image can be
partially used to reconstruct the subsequent dynamic images
thereby achieving a considerable saving in the acquisition time.

Keyhole and reduced FOV (rFOV) techniques are
commonly used in MRI dynamic imaging. Both techniqucs
follow the main procedures discussed above and operate in the
spectral domain of the image, namely the k-space. The Keyhole
technique [1] updates only the central k-space part of the
acquired dynamic images, assuming that the outer regions are
stationary. Alternatively, the reduced FOV technique [2]
assumes that the dynamic changes occur only in the central
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region of the image itself. This assumption is used to improve
the temporal resolution of the central region of a dynamic
image while maintaining the same spatial resolution
throughout. Much work was inspired by these two techniques
in order to improve the image quality. However, because the
stationarity assumption is usually unrealistic, the reconstructed
images suffer from degradation in the spatial resolution as
observed in keyhole [3], and aliasing as cncountered in the
rFOV technique [2].

In this work, we propose an iterative algorithm that takes
advantage of both the keyhole and the rFOV techniques.
Towards this end, an extrapolation algorithm is used to mitigate
the possible discontinuity resulting from concatenating parts of
two images, either in the k-space or the image-space.
Extrapolation of missing spectral components of a finite extent
object has been of particular interest since the 1960s. The
Gerchberg-Papoulis (GP) algorithm is a classical example of
such algorithms [4,5].

A generic block diagram of the GP algorithm is shown in
figure 1. The algorithm starts by obtaining the inverse Fourier
transform, i.e. the image, of the measured spectrum, which
represents part of the complete spectrum. The resulting image
is then truncated because the imaged object is originally of
finite extent. The truncation process can be viewed as a
constraint on the image. Next, the Fourier transform is obtained
for the constrained image and the known scgment of the
spectrum replaces its counterpart in the last iteration. The
process is repeated until satisfactory results are obtained. This
algorithm has the drawback of being slow to converge to the
true image. Another disadvantage is its sensitivity to additive
noise. In this paper, we propose a modification of the GP
algorithm, which enhances the convergence by incorporating
more a priori information about the object and improving the
initial estimate of the itcrations. We call the new algorithm a
Local-Ficld GP (LFGP) algorithm because, in dynamic
imaging, changes are assumed to be confined to a limited
region of the object.

2. THEORY OF THE LFGP ALGORITHM

The original dynamic image, f{x), is assumed to consist of a
dynamic region and a stationary region, A(x), which is known a
priorily from the reference image and may be represented as

h(x) = flx).(1-R(x/a)) M



Where « defines a symmetric dynamic region extending around
the center of the object and R is a rectangular window. Because
only the central part of the spectrum is acquired to reduce the
acquisition time, the measured data, G(w), is given by
G(w)=F(w) . R(w/b) 2)
Where b is the bandwidth of the rectangular window, and F{w)
is the Fouricr transform of the dynamic image, f{x). Taking the
Fourier transform to both sides of equation (1), we get
H(w)=F(w) - sinc(aw)®F(w) (3)
Where ® is the convolution operator. In order to converge to
the truc image, the algorithm progresses by transforming the
image from the k-space and the image space and vice versa. In
the iterations, the available « priori information is used to
constrain the image. Therefore, at the i step in the algorithm,
the measured part of the spectrum, G(w), replaces the estimated
part, hence:

Fifw)=1 ,0w) [1 - R(w/b)) + G(w) (4
Where, I ,(w) is the spectrum of the constrained image in the
last iteration. On the spatial-domain side of the transform, only
the rFOV of the dynamic image is updated, meanwhile the
outer region is replaced by that of the reference image, hence
Sl O=ffx) [R(Sa)] +h(x) (%)
Where, [ %(w) is the image after applying the spatial
constraints.

both

Taking the Fourier transform to sides of (5), and

substituting in (4), we obtain

I (w)={ sinc{aw) ®F(w)+H(w)} {1 - Riw/b)]+Glw) 6)

In order to simplify the derivation, we need to define the

following orthogonal operators

P, = sinc(aw) ®, P, = Riw/b), and Q) = (1 P}). (7)
Where P, projects any given signal onto the subspace of

finite-extent signals, P, projects onto the subspace  of band-

limited signals, and @), is a projector onto a subspace of signals

whose frequency components vanishes for | <b.

Using the operators defined above, equation (6) becomes

Fiw)= Qp (P, Fiy(w)+H(w)] +Gi(w) &
Substituting from equations (2) and (3) into (8), then
Fi(w)=Qp (P Fii(w)+ Flw) - Py F(w)]+ Py F(w) )
Or,

Fiw)=Qp P Fisw)+ F(w) - Q) Py F(w) (10)
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For equation (10), i starts from 1, and F;(w) is taken as

Fi(w)= Fw) - Oy P, F(w) (am
Then, the recursion in equation (10) can be given by
it
Fw= Y (Q,P) (1 -0,P)F(w) (12)
r=)
Or,
il
Fw=Y1Q,P) —(Q,P) " 1F(w) (13
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The above power series summation reduces to the following

E(w) = F(w)=(Q,P,) F(w) (14)
From Von Ncuman's alternating projection theory [6], given
two orthogonal operators (), and P, that project a signal F(w)
on two subspaces Q and P, then

lim(Q,P,) F(w) =L (15)

Where £ is the projection of F(w) onto a closed subspace
detined by the intersection of Q and P. However, according to
the definition of Oy, and P, in equation (7), the intersection of Q
and P is the null space. Therefore, as i grows without bound in
equation (14), the term (Q,P,) F(w) vanishes. Hence, Fi(w)
tends to f{w) and convergence to the true image is guaranteed
for the LFGP algorithm.

3. IMPLEMENTATION OF THE LFGP
ALGORITHM

A typical MRI acquisition scheme takes little time to
acquire a complete row of data. However, it has to wait for a
relatively long period, called Time-to-Repeat (TR), to acquire
another row. This allows the atoms to return back to their
rclaxation status so that when re-excited a significant signal is
acquired. Therefore, reducing the number of the acquired rows
is useful to increase the scanning temporal resolution.
However, it causes degradation in the spatial resolution in the
columns direction. Therefore, by taking the inverse Fourier
transform of the rows, individual columns can be subjected to
the LFGP algorithm to extrapolate the wmissed samples.
Alternatively, the LFGP can be directly applied to the whole
image. This is achieved by using a 2-D rectangular window, as
well as a 2-D Fourier transform.

Implementation of the LFGP algorithm starts by acquiring a
reference image, in which we assume that only aregion of
interest undergoes dynamic changes. Next, the following
algorithm is used to reconstruct the dynamic image:

1) Acquire the central part of the k-space of the dynamic
image.



2) Apply the keyhole to reconstruct the k-space of the initial
dynamic image F;(w) and let i=1.

3) Fourier transform the resultant k-space to obtain f;(x).

4) Replace the image regions outside the local ficld of the
dynamic changes with their counterparts in the reference
image to obtain f;(x).

5) Get the Fourier transform of f;°(x) to obtain the spectrum
Fif(w)

6) Replace the central part of F;* with that of the measured
part of the k-space to obtain I;,,.

7) Gotostep 3.

The termination criterion, in the above algorithm, can be
either a predefined number of iterations or when the error gets
below certain threshold.

4. RESULTS

The ability of the LEGP algorithm to reconstruct simulated
images is compared against that of the keyhole technique. A
reference image of resolution (64x64) is first reconstructed as
shown in figure 2. Dynamic changes are introduced into a
central region that constitutes 30% ol the refercnce image to
simulate a dynamic study. This is illustrated in figure 3.

In figurcs 4 and 5, the dynamic image is reconstructed from
the central 14 lines of the k-space using the keyhole and the
LFGP techniques, respectively. The latter was used for only 10
iterations. It is apparcnt that LFGP, unlike the keyhole. is
capable of tracking the change in the sharp edges, which means
changes in the high frequency components of the image. This
result may be further clarified if we examine a cross-section in
the image. For this purpose, the central column of the actual
dynamic image, and the reconstructed images in both figurcs 4
and 5, are plotted in figure 6. It is apparent that the image
reconstructed by the keyhole, unlike the one reconstructed by

dynamic changes.

As expected, the error in the reconstructed image using the
LFGP algorithm decreases with the number of iterations as
shown in figure 7. The error curve indicates that acceptable
results are obtained in less than 10 iterations, a process which
takes less than 0.5 second on a P-Il, 400 MHz, with 128 MB
RAM.

For purposes of comparison, the rcgion outside rFOV,
which is assumed known a priorily, is not included in the error
calculations either for the keyhole or the LFGP techniques.
Figure 8 shows that the choice of the initial image in the LFGP
affects its performance. Using a keyhole reconstructed image as
the initial solution for the iterations results in a significant
reduction in the number of iterations necded to reach the true
image. On the other hand, starting from a zero-padded
spectrum, which is the common start in the generic GP
algorithm, requires much more iterations to reach the same
results.
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5. DISCUSSION

The
lead to

assumptions associated with the keyhole technique
inaccurate results in situations when the dynamic
changes include the high frequency components of the object.
Another  problem is the discontinuity occurring when
concatenating regions from the different k-spaces of the
reference and the dynamic images. Furthermore, the keyhole
technique does not utilize the assumption that the dynamic
changes are confined to a small FOV. On the other side, the
rFOV technique acquires data that is needed to reconstruct a
reduced FOV, rather than the entire FOV. Since imaging a
smaller FOV corresponds to under-sampling in the k-space, the
number  of the acquired lines, and hence the acquisition time, is
reduced. However, this causes the changes outside the rFOV to
be wrapped inside it.

Unlike the keyhole technique, the proposed algorithm does
not assume stationary high frequency components but tries to
cstimate them based on image information outside the local
ficld of the dynamic changes. Morcover, in the LFGP
algorithm, the assumption of local-field dynamic changes is
applied, as a constraint, to the image space. Therefore, unlike
the rFOV  technique, there is no under-sampling of the k-space
thus aliasing is not a problem.

Although less than 10 iterations were sufficient to
reconstruct the image in figure 5, we believe that more
iterations may be required for reconstructing rcal images.

When the entire object undergoes dynamic changes, LFGP
reduces to the usual GP algorithm, which only assumes finite
extent of the object. However, in this case, the initial solution is
better and hence fewer iterations are needed.

6. CONCLUSION

In this work, a modified GP extrapolation algorithm is used
for MRI dynamic imaging to improve the spatial resolution of
reconstructed images. The proposed algorithm avoids the
imperfections associated with the assumptions of both the
keyhole and the rFOV techniques. Morcover, the extrapolation
has the effect of smoothing out the k-space discontinuity
resulting when the keyhole technique is used. The results show
that the proposed technique enhances the image resolution even
when the dynamic changes include the high frequency content
of the k-space. The future work includes the verification of the
LFGP algorithm by applying it on real MRI dynamic images.
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Figure 1. The generic GP algorithm, with the steps of the
iterations indicated.

Figure 3. The Dynamic image.
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Figure 4. The dynamic image using keyhole reconstruction.

Figure 5. The dynamic image using LFGP reconstruction (10
iterations).

Figure 6. Central column of the images in figures (3,4, and 5)
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Figure 7. The error curve of the LFGP iterations. The fixed
error of the keyhole is presented for comparison.
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Figure 8. Iteration errors, using the Keyhole image, and a zero-
padded image as the starting step of the algorithm.



