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ABSTRACT

In this paper we study the B-mode/Doppler duplex imag-
ing problem. We begin by looking at the problem of deter-
mining the true velocity vector only. We develop a model
for the power spectrum of a signal reflected by a line of
point scatterers with a Poisson distribution. We show that
with circularly symmetric apertures it is possible to use the
expression of that power spectrum to determine the true
velocity vector from a single excitation and two measure-
ments. We also describe an illumination configuration that
guarantees that the velocity estimation process is range-
invariant. We conclude the paper by studying the problem
of simultaneously estimating the range and true velocity of
a flow. In particular, we show that this problem is com-
pletely characterized by a generalized range-2-D Doppler
ambiguity function that depends on the excitation signal
and the transducer geometry.

1. INTRODUCTION

Current Doppler ultrasound flowmeters are based on the
classical Doppler frequency shift equation:

fa=fr—fi= —%(cos @i + cos ¢r)-fi (1)

Here fq is the frequency shift, f. is the return frequency,
fi is the transmitted frequency, v is the target velocity, ¢
is the speed of sound in tissues, and ¢; and ¢, are the an-
gles between the direction of motion and the transmitter
and the receiver axes respectively. According to this equa-
tion, the velocity of a moving target can be derived from
the frequency shift of the return signal given the incident
frequency, the wave phase velocity and the precise geome-
try of the problem. If we use the same transducer as both
the transmitter and the receiver, we need only to define one
angle since ¢; and ¢, in the Doppler equation will be the
same in this case. As a result, if the path of the moving
target is unknown, the above Doppler equation can only
detect the projection of the velocity vector onto the direc-
tion of the transducer axis. Hence, if we want to obtain the
magnitude of the complete velocity vector, we have to use
at least three frequency shift measurements from three in-
dependent spatial locations to be able to estimate the three
spatial velocity components. Although this has been the ap-
proach of many authors, the complexity of this technique
have hampered its application in practical systems.
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One of the important constraints in using the Doppler
equation is that the incident field must be a plane wave.
This condition can be justified for many applications such
as radar imaging where the target is far enough from the an-
tenna. On the other hand, for practical medical ultrasound
applications, this assumption no longer holds. This can be
easily shown if we look at the angular spectrum decompo-
sition of the ultrasound field at various ranges. A. unidi-
rectional plane wave requires an aperture that is infinite
in extent and is therefore practically unrealizable. Hence,
any finite aperture should be expected to return a spec-
trum of frequency shifts that corresponds to both the plane
wave content of this aperture and the target velocity profile.
This causes the well-known geometric broadening effect and
is usually regarded as one of the major source of inaccuracy
in the velocity estimation process. Many authors have in-
vestigated this effect along with the transit time effect on
the Doppler spectrum [1]. According to their results, the
received Doppler spectrum depends on both the axial and
the lateral components of the flow. Hence, the estimation
of two-dimensional flow maps is theoretically possible using
a single transducer provided that the decomposition of the
two components of the flow is feasible. This was the basis
for the theory of estimating the transverse component of a
Doppler flow developed for some special ultrasound fields
[2]. This theory suggested that the geometric broadening
effect can be used to calculate the lateral component of the
flow by a formula that is similar to the classical Doppler
equation for the axial flow. This formula can be applied
well to flows in the far-field or in the focal plane of a focused
transducer and provided that the flow crosses the axis of the
transducer. The main difference between the new formula
and the classical Doppler equation is that the formula uses
absolute bandwidth measurements of the return spectrum
instead of the Doppler shift.

In spite of the promising experimental results demon-
strated with this theory, the strict conditions that must be
met for the theory to apply have limited its practical ap-
plication in practical medical imaging systems. Example of
such conditions is that the flow line has to cross the trans-
ducer axis. Moreover, for the case of focused transducer
arrangement, the flow has to cross that axis exactly at the
focal plane. This is quite difficult to guarantee in practi-
cal situations where the flow location and direction are not
available. Also, in case of circularly asymmetric apertures,
e.g., a rectangular transducer, the flow was assumed to lie
within a plane that is parallel to one of the rectangle sides
while containing the transducer axis. Other problems as-
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sociated with the difficulty in measuring the narrow band-
width variation specially from the far field configuration
and its range dependence.

In this work, we present a general model to describe
the combination of transit-time and geometrical broaden-
ing effects on the Doppler return power spectrum from an
oblique flow. In the special case of narrowband signal and
circularly symmetric aperture, we show that the magnitude
of the complete velocity vector can be theoretically obtained
by doing only one excitation and taking two measurements
from the return power spectrum. Also, we establish the
range and azimuth bandwidth shift-invariance theorems for
this configuration. Then, we show that the Duplex image
formation process can be described in terms of a generalized
range-azimuth-velocity ambiguity function of excitation sig-
nals and transducer geometry.

2. VELOCITY ESTIMATION MODEL

In this part, we develop the velocity estimation technique
based on a model for the power spectrum of the return
signal from an oblique flow. Assume that we have a line of
moving Rayleigh scatterers in front of an arbitrary aperture
as shown in fig.(1). Under the conditions defined in [3] and
given the aperture geometry and the temporal excitation,
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we can proceed to derive the formula for the Doppler power
spectrum as summarized in the block diagram of Fig.(2).
The resultant formula for the power spectrum for this model
is given by:
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Here ® rr(w) is the Doppler power spectrum, X’ is the Pois-
son model parameter which can be related to the hematocrit
value (ratio of the volume of the formed elements to the to-
tal volume of blood), o is the scattering cross section of the
individual scatterers, vy and v, are the transverse and axial
components of the flow, U(.) is the Fourier Transform of the
effective transmit-receive aperture at the depth of interest,
S(.) is the Fourier transform of the excitation signal, c¢ is
the ultrasound velocity in the medium. In most practical
applications, the first term in the power spectrum formula
representing the DC power vanishes. When a narrowband
excitation is used, it can be shown that the axial flow com-
ponent can be determined from the second term by measur-
ing the frequency shift of the returned signal. Furthermore,
if we are given the envelope of the excitation signal and the
beam pattern, we can estimate the lateral component of
the flow by measuring the bandwidth of the return power
spectrum. Now note that if the aperture is circularly sym-
metric, the component of the flow that is perpendicular to
the x-z plane will always be zero. Therefore, we can effec-
tively obtain the full length of the complete velocity vector
by measuring v, and v, as explained above.

3. SPACE INVARIANCE OF MEASUREMENTS

To separate the temporal and spatial parts of the power
spectrum in the above model, we need to determine the
spatial beam pattern «(.) from the projection of the flow
line on the range plane of interest. The beam pattern will
generally be a slice of the two-dimensional beam pattern
at the depth of interest. Similarly, the spectral broaden-
ing formula that yields the transverse velocity in the theory
of transverse flow estimation requires that the flow pass
exactly through the center of the beam. In practice, this
condition will not necessarily hold true. It also follows from
the well-known theory of Fresnel propagation [4] that the
field in the far field and in front of a focused transducer
is depth-dependent. This makes the design of the receiver
even more complex. Consequently, our aim here is to de-
velop a technique that guarantees that the velocity estima-
tion procedure is space-invariant.

Given that the wave propagation under Fresnel approx-
imation can be represented by a linear system with a range-
dependent space transfer function of infinite support, any
beam will keep its absolute angular spectrum bandwidth
over all ranges. For infinite bandwidth beams, it can be
casily shown that any finite bandwidth measure, such as the
commonly used 3d B bandwidth, will not be range-invariant.
As a result, we have to look for a method to generate ultra-
sound beams with finite absolute bandwidth. Such beams
can be generated in principle using an exact Fourier trans-
form symmetric lens configuration instead of the commonly



Transducer Aperture

%

Multiptier

u, Q

U"

Ryp(xy)

Fig.(3) Asymmetric lens configuration

“Transducer X
Aperture

Multiplier

U” UF
XY )-pORY)

Fig.(4) Symmetric lens configuration

used asymmetric configuration [4]. These configurations are
shown in Fig.(3)-(4). For the symmetric configuration, the
beam in front of the lens will be guaranteed to have a fi-
nite bandwidth if the aperture in the front focal plane is
finite. Hence, if this beam is used in our application, range
and azimuth shifts of the flow will cause no change to the
absolute bandwidth of the return Doppler power spectrum
provided that Fresnel propagation holds.

A problem with the symmetric configuration that has to
be addressed in practice is the vignetting effect associated
with a finite extent lens. This effect has been investigated
using computer simulations and the results indicate that
this effect is quite minimal for practical depths/aperture
sizes. The angular spectrum of an example of this config-
uration is shown in Fig.(5). As we can see, the angular
spectrum is practically range-invariant.

4. GENERALIZED AMBIGUITY FUNCTION
MODEL

Let us now consider the more general problem of duplex
imaging or two-dimensional flow mapping. In this prob-
lem, it is required to estimate the two velocity components
described above in addition to range and azimuth localiza-
tion in the image plane. We show in this section that duplex
imaging can be completely described by a generalized ambi-
guity function. We shall assume a uniformly homogeneous
and attenuation-free medium between the transmitter and
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Ultrasound Field at depth 5 cm Angular Spectrum

Fig.(5) Circular aperture with Gaussian apodization
in the symmetric lens configuration.

the target. Furthermore, we assume that the transmitted
signal is a complex exponential signal of the form,

si(t) = A - exp[jwct]

(3)

By using a derivation similar to that found in Chapter
9 of [5] we find that the return signal s.(t) can effectively
be modeled as

sr(t) = A-u(z) - b-expljwe(t — 7)) (4)
where b is a complex Gaussian random variable and z de-
notes the x-coordinate of the moving scattering cluster in
the target flow. This model holds true provided that more
than six scatterers are present in the cluster at location
z. In the actual situation of RBC’s in the blood stream,
we expect to see a much larger number of scatterers, even
under the most severe abnormally low hematocrit figures.
The only minor exception to this is the very thin cell-free
skimming layer in blood vessels.

If we further assume the reflection process to be fre-
quency independent, then a transmitted signal s:(t) = A -
ezp[j{we + w)t], will produce a received signal s,(t) = A -
u(z) - b - explj(we + w)(t — 7)]. Note that this assumption
can still hold in our situation if we consider only small fre-
quency variations around a certain large bias value such
that the fourth power variation of the backscattering cross
section with frequency in Rayleigh model can be neglected.
We also assume that the reflection process is linear. Thus, if
we transmit s¢(t) = s(t), we receive, s-(t) = b-u(z)-s(t—T)
[5]. )

Assuming a uniform velocity ¢ that makes an arbitrary
angle § with the transducer axis, we can decompose the
velocity vector into two components: axial and transverse
as defined in the model. That is, ¥ = |¥] - (sin8,cos8) =
(vz,v.). Hence, the received signal can be expressed as,

r(t):z~u(x+vzt)~s(t (1+

2v., 2z .

=) 22 ), (5
)= E) + e, ©6)

where (z,z) are the coordinates of the moving scattering

cluster and w(t)) is an additive noise assumed to be a zero-

mean white bandpass Gaussian noise. The above equation



can also be written as:

F=b-f(t;3, 2,vs,v5) + B(2). (6)

Now, let the observation interval be infinite. We shall
assume that the flow/location parameters are deterministic
and of unknown values that we need to estimate. Then, up
to a constant multiplier, the log likelihood ratio takes the
form:

In A(z, 2,9z, v.) = | Lz, 2, va, v2) | (7)

Here,
;(t) "Da, za’ ’UZ; U:) : f‘(t; T, z,Vz, 'Uz)dt

j}(x,z,vx,v,) =/
(8)

where M® = (2%, 2%, vg,vg) is the set of actual parameters
that we need to estimate. The log likelihood ratio can be
viewed as a continuous function of M = (z,2,vz,v:). In
particular, it may be written as:

In A(M) = {b?-

S22, Feas A2y - (s )|
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In the above expression, ﬁ(.A:() denotes an inner product

between the noise @(t) and f(t; M) The first term is due
entirely to the signal and is the only term that would be
present in the absence of noise. Hence, the resolution char-
acteristics of the system are determined by the following
integral
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Note that the above function is very similar to the wide-
band ambiguity function with two independent parts for
the range-axial velocity and the azimuth-transverse veloc-
ity ambiguities. The usual wideband ambiguity function
is a special case of the above generalized function when
u(.) is a constant or the velocity in the transverse direc-
tion is exactly zero. As a result, the usual techniques for
improving the accuracy of the range-Doppler radar can be
applied directly in this more general problem. For example,
to obtain an improved axial velocity/range estimation, we
have to send multiple independent excitation signals. On
the other hand, to improve the transverse velocity/azimuth
resolution, we have to use several independent apertures.

It should be noted that the above generalized ambigu-
ity function model does not hold if the bandwidth of the
excitation signal is too large. In that case, the fourth-
power dependence of Rayleigh scattering from the RBC’s in
the diagnostic ultrasound frequency range plays an impor-
tant role in the imaging process. It can be shown that the
resulting generalized ambiguity has the same form as the
one given above with the signals f*(; M) and f*(t;M“)
replaced by their fourth derivatives with respect to time.
This minor change in the form of the ambiguity function

2v,

C
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can cause difficulties in the estimation process. When the
transmitted signal is narrowband with a monophasic ex-
citation envelope (e.g., Gaussian envelope), the ambiguity
function has a single peak along the range variable z. On
the other hand, when the excitation is wideband and the
fourth-power dependence of Rayleigh scattering cannot be
neglected, the resulting ambiguity function will have multi-
ple subsidiary peaks along the range variable z. Moreover,
axial velocity estimation may be affected in that case as
well if it is based on frequency shift measurements of the
spectral peak. On the other hand, the absolute bandwidth
of the reflected signal is not affected by the fourth-power
dependence of Rayleigh scattering. Therefore, the lateral
velocity estimation procedure need not be modified when a
wideband excitation is used.

The above discussion suggests the use of a preprocess-
ing inverse filter for the returned RF signal when the ex-
citation is wideband. The filter is similar to the one used
in computed tomography but with a fourth order frequency
dependence. The use of such a filter yields a more localized
ambiguity function in the wideband case.

5. CONCLUSIONS

We have shown that it is possible to obtain the magni-
tude of the full-length velocity vector using one circularly-
symmetric transducer. The technique is range-invariant if
a finite angular spectrum beam is used, e.g., with the sym-
metric lens configuration. The estimation process resolu-
tion can be represented by a generalized ambiguity function
that depends on the excitation signal and the beam charac-
teristics at the depth of interest. This description suggests
that although we can get an estimate of the velocity us-
ing one aperture, multiple apertures will be necessary if we
need to reach a better accuracy in this estimate. Future
extensions to this work include flow direction estimation,
inverse problem in case of finite sample size, the effect of
medium attenuation and inhomogeneity on the accuracy,
and the experimental verification of the technique.
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