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Abstract

This paper summarizes the theory of a novel post-
processing approach to automatic motion artifact sup-
pression in magnetic resonance imaging. The main
advantage of the new approach is ils treatment of
a more practical spatially variant translational mo-
iton model that is fundamentally different from pre-
vious work in the literature. We first consider a 1-D
model for the problem based on differentiated rather
than original image. In this model, the motion arti-
fact amounts to blurring of peaks corresponding to the
edges in the original itmage. Observing that the dis-
torted and true images share the same 2-norm, we
search for the true image on the hyper-sphere with
radius equal to this norm. We show that the solu-
tion must have the minimum I-norm of all vectors on
the hyper-sphere and a search strategy based on dy-
namic programmaing s used to estimate the motion at
a reasonable complexity. Subsequently, this procedure
1s applied to different regions in the image indepen-
dently and spatially variant motion model parameters
are derived at a resolution of the region sizes. Fi-
nally, we show the similarity between this problem and
the problem of magnetic field inhomogeneity distor-
tion. Based on this stmilarity, an image reconsiruc-
tion strategy and an expression for the point-spread
function of the resultant image are derived. The new
technique is applied to correct computer simulated im-
ages and promising results are obtained. '

1 Introduction

Accurate diagnosis in medical procedures has be-
come widely attainable by the advent of the different
medical imaging modalities. Among those, magnetic
resonance imaging (MRI) is currently one of the most
promising non-invasive diagnostic tools in medicine.
Besides its ability to produce anatomical images of
remarkable detail and contrast, it can also be used
to visualize vascular structures, measure blood flow
and perfusion, detect neural activation, and identify
the metabolic information of different areas in the ac-
quired images. In addition, its inherently volumet-
ric acquisition permits slices at different angles to be
computed easily, which can be advantageous in many
applications.

One of the main problems in the present magnetic
resonance imaging technology is its susceptibility to
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severe artifacts when motion occurs during the im-
age acquisition period. These artifacts manifest them-
selves as prominent blurring in the areas where motion
occurred. This practically limits the clinical useful-
ness of such acquisitions and in most cases requires
the imaging experiment to be repeated at the expense
of decreased patient comfort and inefficient use of the
MRI machine. As a result, developing a technique
that can boost the tolerance of the present MRI tech-
nology to motion can be a major impact on advancing
its clinical use even further.

To mathematically understand the origin of motion
artifacts, consider a magnetic resonance experiment in
which an object of signal magnitude spatial distribu-
tion f(Z) is imaged. In this case, the collected data
take the form:

N

where 5(/—5, Z) is a general function that defines the

position of the imaged object when the point & is col-
lected as a function of the initial position #. In the

ideal case when £(k, &) = &, the true image can be re-
constructed using an inverse Fourier transformation.
Otherwise, the image reconstruction problem becomes

the one of estimating f(&) given F(E) without prior
%mowledge of ¢(k, &), which is a far more difficult prob-
em.
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1.1 Previous Work

Several methods to solve the problem of motion ar-
tifacts in MRI have been reported in the literature
(cf.[1] for a fairly comprehensive list of references).
In general, the available techniques can be classified
into four main categories. The first category attempts
to suppress relative patient motion among different k-
space lines within a given image through either breath
holding and chest strapping, or by using cardiac and
respiratory gating. This effectively minimizes the
physiological component of motion between these lines
at the expense of increased discomfort to the patient
and/or significantly longer acquisition times. The sec-
ond category uses smart averaging of different acquisi-
tions to suppress the motion artifacts besides improv-
ing the signal-to-noise ratio of the final image. This



works| by taking the average of the corresponding k-
space [lines in a number of consecutive image acquisi-
tions, lor more generally by composing a weighted av-
erage of them based on optimizing a certain objective
function under given constraints. The third category
applies extra magnetic gradient lobes in the imaging
sequence to eliminate the effects of motion through
signal refocusing assuming a simple polynomial model
for this motion. This technique is used mainly for
minimizing signal loss from moving blood and cere-
brospinal fluid within a given voxel. Finally, the fourth
category assumes simple forms of global rigid body
motion including translational and rotational compo-
nents jand corrects for them in a post-processing step.
The motion in this category is estimated using exter-
nal monitoring, navigator echo, symmetry constraints,
motion periodicity constraint, or through automated
techniques. These techniques work well for such ap-
plications where the global rigid body motion model
applies well. However, in many situations, they repre-
sent solutions to only a restricted class of artifacts and
cannot generally be applied to more complex types of
motion encountered in practice such as spatially vari-
ant or deformable body motions. Therefore, a motion
suppression technique that can be applied for spatially
variant motion is likely to have a high potential in clin-
ical applications.

In this paper, we address the problem of motion
artifact suppression under a more general spatially-
variant translational motion model. First, a 1-D
model for the problem based on differentiated rather
than original image is developed. In this model, the
motion artifact amounts to blurring of peaks corre-
sponding to the edges in the original image. Observing
that the distorted and true images share the same 2-
norm, a fast dynamic programming search for the true
image on the hyper-sphere of possible solutions based
on a mhinimum 1-norm criterion and imposing a simple
practicality constraint. Subsequently, this procedure
is applied to different regions in the image indepen-
dently and a spatial-temporal motion map describing
the spatially-variant motion model is computed. We
show the similarity between the motion artifacts prob-
lem and the inhomogeneity distortion problem, and an
optimal correction method and the point-spread func-
tion of the correction are derived based on this knowl-
edge. The technique is applied to correct computer
simulated images and promising results are obtained.

2 Model

Consider the process of imaging a 1-D object f(z)
using MRI (without loss of generality). Under the
assumption of piecewise constant signal magnitude
within individual pixels, it is mathematically possi-
ble to express any 1-D magnitude distribution g(z) in
terms of a finite summation of shifted unit step func-
tions of different amplitudes in the form [2]:

N
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When this model is differentiated with respect to
z, the result corresponds to a similar summation of

a number of shifted delta-functions representing the
edges within the image. This edge distribution is a
characteristic feature or a signature of each tissue type.
Since each of these delta functions has a frequency do-
main representation in the form of a constant magni-
tude multiplied by a linear phase, windowed versions
of the k-space at different locations contain similar
amounts of information about those edges. In other
words, given their accurate description of the under-
lying structures, these edges can be considered as in-
variant signatures of the tissue that can be estimated
from any finite-size window in the k-space. In order to
derive the tissue signature from the collected k-space
data corresponding to the original image, a differen-
tiation step must be performed. This is achieved by
multiplying the k-space by a linear function of &, the
k-space frequency variable, following the Fourier dif-
ferentiation theorem such that:

N
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In MRI, images/volumes are constructed by collect-
ing their k-space representations. The motion artifacts
arise from the fact that different k-space points are
collected at different instances of time. If the assump-
tion of subject stationarity during the imaging experi-
ment is not closely satisfied, the collected k-space cor-
responds to an incoherent collection of snapshots of
the object at different positions. It should be noted
that the differentiation step is a motion-safe operation
since it does not mix different points in the k-space to-
gether to derive the result. Consequently, each point
in the k-space of the differentiated image maintains
a unique acquisition time exactly like the original k-
space.

Given the nature of the data acquisition in MRI,
it is reasonable to assume that the relative motion
within any localized collection of k-space points is neg-
ligible. For example, if we sample an L x L k-space on
a rectangular grid in a row-by-row fashion, it is pos-
sible to assume that the relative motion within any
consecutive M < L rows is negligible. In this case,
the collected k-space is divided into a number of sub-
bands, each representing a snap-shot of the imaged
object within the acquisition period. To illustrate this
decomposition, we will consider the one-dimensional
case without loss of generality. Any one dimensional
signal can be divided into independent segments by
windowing in the form:

L L
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where M(-) is the gate function, k; is the center of sub-
band 7 and Ak is the uniform width of the sub-bands.
Consequently, the sub-band images f;(z) obtained as
the inverse Fourier transformations of Fj(k) can be
expressed as:
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falk) = f(z) * [Sinc(



In other words, the sum of delta-functions in (3) is
converted to an equivalent sum of orthogonal functions
of more general form.

Applying the same concept of localization in the
spatial domain, we realize that by windowing the spa-
tial domain of the object, a dual-domain localized cells
can be derived for the above example in the form:

Fam(k) = ( (o) * [Sinc(N‘; ”)cmknw])

n(z=2m
Az '

Each of these spatial-temporal cells maintains orthog-
onality with all other cells. At the same time, each
represents a snapshot of a part of the image during a
brief period within the image acquisition time. There-
fore, by estimating the relative motion within each of
these different parts along the acquisition time line, a
temporal-spatial motion map for the object during the
the 1maging experiment can be derived and corrected
for.

(6)

3 Motion Estimation

In order to derive a criterion for estimating relative
motion between spatial-temporal cells, consider first
the effect of motion on one of these cells. Based on
Eqn.(1), the effect of translational rigid-body motion
on different sub-bands can be shown to be a multi-
plication by a phase term that is determined by the
amount of motion in the form:

Fn,m(k) = /fn,m(x"A(n,m))e_jZTkwdx

(7)

where A(n, m) is the displacement of spatial-temporal
cell Fj, ,,, as aresult of its translational motion. Hence,
the problem of automatic translational motion correc-
tion becomes the one of estimating and compensating
for these phase terms. The effect of these phase terms
is to cause the different spectral components of a given
edge to misalign resulting in a blurred reconstruction.
Therefore, a suitable objective function in the search
for the optimal values of the phase functions should
be sensitive to this blurring.

From the problem formulation stated in Eqn.(7),
we observe the following identity:

Wl = [ Fa) - £ dk = @ = o, (8)
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where Fy(.) is the Fourier transform of the motion-
distorted 1mage, f(z) is the original image, and 7 is
a positive real value and can be shown to be con-
stant with respect to the translational motion Az.
This identity follows directly from the definition of
the 2-norm and from Parseval’s identity of the Fourier
transform [3]. Hence, the phase factor in Eqn.(7) does
not affect the 2-norm of the resultant image. Conse-
quently, the solution for our reconstruction problem is
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within a set of vectors lying on the surface of a hyper-
sphere of radius 5. To illustrate this with an example,
consider a 1-D image containing a single edge repre-
sented by a single non-zero value taken to be the unity
in the derivative image vector. The effect of motion
appears as derivative image vector with at least two
non-zero entries corresponding to the resultant smear-
ing of the edge. The distorted and undistorted vectors
share a common 2-norm of unity.

Hence, the solution strategy should seek to focus
the different sub-band components, f; ;j(x), Vi, of the
different edges within the derivative image of interest
by properly shifting each by A&; (or phasing them in
k-space) to realign. In other words, the phase factors
should be chosen such that the sum of all sub-band
components of an edge either yields the most zero en-
tries (minimum l-norm), or contain the largest value
of any single entry in the solution vector (maximum
oo-norm). In a mathematical form, the first focusing

criterion can be expressed as:
Subject to ||f:(a)z = n. (9)

ggrnl{llfc(r)lh =y
xr

These norms change substantially when the phase val-
ues of Eqn.(7) change and their respective minimum
and maximum points correspond to the desired solu-
tion. For example, in the 2-D case without loss of
generality, the circles defined by ||f|ls = 1, ||f]]2 = 1,
and || flloo = 1 intersect only on the axes. Any point
in R satisfies the condition || f{ly > [|£ll2 > ||f||co and
the equality happens only when only one of the entries
of the vector is nonzero. In other words, the desired
solution is represented by one of the four unit vectors
that lie along one of the axes in either direction. In the
general case, any of the possible solutions may differ
by only a change of sign or a simple shift with respect
to the true solution. Even though either of these two
effects is usually considered unimportant and can be
easily accounted for in simple cases, this is not true for
the general case where more than one edge exists or
when the translational motion is space variant. As a
result, two constraints are imposed in order to obtain
a unique solution. The first constraint is the positive
definiteness of the solution, imposed by the nature of
the physical objects imaged by MRI which may only
have positive spin densities. The remaining solution
resulting from shifting the unique solution by differ-
ent amounts can be eliminated by another constraint
imposed from an assumption that the imaged subject
was still at the beginning of the data acquisition pe-
riod (or equivalently, referencing the solution to Foo).

For the general case of clinical MRI, it is expected
to have many edges within any given region in the
image and noisy data collection is expected. Under
these conditions, the co-norm criterion is more prone
to errors because of its dependence on the value of
a single entry in the solution vector that might not
reflect the true nature of the entire solution. As a
result, due to the robustness against such errors, the 1-

Z fn,m(l_’ - Ai’n)




norm criterion in Eqn.(9) is selected to be the focusing
objective function of choice for this work.

Now consider the spatially variant case of inter-
est where several spatial-temporal cells are considered.
Under the assumption that motion within spatial cells
in the image plane can be sufficiently described by a
rigid body translational motion model, the above pro-
cedure can be applied to different overlapping/non-
overlapping cells to derive the motion parameters for
different regions by computing the local focusing norm
for each independently. Hence, a spatial-temporal
map of the motion is computed during this procedure
that accounts for not only the time-variability of the
motion, but also for possible spatial variability at any
given time. The image is subsequently reconstructed
by concatenating its corrected pieces.

4 Correction Point Spread Function

In order to obtain the point spread function of
the correction using this method, we derive a sim-
ilarity between the motion correction problem and
the magnetic field inhomogeneity distortion problem.
Once the spatial-temporal motion map A(¢, j) is com-
puted at a particular resolution, it is interpolated in
the spatial domain to derive a motion map A(z, k)
with full spatial resolution under the assumption of
smooth motion distribution. Invoking the assump-
tion of spatially-variant translational motion to the
1-D form of Eqn.[1] such that &(k,z) = ¢ + A(x, k),
the detected k-space becomes:

Fa(k) = / fo+ M) do. (10)

Define y = z + A. Then, dy = dz - (1 + aAai 2y
MA(%%@ %)' Since x and k are independent, the deriva-

tive % is zero. Hence, the k-space equation takes the
form:
ok 0A
Fa(k) = / Fy)e 927 =2 (1 4 —— dy.
0% ) o= (y-a)

(11)
Note that the term (1+ a—A(%’—IQ) is the Jacobian term
that accounts for intensity changes as a result of com-
pression/dilation of the different parts of the image.
Under the assumption of rigid-body motion (albeit
spatially variant still%, this term has to become unity.
In this case, the problem can be conveniently reformu-
lated as:

ﬁmmzjfwwhﬂ“wf””wy (12)

We observe that the motion in this formulation man-
ifests itself as a phase distortion to an ideal station-
ary object. In other words, since the spatial domain
is encoded by linear gradients that effectively assign
unique resonance frequencies to different spatial loca-
tions, the moving parts of the object acquire an ad-
ditional motion-dependent phase as a result of being
at a different resonance frequency at the time of data
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collection. We observe that Eqn.[12] is similar to the
equation of the data collected under magnetic field in-
homogeneity, with the main difference being the sep-
arability of the spatial and spatial frequency parts of
the distortion phase term in the inhomogeneity distor-
tion whereas it is not in the motion distortion. This is
a direct result of the fact that the phase progression in
the inhomogeneity correction problem is linear in time
by its nature, while it is of a rather arbitrary form in
the motion distortion problem. From the theoretical
derivation for the inhomogeneity distortion problem in
[5], it is straightforward to propose an equivalent so-
lution for the motion distortion problem in the form:

FAb) = [ falper S0ty (13)
where F.(k) is the corrected k-space, f; is the dis-
torted image, and A(y, k) is the estimated transla-
tional motion map of the spatial position y when the k-
space line k was collected. Similarly, the point spread
function of this solution takes the form:
PSF(yx Yo, A(Z1]) - A(ka y)) =
Ze—jm‘(A(i,j)—A(i,j))e—jzwk(y—yo)_

1

(14)

This indicates that perfect correction is possible given
an accurate estimate of the spatial-temporal motion
map. It should be noted that the solution obtained by
phasing the k-space cells can equivalently be derived
based on the conjugate phase technique [4]. However,
the implementation using the Fourier shift theorem in
?? might be advantageous in many cases for more
uniform correction results.

5 Results and Discussion

In order to verify the theory, the proposed method
was implemented to correct different computer simu-
lated 1-D profiles as well as images of the Shepp-Logan
phantom with spatially variant amounts of transla-
tional motion. In Fig.(1), a 256-point 1-D model con-
sisting of bands bright bands on a dark background
is considered. The white bands move independently
along time with a time step equivalent to two k-space
lines. The motion artifacts due to this motion are clear
in the left image. The spatially-variant motion was es-
timated and corrected for and the results appear in the
middle image. Compared to the original image to the
right, a substantial improvement in the corrected im-
age can be observed. In Fig.(2), the true (dashed line)
and estimated (solid line) motion trajectories for one
of the band are plotted. As can be observed, the esti-
mated motion adheres closely to the true motion tra-
jectories. The average absolute deviation of the two
trajectories was 0.52 pixels and therefore the point-
spread function is expected to be very close to an ideal
delta-function. This explains the excellent qualitative
results obtained in this case. In Fig.(3), a 2-D example
is presented where four independently-moving Shepp-
Logan phantoms were simulated inside a stationary
box of uniform intensity. The motion-corrupted im-
age on the left was corrected to the image on the right.



Figure 1: 1-D correction example.

The k-space here was divided into 16 non-overlapping,
uniform cells and the image was divided into 16 square
cells in the 256x256 matrix image.

Even though the computation of the l1-norm has
a complexity of O(N) flops, there is still a concern
about the complexity of the whole multiple optimiza-
tion procedures involved in the proposed method and
its practicality. The problem requires the estimation
of the values of M variables, each may assume any
value from a set of L possible values. That is, the
search space has a huge size of L™ entries and does not
maintain convexity. In order to solve this problem at
the smallest cost, a dynamic programming procedure
was used to compute the solution at any desired reso-
lution, which amounts to a substantially lower number
of search operations of L - M. As a result, the total
complexity of the proposed method is O(L - M - N?)
flops per region (where N, is the region size). There-
fore, the proposed method is possible to implement at
a fairly reasonable computational cost.

Based on the results from the computer simula-
tions, the clinical potential of the proposed technique
appears to be rather significant. The potential ben-
efits of this technique include efficient data acquisi-
tion of MR images, which translates into more cost-
effective use of MR machines in addition to increased
comfort to the patient. Examples of possible applica-
tions include abdominal imaging where spatially vary-
ing motion is encountered and the proposed technique
can be used with fast spin echo sequences without need
for respiratory gating or breath holding. Also with
the rapid growth of interventional MRI, the proposed
method can be adapted to provide additional freedom
to the surgeon. Further work is needed to explore the
true potential of the new method in clinical practice.

6 Conclusions

A novel post-processing approach for automatic
motion artifact suppression in magnetic resonance
imaging was developed. The new approach treats
a more general spatially-variant translational motion
model that is fundamentally different from previous
methods. The theory of the new technique was devel-
oped and verified by computer simulations. Further
work is needed to explore the clinical potential of this
work.
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Figure 2: Example of estimated and true motion tra-
jectories

Figure 3: 2-D correction example.
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