
Fig. 1: Initial independent components Fig.2: Ranked independent components. 
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Synopsis 
We present a robust method for ranking the outcome of independent component analysis (ICA) of fMRI data based on canonical correlation analysis. The new method 
works by observing the correlation between the initial components and a special function derived from the activation paradigm.  
Introduction 
The application of ICA to fMRI data has been proven useful (1). The main advantage is that ICA requires no prior assumption about the neuronal activity or the noise 
structure, which are usually unknown in fMRI. Unlike principal components analysis (PCA), ICA attempts to find the statistically independent components and has no 
natural ranking schema for them. Even though the higher order statistics taken into account in ICA have been shown to be valuable, the fact that the resultant component 
from ICA are not ranked makes its use dependent on a human observer to discern the significant components, which is always a cumbersome task. In this work, we 
introduce a simple yet robust technique for ranking the resultant independent components (ICs) with the aid of prior information about the activation paradigm. 
Methods 
ICA works by recovering source signals S from their observed mixture X. In its most common form, ICA assumes that there exists a mixing matrix A such that X = A⋅S 
and that the sources are mutually independent. By constructing a suitable measure of independence among the components of S, we may estimate S by optimizing this 
measure. This procedure involves a whitening step that makes the variance in the whitened space unity in all direction, and this leads to the difference between ICA and 
PCA in ranking the components. Usually, some of the components of S come from the neuronal activity while others from physiological and random noise. Attempts to 
rank these components by the correlation with activation paradigm are usually not robust due to the inherently low signal-to-noise ratio in fMRI signals. Here, we 
propose to use the canonical correlation (CCA), a well-known statistical analysis tool developed by Hotelling (2). CCA is a way of measuring the linear relationship 
between two multidimensional variables. It finds two bases, one for each variable, that are optimal with respect to correlation. Moreover, it finds the corresponding 
correlation values at the same time. Consider two multidimensional random vectors x and y. CCA try to find linear combinations 
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which are chosen so that X and Y correlate the most. In our experiments, we apply CCA between all the components of S as vector x and a model for the activation 
signal as vector y in Eq. [1]. This model is chosen depending on the symmetric square wave paradigm of the activation signal. It is then possible to assume that the 
response will have the same fundamental frequency as the paradigm. Therefore, it is suitable to include components with frequencies equal to the first few harmonics of 
the Fourier series expansion of the symmetric square-wave. In this work, we have chosen the following simple basis: 
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The CCA results in a six-tuple correlation (ri) corresponding to the six transformation vectors in both wx and wy. It is clear that the higher the ri, the higher the relation 
between the activation paradigm and the corresponding wx, Moreover, the higher a certain coefficient in wx, the higher the relation between the activation paradigm and 
the IC that corresponds to this coefficient. Based on this note, a certain score can be assigned for each IC based on its relation with the activation paradigm as: 
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Also, to avoid our basis being correlated with random noise just by chance, we apply a mean square test between the projection of the paradigm on the chosen basis and 
the projection of each component on them (2). Hence, our rank equation is modified to include a term that contains a diagonal matrix with elements equal to this mean 
square error.   
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Results 
The present technique was applied to ICA results for event-related fMRI data. The data were obtained from an activation study performed on a volunteer using a 
Siemens 1.5T clinical scanner. In this study, an oblique slice through the motor and the visual cortices was imaged using a T2*-weighted EPI sequence (TE/TR= 60/300 
ms, Flip angle=55°, FOV=22cmx22cm, slice thickness=5 mm). The subject performed rapid finger movement cued by flashing LED goggles. The study consisted of 31 
epochs, with 64 images per epoch (3). Temporal ICA was applied to process groups of pixels within a user-specified region of interest of variable size between 4×4 to 
16×16. The proposed ranking method based on CCA was used to order the outcome of ICA, which came in different order each run (as in Figs. 1-2). The technique was 
found to be consistent in all the experiments providing the signals representing the true activation and physiological noise at the same order every time.  
Conclusions 
A new technique for ordering the outcome of temporal ICA is proposed. With the aid of CCA, our method attempts to distribute noise in fMRI signals to many 
projections so its effect on the overall decision of ranking is minimal. Our experiments suggest this technique to be highly robust, which makes it suitable as a 
postprocessing step after ICA to make its results easier to evaluate.  
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