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ABSTRACT 
 
Image reconstruction from nonuniformly sampled frequency domain data is an important problem that 
arises in computed imaging. The current reconstruction techniques suffer from fundamental limitations in 
their model and implementation that result in blurred reconstruction and/or artifacts. Here, we present a 
new approach for solving this problem that relies on a more realistic model and involves an explicit 
measure for the reconstruction accuracy that is optimized iteratively. The image is assumed piecewise 
constant to impose practical display constraints using pixels. We express the mapping of these unknown 
pixel values to the available frequency domain values as a linear system. Even though the system matrix is 
shown to be dense and too large to solve for practical purposes, we observe that applying a simple 
orthogonal transformation to the rows of this matrix converts the matrix into a sparse format. The 
transformed system is subsequently solved using the conjugate gradient method. The proposed method is 
applied to reconstruct images of a numerical phantom as well as actual magnetic resonance images using 
spiral sampling. The results support the theory and show that the computational load of this method is 
similar to that of other techniques. This suggests its potential for practical use.  
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1. INTRODUCTION 
 
The use of tomographic reconstruction has become an important tool for all advanced imaging modalities 
such as magnetic resonance imaging (MRI) and computerized tomography (CT). The use of these 
modalities offers accurate means for noninvasive diagnosis in medicine by providing images of exquisite 
accuracy and detail. This is the reason why the use of such modalities is fast expanding. In particular, the 
use of magnetic resonance imaging in medicine has extended to applications that have never been 
attempted before using other imaging modalities. Given its unique dependence of its signal on both the 
physical and chemical structures of the body as well as the physiological function, this technique holds the 
most potential among the available imaging techniques today. 
 
Among the important goals of tomographic modalities such as magnetic resonance imaging is to become 
capable of performing accurate real-time imaging. This imposes a demanding constraint on the processes of 
image acquisition and reconstruction. As a result, a considerable amount of research effort has been 
directed towards making these processes faster and more efficient without sacrificing the quality of the 
image. We will consider here such efforts in the area of magnetic resonance imaging without loss of 
generality to other tomographic modalities. 
 
In magnetic resonance imaging, the acquisition of images using fast acquisition techniques such as EPI is 
limited in speed by how fast the switching of gradients can be achieved. As a result, in order to speed up the 
acquisition process, nonrectilinear k-space trajectories such as spiral trajectory have been introduced to 
enable smoother gradient waveforms. Even though this lead to a more efficient acquisition process besides 
the reduction of inhomogeneity and motion artifacts, the process of reconstructing images from the 
nonuniformly sampled k-space associated with such sequences remained less than optimal in speed and 
accuracy. Given that conventional MRI relies on 2-D discrete Fourier transformation as its reconstruction 
tool, all attempts to address the problem of estimating a uniformly sampled k-space given the original 
nonuniformly sampled version. This problem is conventionally called the gridding problem. In his seminal 
work published in 1985, O’Sullivan concluded that the ideal resampling kernel is theoretically in the form 
of an infinite Sinc function and that the convolution with such a kernel followed by sampling on a 
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rectilinear grid results in accurate reconstruction. Furthermore, the optimization of an error-minimizing 
objective function based on a truncated kernel results in the selection of prolate-spheroidal functions as the 
optimal kernel functions for such process. Such functions can be well approximated in the discrete domain 
by the Kaiser-Bessel window. This procedure has been utilized in practice as the classical gridding 
technique for the past decade. Several research papers addressed several aspects of this original method 
including the optimal selection of the width and form of the gridding kernel for spiral imaging3, the 
practical implementation algorithm and applications to clinical studies4,5, the compensation of sampling 
density variations6, the efficient use of computer arithmetic for faster computation7, and the optimized 
selection of sampling density compensation factors8. The performance of nonrectilinear algorithms in the 
presence of inhomogeneities was also shown to be more robust9. Therefore, it is fair to say that the use of 
such gridding method is well established among the MRI community. Nevertheless, several issues 
remained as open questions in using such method that include the choice of kernel size and shape for 
different k-space trajectories, the possible consequences of undersampling some areas in the k-space, and 
the reduction of some of the characteristic reconstruction artifacts that became apparent with gridding. This 
led to the introduction of another approach to this problem that attempts to achieve optimality in some 
sense for the reconstruction process. 
 
The new approaches to solving the gridding problem pose the problem of estimating the rectilinear points 
from the nonrectilinear ones as a solution to a linear system of equations. This system of equations has a 
rather large size that is equal to the total number of points. That is, to obtain a gridded N×N k-space, a 
linear system of size N2 must be solved. Even though the solution to this problem will in fact be the optimal 
solution to the gridding problem, it is not feasible to implement in practice for both storage size and 
computation time reasons. As a result, a number of attempts have been directed towards obtaining 
approximate solutions to this system of equations with realizable implementation requirements. Examples 
of such methods include the decomposition of the system matrix into local small matrix parts that can be 
solved using SVD10, evaluation of such method and its variants in gridding different trajectories11,12, and 
the transformation of the system matrix into a structured matrix form for faster computation13. Moreover, 
some authors attempted to estimate the continuous image from the sampled k-space using similar 
techniques14. Even though such methods offer as advantage over the conventional gridding method, they do 
not represent an optimal solution to the original matrix equation. In particular, there is no direct way of 
gauging how accurate the solution is within the formulation of such techniques. Moreover, the 
reconstruction in such methods is rigid in the sense that the relation between computation time and the 
accuracy is fixed. One cannot trade off accuracy and computation time to customize the use of such 
methods in different applications that might be sensitive to one of them more than the other. This is 
particularly important given the general consensus that gridding techniques are perceived as slow. 
Therefore, another solution strategy that offers to overcome such limitations would certainly be 
advantageous.     
 
In this work, we describe a novel solution to the gridding problem based on a more realistic model of the 
problem. Instead of considering a discrete spatial domain and k-space and attempting to map the 
nonrectilinear sample into a rectilinear grid, the new formulation considers continuous spatial domain with 
a piecewise constant form representing the realistic display method of using pixels. The k-space is also 
assumed to be continuous with samples given by the available data. The problem is formulated as a linear 
system of equations that maps the acquired k-space points into the optimal pixel values that represent the 
image. Even though the linear system here is also large in size and dense, a simple transformation is 
utilized to convert the system into a sparse form that promises much smaller computational and storage 
efforts. The sparse system is then solved using the conjugate gradient iterative technique, which enables a 
flexible control of the degree of accuracy versus the computation time. The theory of the new method is 
described and the preliminary results of applying the technique to reconstruct images of a numerical 
phantom as well as real data from a spiral imaging sequence are presented. 
 

2. THEORY 
 
Consider f(x,y) as the continuous-space spatial domain intensity distribution and let the available k-space 
(frequency domain) samples be F(kxi, kyi), where i=0,1,…,L-1, and L is the number of samples. Given the 
method by which the image is usually displayed in practice, the spatial domain can be modeled as 
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piecewise constant function consisting of the sum of shifted gate-like functions representing the pixels of 
the image up to the desired resolution. That is, 
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Consequently, the continuous Fourier transform of f(x,y) can be obtained as,  
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Here wx and wy correspond to the half of the pixel width in x and y directions. Hence, given the available 
arbitrarily located samples in the k-space, we can express the above equation as a linear system whose 
equations are obtained by substituting the set of L value for kx and ky. Hence, the linear system matrix has 
dimensions of L rows and M×N columns. The right-hand side vector of this linear system consists of the 
values of the acquired frequency samples indexed by their i value. Given this index and from the known 
locations of the samples in the k-space, the system matrix can be computed for a given arrangement of the 
pixel values in the v vector.  The unknowns in this linear system are the pixel intensity values.  
 
In order to simplify the practical implementation of the solution, we observe that multiplication of the 
discrete Fourier transform matrix H, whose inverse is simply its Hermitian, by the rows of the matrix 
results in compacting the energy within the row into only a small number of points instead of the original 
dense (as opposed to sparse) format. In order to preserve the linear system unchanged while taking 
advantage of this property, we multiply by the Fourier transformation matrix and its inverse such that, 
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is the 1-D discrete Fourier transform of the 1-D listing of pixel values and the matrix M is has 
most of the energy in its rows compacted into only a few elements (yet not sparse). In order to convert the 
matrix M into a sparse matrix, we utilize a compression strategy that allows the user to choose a percentage 
of the energy of the matrix operator to preserve. In particular, in each row, the element values are sorted by 
absolute value and only the first few row elements needed to reach or exceed this level are preserved. Once 
this process is done, the matrix is stored in a sparse matrix format and the conjugate gradient iteration is 
utilized to solve the linear system. 
 

3. METHODS 
 
3.1 Energy compacting transformation 
The energy compacting transformation is implemented by Fourier transforming the rows of the linear 
system matrix A, which describes the particular mapping that corresponds to the k-space trajectory or 
sampling scheme used in the problem at hand. This outcome of this transformation is sorted by magnitude 
and only the largest few elements are selected such that their energy is above a certain predetermined 
percentage of the total energy of the kernel represented by this particular row. Subsequently, such elements 
are stored by their row and column positions and values as a part of the new sparse linear system matrix. 
Given that this process is done in a row-by-row fashion, the storage demands for this method are not very 
high since the huge system matrix need not be constructed or stored. 

3.2 Sparse matrix manipulation 
The outcome of the energy compacting step is a description of the linear system matrix as a sparse matrix 
with only a few nonzero elements in each row. The storage of such system can be performed using several 
techniques. Among the most efficient ways to do that is the row-indexed storage method17, which requires 
only twice the size of the nonzero elements for their storage. Once this representation is done, matrix-vector 
multiplication operations are only equal in complexity to the number of nonzero elements, which is always 
computationally feasible. Also, Hermitian operations are also rather simple and do not generally pose a 
computational burden. 
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3.3 Conjugate gradient iterative solution 
The method of conjugate gradient optimizes the solution of a linear system by removing the error 
components in a number of directions that span the space of the solution15. It has a number of advantages as 
a result of its unique scheme. The first is that the number of iterations to reach the solution has an upper 
bound of the dimension of the space of the linear system solution. Moreover, only a few iterations are 
usually required to reach a good accuracy for the solution. Another advantage is that the solution accuracy 
can be traded off with computation time rather flexibly. This allows the method to be customized for the 
particular application at hand by selecting a predetermined value for the number of iterations that 
correspond to the desired computation time. If accuracy is desired, an efficient implementation of this 
method may rely on a measure of the solution update in such a way that the stopping criterion is to have an 
update that is insignificant compared to the present solution. This can be described mathematically in terms 
of an arbitrary definition of vector norms. Given the sparse matrix format of the system matrix, the 
computational complexity of each of the conjugate gradient iterations is still in the order of the total number 
of nonzero elements in the sparse system matrix. This is quite reasonable and can be guaranteed to be equal 
to or lower than the computational effort of conventional gridding techniques. A description of the 
conjugate gradient iteration used in this work is provided in Appendix I. 

4. RESULTS AND DISCUSSION 
 
The proposed method was implemented to construct images from numerical phantoms as well as from 
actual magnetic resonance imaging data acquired from a spiral imaging sequence. The numerical phantom 
data were constructed from polar sampling of the analytical expression of the Shepp-Logan phantom14. The 
actual data were acquired on a 4T whole-body MRI scanner using a spiral sequence. The spiral sequence 
had 4 interleaves with 1836 points each to sample a 128×128 k-space matrix. The actual k-space was 
measured for this sequence to guarantee the accuracy of k-space sampling locations18. The k-space 
sampling information for both the numerical and actual data are used to construct the sparse system matrix 
which is stored as the reconstruction table and retrieved for online reconstruction using the conjugate 
gradient method.  

In Figure 1, an illustration of the energy compacting transformation is presented. A system matrix was 
constructed for a 64×64 gridding problem under polar sampling as shown in (a). The resultant system 
matrix, which has a size of 642×642, is shown in (b). As can be seen, only a few elements are nonzero as 
opposed to the dense format prior to this transformation. The average number of nonzero elements per row 
for this particular case was 3 to achieve approximately 92% of the kernel energy, which is considered a 
rather efficient formulation. 

The result of reconstructing the image of the actual data is shown in Figure 2 (left) and compared to the 
image obtained with the best conventional gridding reconstruction (right). The number of nonzero elements 
in the sparse linear system matrix was 81512, which is equal to 4.9 N2, where N here is 128, to preserve an 
average of more than 92% of the energy of the row kernels. The number of conjugate gradient iterations 
used here was 5. As can be observed, the quality of the image reconstructed using the new technique is 
quite comparable to the results of conventional gridding.  

The results of reconstructing the numerical Shepp-Logan phantoms are shown in Figures 3 and 4. In Figure 
3, the results for an image size of 128×128 is provided where the results of all iterations are shown starting 
from the top left (Niter=1) to the bottom right (Niter=20). The system matrix in this case had 17192 nonzero 
elements or 10.9 N2. The same is repeated for image size of 256×256 where the number of nonzero 
elements here is 293518 or 4.5 N2. As can be seen, the iteration reaches a good solution after only a few 
steps.  

It should be noted that the size and location of the large matrix elements that are selected to achieve the 
kernel energy percentage varies from one row to another. This means that the kernel used to perform the 
mapping is spatially varying. We notice also that the truncation using this method is optimal in the least-
squares sense. The selection using this method avoids having the user choose more specific parameters of 
reconstruction like window size or neighborhood definition like other techniques3,10. Instead, a single 
parameter is used as a quality measure (the energy percentage) while another is used as a computation time 
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control (number of conjugate gradient iterations). Given that these parameters are more obvious to the MRI 
system user, the proposed method should fit well into clinical settings.  

The computational complexity of the proposed system can be shown to be O(N2) to obtain the solution to 
the linear system. Then, to compute the image, an N2-point FFT is required afterwards. This computational 
complexity is well within the range for conventional gridding methods as well as new gridding techniques 
based on SVD. The ability of the user to control the construction time is a unique feature in this iteration. 
This allows a quick, almost real-time computation of images for fast viewing by the radiologist. Also, it 
allows the radiologist to increase the accuracy of the reconstruction of a selected image at will simply by 
allowing additional iterations to run. Given the low complexity of iterations, such process can be performed 
during image viewing using console control just like zooming or gamma curve selection with virtually no 
noticeable delay. This is an obvious advantage of the new method.      

5. CONCLUSIONS 
 
A new method for gridding nonuniformly sampled frequency domain data is presented. This method 
provides the means for solving the reconstruction problem iteratively based on a practical model. The 
unique aspect of this technique is that the iteration includes an explicit reconstruction error measures that 
can be monitored and controlled for customized performance. More work is needed to investigate the use of 
the new method in practical clinical applications. 
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APPENDIX I: ALGORITHM FOR CONJUGATE GRADIENT ITERATION 
 
The method of conjugate gradient describes a class of iterative techniques having the property of 
guaranteed convergence in a finite number of iterations15,16. Also, even when the system is ill conditioned, 
good estimates of the largest and smallest eigenvalues are not needed to determine the algorithm 
parameters. The basic idea of this method is to eliminate the residual error (i.e., the difference between the 
right-hand and left-hand sides of the linear system equation) along directions that are all mutually 
orthogonal with under transformation with the system matrix and spanning the space of the solution. The 
original formulation of this iteration requires the system to be real, square, symmetric and positive definite 
for the algorithm to work and provide a unique solution to the system16. Here, a modification of the 
technique is applied to complex Hermitian, positive semidefinite linear systems to compute the minimal 
least-squares solution9. That is, it is used to solve the normal equations of the system given the properties of 
the Grammian matrix. In particular, the conjugate gradient algorithm for solving the normal equation 
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Figure 1. Illustration of the energy compacting transformation. (a) polar trajectory used and (b) the 
constructed system matrix after the energy compacting transformation with only a few nonzero elements. 

Figure 2. Images constructed with the new method (left) and the best image obtained with conventional 
gridding procedure (right). 
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Figure 3. Reconstructed images from polar sampling of the analytical form of the Fourier transform of the 
Shepp-Logan in case when the image size is 128×128. 
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Figure 4. Reconstructed images from polar sampling of the analytical form of the Fourier transform of the 
Shepp-Logan in case when the image size is 256×256. 
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