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ABSTRACT 
 
We propose a technique that allows the improvement of lateral resolution in ultrasound imaging using a deconvolution-
based strategy. We first derive a formulation for the problem in terms of an arbitrary spatially-variant beam pattern and 
show that it is possible to optimally estimate the values of the image by solving a large linear inverse problem. This 
linear system depends on the shape and extent of the point spread function as well as the desired resolution of the 
resultant image. We show that this linear system is sparse and therefore sparse matrix techniques for storage and algebra 
are used to make the computational cost reasonable. The strategies used to solve this problem are proposed based on 
truncated singular value decomposition or regularized conjugate gradient method that allows an equivalent regularization 
to imposing a quadratic inequality constraint. This allows the condition number of the problem to be kept sufficiently 
low, thus ensuring a robust solution. For a given ultrasound line with specific transmit and receive focusing 
characteristics, this problem is solved for the whole image and we show that it is possible to implement the solution in a 
look-up table form similar to what is used in image reconstruction in current ultrasound systems. This accounts for the 
variations of the point spread function at different spatial positions.   
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1. INTRODUCTION 
 
As all imaging modalities, ultrasound imaging attempts to reconstruct an accurate map of a particular characteristic of 
the human tissues under practical constraints. Assuming linearity of the image formation process, the quality of image 
depends mainly on the effective point spread function (PSF) of the imaging system. Therefore, the PSF can be used to 
describe the way ultrasound images are formed and hence evaluate their spatial resolution characteristics. In ultrasound 
imaging, resolution is usually described in terms of two parameters; namely axial and lateral resolutions. While the first 
is mainly a function of the ultrasound transducer and transmitted pulse shape, the second is very much dependent on the 
spacing of the probe as well as the focusing characteristics of the imaging system. Due to the practical constraints on 
transducer manufacturing, the lateral resolution is significantly worse than the axial resolution of the system. Moreover, 
it varies with spatial position inside the field of view, which makes its effect more complicated to interpret and 
compensate for by sonographers. Therefore, a significant amount of research effort has been directed to account for and 
remove –or deconvolve– the effect of PSF variations in ultrasound images. 
 
Several strategies have been proposed to address the problem of deconvolution in ultrasound imaging. These strategies 
include the use of morphological filtration1, reconstruction filters to account for PSF characteristics for applications 
where coded excitation during transmission is used2,3, one-dimensional deconvolution using Wiener filtering approach 
with estimated PSF5,6, homomorphic filtration6, higher order statistics (rather than second order statistics)7, elevation 
direction deconvolution for more accurate 3-D imaging8, maximum a posteriori (MAP) estimation9, inverse scattering 
based on Born approximation10, lateral beam characteristics only deconvolution11, better estimation of the ultrasound 
PSF in vivo for more accurate deconvolution12, blind homomorphic filtering in 2-D and 3-D13,14, and using Bayesian 
techniques15. In spite of the wide variety of available techniques and their different approaches to this problem, they 
share at least one of several limitations that include the assumption of separability of axial and lateral deconvolution 
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problems, the assumption of spatially-invariant PSF, the lack of optimality in solution, and the extensive amount of 
computations required to perform the deconvolution task. As a result, the implementation of many of these approaches 
on practical system has not been addressed. Hence, a new technique that addresses the axial and lateral deconvolution 
problems simultaneously and allow for spatially-variant point spread function while maintaining a reasonable 
computational complexity would be rather useful for practical implementation.    
 
In this work, we describe a general linear model for the process of 2-D ultrasound image formation based on a more 
realistic model of the problem that accounts for both axial and lateral components of the imaging PSF simultaneously. 
The problem is formulated as a sparse linear system of equations that maps the acquired RF samples directly into the 
optimal pixel values that represent the desired image. We use sparse matrix tools that allow much smaller computational 
and storage efforts. The sparse system is then solved using either truncated singular value decomposition or the 
regularized conjugate gradient iterative technique, which enables a flexible control of the degree of accuracy versus the 
computation time. It is therefore possible to implement this strategy into current ultrasound imaging systems with 
reasonable computational effort. 
 

2. THEORY 
 
Consider f(x,y) as the continuous-space spatial domain intensity distribution representing the ideal or optimum resolution 
ultrasound image. Let the spatially-variant point spread function (PSF) of the system representing the ultrasonic field at 
point (xo,yo) be given as h(x,y; xo,yo). Hence, giving the general assumption of system linearity, the acquired points g(x,y) 
can be computed from the superposition integral as, 
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Given the method by which the image is usually displayed in practice, the spatial domain can be modeled as piecewise 
constant function consisting of the sum of shifted gate-like functions representing the pixels of the image up to the 
desired resolution. That is, 
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Consequently, the formula in (1) can be expressed as as,  
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which reduces to, 
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Here, the PSF is replaced by another one that takes into account the resolution of the desired image as evaluated by the 
integration in (3). Since the data collection has to be performed in a discrete rather than continuous manner, Eq. (4) is 
evaluated at a finite set of values (xi,yi) according to the sampling characteristics. Arranging the acquired samples and 
desired image intensity values in one-dimensional array form, the problem can be expressed as a linear system of the 
form, 

ηrr ⋅= Hg .     (5) 

Hence, given the measured values from all transducer elements g(xi,yi) and the characteristics of the system and the 
image resolution as expressed by the matrix H , it is desired to solve the above linear system to obtain the image 
intensity values ηn,m.  
 
Note that the size of this linear system is very large. For a system that samples data from a N-element probe with a 
record size of M points per element and a desired image size of L×L, the size of the system matrix H in this linear system 
is (N⋅M)×(L⋅L), which is problematic using conventional matrix computation tools. However, observing that the PSF of 
the imaging system has a compact support within the field of view, the system matrix will be sparse. That is, each row 
has only a few nonzero elements compared to the row size. In fact, it will be in the form of a multi-banded system (i.e., 
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nonzero elements lie within several bands of small bandwidth inside the matrix)18. Therefore, using sparse matrix 
methods, the solution of the above large linear system can be performed with modest computational/storage 
requirements that are practical for use in current ultrasound imaging systems. Hence, we propose two strategies that 
enable this to be done. The first is to use truncated SVD (TSVD) off-line to precompute a reconstruction table (or the 
inverse operator) for the above problem. The order of such computation is O(n3), where n is the number of nonzero 
elements in the system matrix. On the other hand, the second is to use the regularized conjugate gradient method to 
compute the solution equivalent to TSVD iteratively with low computational burden of O(n2). This makes the second 
strategy suitable for real-time computation. 
 

3. METHODS 
 
3.1. Sparse matrix manipulation 
Starting from the description of the linear system matrix as a sparse matrix with only very few nonzero elements in each 
row, the storage of such system can be performed using several techniques. Among the most efficient ways to do that is 
the row-indexed storage method21, which requires only twice the size of the nonzero elements for their storage, which is 
a very small fraction of the size of the whole matrix. Once this representation is done, matrix-vector multiplication 
operations are only equal in complexity to the number of nonzero elements. This makes it always computationally 
feasible even for modest computational platforms. Also, transposition operations are done by reversing the indexing 
sequence for the matrix, which again is rather simple and does not pose an additional computational burden. 
 
3.2. Conjugate gradient iterative solution 
The method of conjugate gradient optimizes the solution of a linear system by removing the error components in a 
number of directions that span the space of the solution18,19. It has a number of advantages as a result of its unique 
scheme. The first is that the number of iterations to reach the solution has an upper bound of the dimension of the space 
of the linear system solution. Moreover, only a few iterations are usually required to reach a good accuracy for the 
solution. Another advantage is that the solution accuracy can be traded off with computation time rather flexibly. This 
allows the method to be customized for the particular application at hand by selecting a predetermined value for the 
number of iterations that correspond to the desired computation time. If accuracy is desired, an efficient implementation 
of this method may rely on a measure of the solution update in such a way that the stopping criterion is to have an update 
that is insignificant compared to the present solution. This can be described mathematically in terms of an arbitrary 
definition of vector norms. Given the sparse matrix format of the system matrix, the computational complexity of each 
of the conjugate gradient iterations is still in the order of the total number of nonzero elements in the sparse system 
matrix. This is quite reasonable and can be guaranteed to be equal to or lower than the computational effort of 
conventional reconstruction techniques. A description of the conjugate gradient iteration used in this work is provided in 
Appendix I. 
 
Since the deconvolution problem is notorious for being ill-posed, it is necessary to use regularization to ensure a stable 
solution for this problem. Observing that TSVD is equivalent to a quadratic inequality constraint on the solution, we can 
achieve a similar regularization by adding a regularization term in the form of γI , where I is the identity matrix and γ is a 
regularization factor, to the Grammian matrix in the conjugate gradient algorithm. In this case, the solutions of both 
methods will be very similar.  
 

4. RESULTS AND DISCUSSION 
 
The results of applying the new technique to an example data set are shown in Figs. 1-2. The data used was based on 
manual measurement of the PSF of obtained from an ultrasound imaging data set acquired for a pin-shaped target. The 
proposed methods were applied to correct real data obtained from the web site of the Biomedical Ultrasound Laboratory, 
University of Michigan. Although the techniques proposed were applied to several data sets, the data set that was used to 
generate the results in this paper is the one under “Acuson17”. The parameters for this data set are as follows: 128 
channels, 13.8889 MSPS A/D sampling rate, 3.5 MHz transducer with 0.22mm element spacing, 2048 RF samples per 
line each represented in 2 bytes, and 8 averages. The data were acquired for a phantom with pins at different positions. 
We used the data to simulate a 48-channel beamformer on receive. The individual signals from the elements of an 
aperture location that coincides with one of the pins in the phantom was used for our experiments. The spatial variations 
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of this PSF from the location of the pin-shaped target were computed using Field II program23. Notice the improvement 
of the PSF in the lateral (horizontal) direction. The improvement of the axial direction is minimal, which is expected 
given the larger step (in terms of number of points) used in this direction. It should be noted that the distance scales in 
the lateral and axial directions are different (the lateral is much larger in actual size). 
 
It should be noted that the size and location of the large matrix elements that are selected to achieve the kernel energy 
percentage may be changed at will from one row to another. This means that the PSF kernel used to perform the 
mapping can be spatially-variant. This is a unique advantage to the new technique as compared to previous methods, 
which were able to only claim robustness within a range of variation around a fixed PSF. Even though the choice of this 
PSF here was selected based on phantom measurements of the ultrasound system, several strategies can be proposed to 
make a more adaptive selection of this important function. Since the implementation of the proposed system is 
envisioned to be in the form of a reconstruction table that relates the acquired RF samples to the output image, it is 
possible in principle to allow the user to select one of several base PSF forms and select a suitable pre-computed 
reconstruction table based on that for reconstruction. This makes this process similar to GAIN or TGC controls, which 
are varied by the sonographer to reach the best image quality. Another approach is to allow for an “adaptation” period at 
the beginning of a new scan (new patient or new organ in the same patient) whereby several images are computed using 
different PSF estimates and evaluated using a quality factor criterion22. Given the problems commonly associated with 
numerical quality functions used to describe medical images, the manual adjustment approach is expected to be a more 
practical approach. 
 
The computational complexity of the proposed system can be shown to be O(N2) to obtain the solution to the linear 
system. This computational complexity is well within the range for conventional gridding methods as well as new 
gridding techniques based on SVD. The ability of the user to control the construction time is a unique feature in this 
iteration. This allows a quick, almost real-time computation of images for fast viewing by the sonographer. Also, it 
allows the sonographer to increase the accuracy of the reconstruction of a selected image at will simply by allowing 
additional iterations to run. Given the low complexity of iterations, such process can be performed during image viewing 
using console control just like zooming or gamma curve selection with virtually no noticeable delay. This is an obvious 
advantage of the new method.      
 

5. CONCLUSIONS 
 
A new strategy for ultrasound image deconvolution based on 2-D spatially-variant kernel is proposed. The new method 
offer a general model for the imaging process and a solution that provides an optimal reconstruction of the ultrasound 
image under the validity of assumptions on PSF. The proposed strategy can be utilized in tandem with previous 
techniques to augment axial and lateral deconvolution in one step to better model the imaging problem. Future work is 
needed to verify the performance of the proposed strategy under practical imaging settings. 
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APPENDIX I: ALGORITHM FOR CONJUGATE GRADIENT ITERATION 
 
The method of conjugate gradient describes a class of iterative techniques having the property of guaranteed 
convergence in a finite number of iterations19,20. Also, even when the system is ill conditioned, good estimates of the 
largest and smallest eigenvalues are not needed to determine the algorithm parameters. The basic idea of this method is 
to eliminate the residual error (i.e., the difference between the right-hand and left-hand sides of the linear system 
equation) along directions that are all mutually orthogonal with under transformation with the system matrix and 
spanning the space of the solution. The original formulation of this iteration requires the system to be real, square, 
symmetric and positive definite for the algorithm to work and provide a unique solution to the system20. Here, a 
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modification of the technique is applied to compute the minimal least-squares solution18. That is, it is used to solve the 
normal equations of the system given the properties of the Grammian matrix. In particular, the conjugate gradient 

algorithm for solving the normal equation bx
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7. Increment counter m=m+1, and repeat steps 4 through 6 until one of the following conditions is satisfied: 

0=me , mc  is below a certain threshold, or the number of iterations reached a predetermined number Niter. 
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Figure 1. Surface plot for the PSF of the imaging system before (top) and after (bottom) deconvolution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Image representation for the PSF of the imaging system before (top) and after (bottom) deconvolution. 
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