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ABSTRACT

In this work, we define a special class of compact angu-
lar spectrum beams (CASBs) that can be used to provide
space-invariant estimation of the velocity vector from a sin-
gle coplanar aperture. By space-invariance we mean both
range and azimuth flow shift-invariance of velocity estima-
tion. We analytically show that some of the non-diffractive
beams, e.g., Bessel beams, are sub-classes of CASBs. We
show that CASBs have infinite spatial support and thus,
they cannot be generated in practice. We discuss finite sup-
port approximation of such beams. These approximations
can be implemented using currently available annular and
two-dimensional transducer arrays. We also describe the
related class of spatially modulated CASBs. These beams
provide range-invariant true-velocity estimation from fre-
quency shift measurements.

1. INTRODUCTION

In conventional Doppler flow mapping techniques, the ve-
locity values are assigned to different locations in the image
based on frequency shift measurements according to the
classical Doppler equation given by:

fac
2fo . (1)

Here v is the true velocity magnitude, ¢ is the planar angle
between the transducer axis and the direction of the veloc-
ity, fo is the center frequency of the tramnsducer, c is the
phase velocity of ultrasound in tissues, and f; is the mea-
sured frequency shift in the return signal. In this equation,
fo is known and c is usually assumed to be 1540m/s. On
the other hand, the angle ¢ is not usually known and is dif-
ficult to estimate. As a result, the possible outcome from a
single aperture velocity measurement configuration is only
a projection of the complete 3-d velocity vector onto the
transducer axis. Given the fact that different vessels within
the same area have random spatial orientations, the differ-
ent local velocity values within the obtained flow maps will
have different references and hence, the diagnostic value of
the technique is greatly compromised.

Some authors have observed that the assumptions un-
der which the Doppler equation holds are not satisfied in
conventional sonography. The Doppler equation is based
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on monochromatic plane wave excitations. The excitations
used in radar imaging are monochromatic and correspond
to plane waves. On the other hand, in the case of a fi-
nite focussed transducer used in pulsed mode Doppler for
range gating, both assumptions are not satisfied. The lack
of monochromaticity results in the so-called transit-time
broadening effect, while the non-planar nature of the beam
results in the so-called geometrical broadening effect. The
broadening effect means that for a single velocity, the re-
sulting Doppler spectrum will have a continuum of values
around this value. Consequently, the above two broaden-
ing effects are considered as accuracy-limiting artifacts in
the Doppler spectrum that should be eliminated in order to
resolve flow gradients [1].

In spite of the difficulties introduced by geometrical
broadening, some authors have suggested that this effect
can indeed solve the problem of estimating the 3-d velocity
vector. The idea is as follows: for a given finite transducer
aperture, the resulting ultrasound beam is composed of a
spectrum of plane waves of different orientations defined by
the angular spectrum of the beam [2]. These different com-
ponents interact independently with the moving object and
thus undergo different amounts of frequency shift according
to the classical Doppler equation. Since these plane waves
have independent orientations, any 3-d velocity vector will
be effectively observed from different directions and so, a so-
lution is theoretically possible by solving the inverse prob-
lem given the angular spectrum beam. A problem arises
with this approach if we consider the effect of spatially mov-
ing the trajectory of the moving object with respect to the
transducer. Since the different plane wave components of
the beam have different relative weights depending on the
location in front of the transducer, the problem cannot be
solved in general.

In this paper, we develop the necessary conditions on
the imaging beam in order to obtain a space-invariant so-
lution to the problem of true-velocity mapping.

2. DOPPLER POWER SPECTRUM MODEL

Consider the general case in which we observe the return
Doppler spectrum from an oblique flow in front of an ultra-
sound transducer. Assume that the motion trajectories of
RBCs inside the blood vessel in the case of laminar flow can
be effectively represented as a collection of parallel straight
lines in the direction of the vessel. The locations of RBCs
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along any of these straight lines will be random and can be
modeled as a Poisson impulses distribution. Then, up to
a scale factor, the return power spectrum from a bandpass
excitation to a single line of moving RBCs will take the
following form [3]:
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Here ®rr(w) is the Doppler power spectrum, A’ is the Pois-
son model parameter which can be related to the hematocrit
value (ratio of the volume of the formed elements to the to-
tal volume of blood), o, is the scattering cross section of
the individual scatterers, v, and v, are the transverse and
axial components of the flow, U(.) is the Fourier Transform
of the effective transmit-receive aperture at the depth of in-
terest, S(.) is the Fourier transform of the excitation signal,
and c is the ultrasound velocity in the medium. In words,
the return power spectrum is essentially a function of the
convolution of the frequency spectra of the excitation signal
and the ultrasound field along the particular line of moving
scatterers that produced the return signal.

If the excitation signal is chosen as a narrow-band sig-
nal, the axial flow component can in principle be obtained
from measuring the frequency shift of the return power
spectrum from the transmitted frequency. The transverse
component can be measured from measuring the bandwidth.

Prr(w) =

3. ULTRASOUND PROPAGATION MODEL

According to the angular spectrum analysis of the scalar
diffraction theory, it is possible to express any complex field
distribution in terms of Fourier components. These compo-
nents correspond to plane waves traveling in different direc-
tions. For example, for an aperture a(z,y), the 2-d Fourier
transform of the aperture A(fz, fy) yields the angular spec-
trum after the substitution f, = a/A and f; = 8/ where
a and g are directions cosines. It should be noticed that
in order to have the magnitudes of o and 8 be less than or
equal to 1, the magnitudes of f, and f, should both be less
than or equal to 1/A. For finite apertures, this condition
is not satisfied outside the circle of radius 1/A. The less
interesting evanescent wave components appear from this
part of the spectrum. As a result, the useful part of the
angular spectrum can be defined to be within a finite circle
of radius 1/A. Therefore, we will consider only this part of
the spectrum in the following discussion.

If we assume that ultrasound propagation in tissues sat-
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isfies Fresnel propagation conditions, then the propagation
of an ultrasound beam in space can be represented as a
linear system with a space transfer function in the form [5]:

H(fo, fyi2) =& -exp{—gmdz (2 +f7)}.  3)

Here, z is the propagation distance, k is the wave number,
f= and f, are the spatial frequencies in the z and y di-
rections, and A is the wavelength. This analysis suggests
that for a given incident wave packet, the transmitted wave
packet at any point will necessarily have the same exact
angular spectrum components phase-modulated as a func-
tion of the propagation distance (the range). Therefore,
the theory suggests that the field from a finite aperture at
any depth will have plane wave components moving in all
possible directions with varying phases. This means that
we can find two plane wave components in this expansion
which travel in the same and the opposite directions to a
transverse flow. As a result, the return power spectrum
from a uniform velocity will theoretically have an absolute
spectral bandwidth given by

BWaps = Z”—GL (4)

This bandwidth is not usually observed because the high
spectral components usually have very small magnitudes
that are masked noise. As a result, what we actually see is
the effect of the strong part of the angular spectrum, which
is usually the main lobe.

From the projection-slice theorem, the Fourier trans-
form of the field along any radial transverse line is basi-
cally the projection of the angular spectrum at that plane
along the direction of the line. Any lateral shifts of this
transverse line will change the field along it by multiplying
the angular spectrum by linear phase factors in f; and f,.
Therefore, the field will be lateral shift-varying. This dis-
cussion suggests that it may not be practically possible to
implement the velocity estimation method in the previous
section. Any reasonable size flow is expected to contain a
huge number of spatially-independent lines of moving scat-
terers. Given that the ultrasound field is space-dependent,
it is not generally possible to measure the transverse ve-
locity even from a uniform flow because differences in U{(.)
result in an ambiguous effective bandwidth. In other words,
the technique is impaired in practice by the fact that any
shift of the moving line of scatterers will affect the outcome
of the measurement.

4. CASB DEFINITION

In order to solve the space-variance problem, we suggest
a class of beams which would in principle use the char-
acteristics of the particular problem at hand to do space-
invariant true-velocity mapping. This class is based on our
power spectrum model and the properties of Fresnel propa-
gation. We define compact angular support beams (CASBs)
as those beams having the following properties:

1. their angular spectrum is real and vanishes outside a
circle of radius R such that 0 < R < 1/v/2A2maz,

2. they maintain circular symmetry, and



3. they have an effective narrow-band time dependence.

The first condition ensures that H(fs, fy; z) values will re-
main in the same quadrant such that the projection of the
angular spectrum will have no zero crossings in the middle,
which are likely to cause ambiguities in the estimation pro-
cess. On the other hand, circular symmetry is important for
space-invariance and narrow-band excitation is required for
the Fresnel propagation model to hold. According to this
definition, CASBs have several properties which we discuss
as follows.

4.1. Space-Invariance of Angular Support

Any CASB with a minimum angular support defined by the
radius R, on the plane Z in space will propagate only to
a CASB of the same support. This can be seen from the
fact that the angular spectrum of the beam at any prop-
agation distance Z in space is basically the multiplication
of the beam at distance Z, and the space transfer function
H(fzvfyvz_ ZO)'

4.2. Space-Invariance of Doppler Spectrum Abso-
lute Bandwidth

Consider again the case of a single line of moving scatterers
discussed above. Since all the values of the space transfer
function of interest will be in the same quadrant, the projec-
tion of the angular spectrum will have no zero crossings. As
a result, the computed power spectrum will have a range-
invariant absolute bandwidth. There will be no ambiguity
in determining this bandwidth in this case. Moreover, the
spectrum maintains roughly the same shape in the ranges
of interest. This is a desirable property since it allows us to
design a suitable frequency shift measure based on detecting
features in the shape of the spectrum.

For a laterally shifted line of flow, we can imagine that
this line is a radial line of a shifted beam with a phase-
shifted angular spectrum. Then, the support of the beam
remains the same for a circularly symmetric aperture even
though the effective beam itself changes. Hence, the abso-
lute bandwidth of the beam is also lateral shift-invariant.
To keep the spectrum shape, the shift should not exceed
4/R.

From these spatial shift-invariance properties, it can be
seen that a transverse flow of uniform velocity that is com-
posed of a large number of flow lines will yield a band-
width that depends only on the lateral velocity component.
Hence, transverse velocity measurement over the entire im-
age plane is practically possible.

4.3. True-Velocity Estimation

It can be shown that the magnitude of the true-velocity can
be obtained from a single aperture using CASB. The re-
turn power spectrum will contain two pieces of information
which are sufficient to calculate the magnitude of the com-
plete 3-d velocity vector; namely the absolute bandwidth
and the frequency shift. The absolute bandwidth can be
used directly to calculate vz, while the frequency shift can
be used to calculate v,. Given the circular symmetry of
the aperture, we can always choose our coordinate system
such that any velocity vector will lie within the z-z plane.

That is, the magnitude of the complete 3-d velocity vec-
tor can be obtained once v, and v, are known. Therefore,
true-velocity magnitude maps can be generated in principle
using CASBs from a single coplanar aperture.

4.4. Example: Bessel Beam as a CASB

The Bessel beam is one of the limited-diffraction beams. It
is defined as [6]:

uo(Ft) = A+ Jo(ar) - &1 B2, )

Here A is in general a complex constant, uo(-, ) represents
the pressure at a given location and at a given time, Jo(-)
is the zeroth-order Bessel function of the first kind, 7 =
(r, ¢, z) represents a point in space, r = {/x? + y2, z is the
axial distance, o and is a scaling factor that determines the
beam width, w is the angular frequency.

As one expects from a non-diffractive beam, the char-
acteristics of the beam are invariant with the propagation
distance. For example, the angular spectrum of the Bessel
beam is range-invariant and is given by:

Unlferf2) = & 50 = po) ©

where p = 1/ f2 + fZ and po = 5=. Since the Fresnel free-
space transfer function is circularly symmetric, it can be
shown that the angular spectrum absolute bandwidth will
not change with depth.

Consider now the case of transmitting a Bessel beam
and receiving the return with a very small transducer. It
can be shown that the returned spectrum from a general
transverse flow passing through the origin of any range
plane in a Bessel beam is given by:

% . _L
Bw) =] o Veier | WP (7)
0 Wy > Po

where w, is directly proportional to the lateral flow velocity.
This can be proven from the projection-slice theorem by
taking the projection of the above angular spectrum onto
fy and observing that f. corresponds directly to w;. It can
also be shown that the bandwidth of the returned spectrum
of a general transverse flow passing through any range plane
in a Bessel beam is lateral shift-invariant for a given lateral
velocity. The spectrum shape itself can be shown to be the
projection of the multiplication of the angular spectrum
given above with linear phase terms in f, and f,. Since the
angular spectrum has circular symmetry, this establishes
that the Bessel beam is a CASB. :

5. SPATIALLY MODULATED CASBS

Suppose now that we modulate a CASB by a given spatial
frequency wy, in the @ direction. Then, the resulting beam
will consist of two circles of radii R. The separation distance
between the centers of these circles is 2wy,. Obviously, this
beam will not be a CASB. Nevertheless, it will have some
desirable properties that are worth discussing. The effect
of this spatial modulation in the z-direction is to induce a
frequency shift in the return signal that is dependent on the
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lateral velocity component in the same direction. The spa-
tial modulation of this beam will be range invariant because
of the range-invariance of the angular spectrum of CASBs.
Hence, the resulting frequency shift is also range-invariant.
Inducing another modulation in the y-direction enables us
to measure the other lateral component via frequency shift
measurements. Hence, range-invariant true-velocity mea-
surement is possible in this case from frequency shift mea-
surements.

6. IMPLEMENTATION OF CASBS

From their definition, CASBs have infinite spatial support
on any plane in space. This is a simple consequence of the
fact that their angular spectrum support can be visualized
as an infinite support spectrum windowed by a finite cir-
cular window. Since the bounding circle of the CASB is
less than 1/X, it can be shown that the spatial representa-
tion will have to be of infinite extension. This means that
exact implementation of a CASB is not physically possible
since all practical apertures have finite support. However,
in the theoretical sense, these beams can be generated us-
ing an exact Fourier transform lens configuration as the one
shown in Fig.(2). The usual transducer-against-lens config-
urations cannot produce CASBs because of the quadratic
phase present in its spatial form.

Even though exact realizations of CASBs are not prac-
tical, it can be shown that effective approximations which
possess the desirable properties of CASBs are realizable for
ultrasound imaging ranges. These realizations are based
on a finite-width approximations for the infinite field be-
hind the lens in the exact Fourier configuration. In Fig.(3),
we show a simulated example of a finite-Gaussian angu-
lar spectrum produced by a 2-d array of 16 x 16 square
of transducers. It is clearly possible to generate CASBs in
much the same way as non-diffractive beams which have a
similar realization problem.

7. CONCLUSION

We have defined a special class of ultrasound beams that
can be used to obtain space-independent true-velocity flow
mapping. The advantages of this class over others include
space-invariance velocity estimation accuracy and the abil-
ity to perform single-shot true-velocity estimation effectively.
The well-known Bessel beam has been shown to be a mem-
ber of this class. We have demonstrated by simulations
the possibility of generating good approximations to those
beams using 2-d transducer arrays or annular arrays. Fi-
nally, we discussed the related class of spatially modulated
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CASBs and their space-invariant true-velocity measurement
using frequency shift measurements only.
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