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ABSTRACT

The correlation technique has been shown to give a bet-
ter accuracy velocity estimation than the conventional fre-
quency domain methods. This technique requires two con-
secutive echo signals in addition to the flow angle to produce
the magnitude of the velocity vector based on transit-time
calculations. The effect of the lateral beam pattern on the
results has not been sufficiently treated in the literature. In
this work, we present a new generalized formulation of the
correlation technique that incorporates both axial and lat-
eral beam characteristics. We show that the location of the
correlation function peak given in the literature is a special
case of this model when the field is a plane wave. Also,
we show that for other practical beam forms, the lateral
beam form introduces an angle-dependent bias to the axial
velocity measurements obtained with the classical formula.
By properly choosing the source aperture and excitation
signal, we derive a formula for lateral displacement estima-
tion from correlation peak locations and magnitudes. This
displacement can be used directly to estimate the lateral ve-
locity component and allow the calculation of the complete
velocity vector.

1. INTRODUCTION

One of the most important biomedical applications of ultra-
sound is its use in the detection, measurement and mapping
of blood flow. In flow mapping, it is required to estimate
the velocity value within each resolution pixel in the 2-d
image plane. This can be done in general using one of
two techniques: Doppler shift measurement and time do-
main correlation. In the Doppler shift based techniques,
the movement of RBCs with blood flow in vessels causes
a frequency shift in the return signal from a narrow-band
excitation that is proportional to their velocity projection
onto the transducer axis. Hence, in principle, measuring
this shift is enough to calculate the velocity [1].
Nevertheless, due to the trade-off between the spatial
resolution and the accuracy of velocity estimation, several
excitations must be performed to obtain reasonable accu-
racy in both dimensions. This might not be feasible in
many cases where flow pulsatility cannot be neglected and
the temporal resolution of flow mapping is required to be
high. For the time domain correlation techniques, the intu-
itive idea is to imagine RBCs in blood flow to be arranged
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into a random but fixed pattern that moves along the ves-
sel with blood flow. Hence, the return signal at any time
can be thought of as a snapshot of this pattern at that
particular time. Consequently if we use two consecutive ex-
citations such that edge effects can be neglected, the two
snapshots obtained will represent exactly the same pattern
with a slight shift corresponding to the distance traveled
through the elapsed time period between the two excita-
tions. Therefore, a correlation measure between the two
return signals can indeed indicate this distance and hence,
the velocity of the moving pattern. Given that the excita-
tion signal does not have to be long as with the Doppler
technique, it is clear that the trade-off between mapping
resolution and accuracy in velocity estimation does not ex-
ist directly in this case. So, the time domain correlation
technique is best suited for flow mapping applications [3].

Unfortunately, the present formulation of the correla-
tion techniques take into account only one component of the
velocity along the transducer axis. This means that the ve-
locity estimates at different locations are in fact projections
of the true velocities along different directions. Therefore,
the resulting estimate cannot be used for accurate clinical
interpretation. Also, the moving random patterns of scat-
terers encounter changing ultrasound field characteristics.
These are likely to affect the outcome of the technique in
much the same way as geometric broadening effects in the
Doppler techniques. Therefore, a generalized model for the
correlation technique that takes into account the ultrasound
beam effects as well as the excitation effects is required to
better understand this problem.

In this work, we present a generalized model for the out-
put of the correlation technique. We consider a straight line
of scatterers moving in a general direction in front of an ul-
trasound transducer. We demonstrate several special cases
of this model to describe the current 1-d formulation and
geometric shifts in the estimated velocity. Also, we observe
that the lateral velocity component can be estimated un-
der special conditions which we state. We show that these
conditions are realizable using the current ultrasound tech-
nology. Finally we discuss the limitations of the technique
in practical applications.

2. THEORY

Assume that a line of random scatterers with a Poisson im-
pulses distribution is moving in a general direction in the
imaging plane making an angle 6 with the axial (z) direc-
tion. Choose the lateral direction z as the direction of the
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projection of the flow line on the transverse plane perpen-
dicular to the z-axis at the depth of interest. Assume that
the scatterers are identical perfect Rayleigh scatterers with
scattering cross section o and that they maintain a uniform
velocity v throughout the effective period of insonification.
Let the effective transmit-receive ultrasound field along the
path of scatterers be denoted as u(z,z), the temporal in-
sonification window be s(t), and the random scattering line
process be denoted as f(r). Then, the distribution of the
scatterers across the flow line as a function of the distance
to the observation point r-= v/z2 + 22 can be given by [2]:

f(r;z,z) =0, - Z §(x —rnsinb, z —rpcosh). (1)

n=-—00

If we consider only small variations of the depth z around
a given bias value z,, the dependence of the lateral beam
profile can be considered as an exclusive function of = in
this domain. That is, u(z,2) =~ u(z,z,) in the region of
interest. We shall call u(z, 2,) as u(z) for short. Then, the
reflected signal from the process of insonifying the above
process while moving at a uniform velocity ¥ = (vz,v:) can
be expressed as:

s (t) =//_Zu(x)-f(z—vxt,z—zo+vzt)-s (t - i_c—z") dz(;i):c

Hence, if the magnitude of the velocity vector is much smaller
than the phase velocity of ultrasound in the medium, the
received signal can be given in the form:

r(t) z/ £(r) - u(rsin+vgt) - s (t+2-t—2—z _2’"“0’39) dr.
—00

(3
Now, let us look at the return from two consecutive excita-
tions. Define the time variables ¢; and ¢ as the time axes
in these two excitations and let T' be the pulse repetition
period. Hence, the return signals can be expressed as:

n(tl)z/ f(r)-u(rsin +vgt1)-s (tl(l + 2%’) - ZTCOSG) dr

c
4
and
ra(t2) &~ /°° f(r — Ar)u(rsinf + vat2)
s (tz(l + 2“;‘ ) — 2’"—CZ—S’Q) dr. )

Then, the cross correlation can be obtained as:
Rer(t,t+7) =E{ri(t) - r3(t+7)}. (6)
Substituting from (4) (5) into (6), we obtain:
R (tt+7) = [[7 E{f(r1) f*(rz — Ar)}
u(rysin @ + vz t)u*(rosin€ + v (t+ 7)) - s (t(l +222)
—2710088) g (¢ + 7)(1+2%) — 272228 ) drydry (7)
From the properties of Poisson impulses distribution,

E{f(r) ffra=Ar)} =X 4+ X-8(r1 —r2 + Ar)  (8)
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where A is the Poisson parameter which can intuitively
be related to the hematocrit value from its definition. Sub-
stituting from (8) into (7), we get:

Rer(tt+7) =X Gi1(t) - Gi(t +7) + X Galt, ) (9)
where:

dr
(10)

Gl(t)=/ u(rsin9+vmt)-s(t+2wz 2

[

rcosB)
c
—o0

and

Ga(t) =ff°°° u(rsin€+vzt)-s(t(1+23ci) —2f—°§ﬂ)
w*((r + Ar)sin@ + vz (t + 7))
st ((t+7)(1+2%) — olrtancosf) gp (11)

In the special case when the transducer is circularly sym-
metric, it is straight forward to show that we can always
choose the z-axis in our model such that the flow is within
the z-z plane. As a result, it is sufficient to obtain the two
components on z and z directions to be able to calculate
the true velocity magnitude.

Next we consider some special cases of using our model
to estimate the velocity of a moving pattern of scatterers.

3. SPECIAL CASE (1): IMPULSE PLANE
WAVE EXCITATION

In this theoretical case, the moving scatterers are at the
far-field of a very low-Q ideal transducer which was excited
by an impulse. That is, u(z) = 1 and s(t) ~ §(t). Hence,
substituting into (10) and (11), we obtain

Gi(t) =1 (12)

and

Galt,T) =6 (»r- (1+22%) - zé’%"sﬁ) L)
Hence,-from the form of (9), it can be shown that the cor-

relation outcome will take the form of a constant plus a



single impulse. That is, the peak of the correlation func-
tion is given by

2.Ar-cosé
Tpeak = m—c (14)

Assuming that v, < ¢ and that the velocity was uniform
throughout the period of insonification, we obtain the fol-
lowing expression for the velocity:

_ Ar-cosf _ Tpear'C
= 7 =555 (15)

Uz

which is the same expression as the one given in the litera-
ture [3). Notice that it is only possible to measure the axial
component of the velocity in this case. As a result, three
spatially independent excitations are required to obtain the
true-velocity magnitude.

4. SPECIAL CASE (2): BROADBAND PLANE
WAVE EXCITATION

In this case, we look at a more practical situation where the
transducer has a finite ()-value which translates a spike elec-
trical excitation into a broadband signal centered around its
characteristic frequency. That is, we still have u(z) = 1 but
now s(t) is a general finite energy function of a very small
time support. Hence, we obtain

Gi(t) = A = constant @16)
and
Galt) = [ s (8(1+22) - 22e8)
st ((t+7)(1+2%) — plr¥Ancesd) g (17)

Notice that G2(t, 7) is essentially the autocorrelation func-
tion of the scaled and shifted version of the excitation s(-).
Then, the correlation function will take the form of a con-
stant plus this autocorrelation function and the peak of the
sum is the same as that of the autocorrelation. Under the
same assumptions used in Section 3., we obtain the same
result. Instead of comparing snapshots of the moving pat-
tern as in Section 3., the comparison here is performed on a
smeared versions of these snapshots in this case. This pro-
duces a weak smooth peak here instead of the strong peak of
the previous case. The peak tends to get even weaker when
we increase the length of the excitation signal. It should be
noted also that the only possible outcome of this method is
a single component of the velocity vector.

5. SPECIAL CASE (3): NARROW-BAND
PLANE WAVE EXCITATION

In this case, we consider the case of a transducer with a
higher Q-value under the same conditions. So, we still have
u(z) = 1 and now s(t) = §'(t) - e’“°*, where s'(t) is the
envelope. Hence, we obtain
— piwotwz)t [0 1 (,  2rcos8
Gi(t) =e f_oos (t )d'r

c

éA,ej(wo+w;)t . (18)

and
Gz(t) = g~ wotwz)T fjow SI(t 27 i:os@) .

" (t+ 7 — ArtAnicost) g, (19)

where A is a constant and w, is the classical Doppler shift.
Then, the correlation function can be expressed as:

Ror(t,t +17) = e (Wotws)r. [ﬁ AP

Ac <, I TC
+2c080-[ws(a)~s (a+2coso_AT)da}' (20)

It can be shown that the envelope of the obtained correla-
tion function is essentially the same as the one obtained in
Section 4. with a weaker peak due to the increase in exci-
tation time for narrow-band signals. Also, this envelope is
modulated by the original central frequency shifted by the
Doppler effect. Hence, a multiple peak pattern is expected
for this case and the accuracy of determining the exact loca-
tion of the peak is impaired by the fact that the modulating
signal has to have one of its peaks exactly on top of the au-
tocorrelation peak to appear as the single global peak. This
might suggest a demodulation step before performing the
correlation calculations.

6. SPECIAL CASE (4): NARROW-BAND
FOCUSSED BEAM EXCITATION

We now consider the practical situation of flow mapping
where we are concerned also with the problem of resolution
in both the axial and lateral directions. In this case, u(z)
is typically a Gaussian-like function and s(t) = s'(t) - e7“°*
is essentially a number of cycles of a central frequency w,
with a slowly varying envelope s'(t). Hence,

Gi(t) =e Wotw)t [P (.t +rsing)- s (¢ —2028) dr
L A(®f) - emilwortwat (1)
and
Ga(t) = eTIWetwa)m. [0 o (t4 2800) . o (¢ preesh)
't (t+’l‘+ ﬁLAv";EiLe) P ((t+T) _ 2(T+Az!cos0)dr

2 B(t,r) - em3wotwa), (22)
Then, the correlation function takes the form:

Rer(t,t+7) = e/ @ote)™ N2A@)A"(t + ) + AB(¢,7)] -

(23)
A number of important observations can be drawn from this
case. As we can see, (23) is a function of both cos 8 and sin 6.
This indicates that in general both velocity components af-
fect the outcome of the technique unlike the previous cases.
It is clear also that the outcome will depend on the relative
characteristics of both the envelope of the excitation signal
and the ultrasound field. For example, if the support of
u(+) is sufficiently larger than that of s'(-), the result will
depend only on the cos @ part in very much the same way
as the above cases. On the other hand, if s'(-) is sufficiently
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long, the outcome will depend only on the characteristics
of the field profile u(-) which is a direct function of the lat-
eral velocity v.. It can be shown that the correlation peak
location will be fixed at —7. This means that the corre-
lation peak can only be obtained from an autocorrelation
measure. Also, the width W of the correlation function will
be a function of the lateral velocity v,. In particular, we
have

Vg = . (24)

Here W is the calculated time domain correlation width,
and D is a constant with units of distance and is defined as
the spatial width of the beam for a unity v.. The definition
of the width here is not unique as long as D is modified
accordingly. In this case, we are essentially tracking the
lateral motion of the scattering pattern while smearing out
the effect of the axial motion.

7. SPECIAL CASE (5): BROADBAND
FOCUSSED BEAM EXCITATION

In this case, the excitation signal is usually very short such
that the effect of the ultrasound field in determining the
peak is negligible. In theory, the beam pattern should have
a very small bias toward the spatial correlation peak and
thus tends to give slightly lower values for the peak location.
So, the location of the peak will be practically determined
by the axial velocity component. This is easy to realize by
looking into the expressions for the correlation times of of
the Jateral and axial correlations which have differ by the
ratio of v, to ¢, which might be larger than 1000. Typical
values for 7peqr are hundreds of nanoseconds while T' values
may be more than 100us. Nevertheless, as time goes on,
decorrelation results from the effect of moving parts of the
scattering pattern away from the ultrasound field, and this
will affect the correlation peak magnitude [3].

8. LATERAL VELOCITY ESTIMATION VIA
DECORRELATION TRACKING

In the simple case of a rectangular field pattern, the theory
suggests that by measuring several correlation peaks instead
of only one, we can estimate the ultrasound field width
by extrapolation. This width is a direct function of the
lateral velocity as in (24). In other words, tracking the
decorrelation in the return signal due to the lateral motion
of the scattering pattern can indeed be used to estimate
the lateral velocity in this simple case. Moreover, it can be
shown that in the case of any field pattern, the obtained
fit will give a valid bandwidth measure that can be still be
used to estimate the lateral velocity. Therefore, the result
is general. The idea of the technique is shown is Figs.(2)
and (3).

In the practical situations where noise is likely to affect
the measured peaks, a least square fit may be used to obtain
better results. Hence, it is possible to obtain both velocity
components from the time domain correlation using at least
3 excitations.
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9. CONCLUSIONS

The axial velocity estimation using the classical formula
of the time domain correlation technique from a demodu-
lated signal is not likely to be affected by the beam pattern
under normal imaging conditions. However, a decorrela-
tion results from the beam shape while the random pattern
is moving away from the field which affects the correla-
tion peak. This decorrelation can be measured and extrap-
olated to obtain valuable information about the effective
beam pattern width, which is a direct function of the lat-
eral velocity. Given these measurements from a circularly
symmetric aperture, it is possible to reconstruct the mag-
nitude of the 3-d velocity vector thus enabling to create
true-velocity maps using the correlation technique.
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