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Abstract Gait is a firsthand reflection of health con-

dition. This belief has inspired recent research efforts

to automate the analysis of pathological gait, in or-

der to assist physicians in decision making. However,

most of these efforts rely on gait descriptions which are

difficult to understand by humans, or on sensing tech-

nologies hardly available in ambulatory services. This

paper proposes a number of semantic and normalized

gait features computed from a single video acquired by

a low-cost sensor. Far from being conventional spatio-

temporal descriptors, features are aimed at quantifying

gait impairment, such as gait asymmetry from several

perspectives or falling risk. They were designed to be

invariant to frame rate and image size, allowing cross-

platform comparisons. Experiments were formulated in

terms of two databases. A well-known general-purpose
gait dataset is used to establish normal references for

features, while a new database, introduced in this work,

provides samples under eight different walking styles:

one normal and seven impaired patterns. A number of

statistical studies were carried out to prove the sensitiv-

ity of features at measuring the expected pathologies,

providing enough evidence about their accuracy.
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1 Introduction1

Gait is essentially determined by the coordinated action2

of musculoskeletal and nervous systems. This makes3

gait a reliable indicator to detect symptoms of wors-4

ening health caused by aging [34], physical malfunc-5

tion [9], or neurodegenerative disorders. Some examples6

of these last ailments are Parkinson’s disease [23,25,33],7

multiple sclerosis [16] and strokes [30]. In this regard,8

neurologists handle a number of diagnostic tests for as-9

sessing and manually scoring gait disorders, such as the10

Unified Parkinson’s Disease Rating Scale (UPDRS) [5]11

or the Rating Scale for Gait Evaluation (RSGE) [17].12

The potential of gait as a multifaceted source of13

knowledge has encouraged a number of applied research14

fields based on the automation of gait analysis. The15

vast majority of efforts have been focused on biometric16

recognition or video-surveillance systems [31]. However,17

last decade has witnessed a growing interest in clini-18

cal applications of gait assessment such as rehabilita-19

tion [18], medical diagnosis [23], and detection of med-20

ical emergencies in hospital environments [22]. These21

results are supported by different sensors for extract-22

ing gait data, being wearable gadgets and vision-based23

devices those most popular. Sensors in the first group24

(e.g., gyroscopes, accelerometers, markers) [11,13] ac-25

quire precise information, although they can be deemed26

intrusive since they are usually attached to rigid seg-27

ments of the human body, thus possibly causing dis-28

comfort to patients. Regarding the vision-based group,29

there are professional solutions from specialized com-30

panies (BTS, Vicon, NDI, etc.) also aimed at provid-31

ing highly accurate motion data without requiring any32

contact with a sensor [1]. However, they are generally33

costly and demand certain setting and calibration pro-34

cesses, hence their use tends to be restricted to more35
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specialized environments. On the contrary, less sophis-36

ticated vision devices such as Microsoft Kinect or plain37

RGB cameras [22,23,25,34] are also capable of captur-38

ing motion at a distance, being usually cheaper, easier39

to use and virtually ubiquitous.40

It is well known that precision of gait descriptions41

acquired by vision systems can be severely affected by a42

number of factors that influence either the motion pat-43

tern or the gait perception. Motion may be altered by44

footwear, surface, mood, age, body weight, physical in-45

juries, neurological disorders, or even by people’s own46

volition. Regarding the last, it has been noticed that47

some patients affected by a neurological disease tend to48

conceal motion impairments when they know that they49

are being recorded. On the other hand, factors that af-50

fect gait perception can be classified into three groups51

according to their sources: subject appearance, record-52

ing conditions and video quality. Appearance can be53

affected by changes in clothing, load carrying and cam-54

era viewpoint. Recording conditions depend on factors55

like background, illumination and occlusions. Finally,56

video quality refers to limitations of optical sensors.57

Fortunately, vision-based analysis of gait disorders58

is a type of task in which both physicians and pa-59

tients are equally interested in acquiring high-quality60

data. Therefore, it can be assumed a cooperative set-61

ting, where the majority of factors that can affect gait62

are avoided. For example, we can expect simple and63

clean scenarios, possibly indoor, pleasant environmen-64

tal conditions, fixed background, steady illumination65

during recording, patients under controlled emotional66

states, tight clothes, flat shoes, no accessories, smooth67

floor, etc. Also patients’ efforts to conceal gait disor-68

ders can be mitigated by simply adding an acoustic or69

visual distracting element, such as music or a TV [14].70

Under such general conditions, extraction of silhouettes71

(source of information of the most popular gait models)72

can be performed accurately from plain videos acquired73

with any low-cost device (RGB cameras, smartphones,74

Microsoft Kinect, etc.).75

1.1 Related works76

Low-cost 2D/3D vision-based analysis of gait has be-77

come a fast-growing area of applied research. Within78

this field, related works can be categorized as regards79

the analysis of either unaffected or impaired gait.80

Concerning the first group, a number of works which81

measure spatio-temporal and kinematic parameters of82

gait from healthy people have been recently published.83

In [10], a wearable 2D system based on an smartphone84

fixed in a belt is proposed. The phone includes a cam-85

era which tracks two markers placed on feet to com-86

pute step lenght, width and time, gait speed and double87

support time. In another work [24], a simple RGB we-88

bcam is used together with markers to get kinematic89

gait parameters from people walking in a treadmill.90

Concurrently, 3D low-cost approaches have gained in91

popularity since Microsoft Kinect was released. For in-92

stance, in [3] and [4] a Kinect-based marker-less solution93

was validated against a more sophisticated system con-94

sisting of 8 IR cameras, when quantifying lower limbs95

motion. In a different approach [27], several machine96

learning models were fed with Kinect data to perform97

self-esteem recognition based on people’s gait pattern.98

A comparison between a Kinect-based method and a99

wearable sensor-based solution is presented in [6]. Ac-100

curacies of both frameworks at estimating temporal gait101

parameters were assessed over people belonging to two102

age ranges, using GAITRite as gold standard.103

On the other side, manifold vision methods which104

delve into the analysis of impaired gait have been pro-105

posed. The work in [34] addresses the problem of dis-106

criminating two categories of pathological gait com-107

monly seen in senior people, which are caused by leg and108

visual impairments respectively. Gait was represented109

by a PCA+LDA transformation of GEI features elicited110

from body patches. Experiments were performed on111

gait sequences of normal people wearing knee pads that112

restrict knee bending, and glasses that blur the sight113

and narrow the view field, both tools from an age sim-114

ulation kit. In the case of [32], it focuses on recogniz-115

ing walking styles, including both abnormal and normal116

gait, based on PCA features obtained from frame-to-117

frame optical flow data. Pathological styles were recre-118

ated by a single trained professional actor. The last two119

proposals prioritized recognition based on information120

far from human awareness, over a comprehensible char-121

acterization of gait abnormality.122

Focusing on typical ailments that affect motion, ma-123

ny works address gait impairment associated to Parkin-124

son’s Disease (PD). In [23], authors evaluate the dis-125

criminant power of several gait parameters extracted126

from Kinect data, for distinguishing between PD pa-127

tients treated with deep brain stimulation and control128

subjects. In [25], a Kinect-based approach for analyz-129

ing the movements of PD patients during rehabilitation130

treatment is presented, as a preliminary step towards a131

system suitable for home usage. Gait analysis consists132

simply in the estimation of gait speed and hand rigidity133

while subjects are walking from 3.5 to 1.5 m away from134

the Kinect. The work in [28] also delves into the use135

of Kinect for describing walking parameters and rec-136

ognizing gait disorders in PD patients. After filtering137

and smoothing the signal, two gait features were esti-138

mated: step length normalized to leg length, and walk-139
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ing speed. Then, they were involved in a 1-NN classifi-140

cation process. In [12], a portable solution for assessing141

Parkinsonian gait in common environments is proposed,142

based on monocular image sequences of patients wear-143

ing markers attached to knee and ankle joints. A num-144

ber of basic gait parameters, such as gait cycle time,145

stride length, walking velocity and cadence, were mea-146

sured from videos and their reliability validated against147

the GAITRite system. Results showed the relevance of148

stride length and walking velocity at distinguishing PD149

before and after drug administration.150

1.2 Open issues151

After literature review, some issues are worthy of fur-152

ther consideration. On the one hand, some works ad-153

dress automatic classification of gait impairment based154

on unreadable or basic gait features. However, since155

gait disorders are generally evident to the naked eye,156

making an obvious decision between patients or healthy157

people seems to have no practical sense. At most, the158

usefulness of classification tasks would be limited to as-159

sess the discriminant capacity of features (as it is made160

clear in [1]). Thus, the design of features that provide161

human-friendly quantification of a visible gait disorder162

is supposed to be of much more interest for physicians163

than a superfluous classification process.164

On the other hand, there are virtually no published165

benchmarking efforts. There exist almost as many data-166

sets, preprocessing techniques, gait feature sets and ex-167

perimental methodologies as research works. In addi-168

tion, most datasets are not publicly available. This sce-169

nario makes it hard to establish the real merits of cur-170

rent approaches.171

1.3 Scope and goals172

This paper introduces a semantic, vision-based charac-173

terization of gait impairment to directly assist physi-174

cians in diagnostic decisions. Instead of measuring typ-175

ical spatio-temporal parameters, a number of normal-176

ized and invariant gait features quantify impaired gait177

patterns, such as multiple views of gait asymmetry and178

risk of falling. Normalization makes these features an179

easy-to-interpret source of information, while the in-180

variance to recording parameters, such as frame rate181

and image resolution, provides consistency in cross-plat-182

form comparisons. In contrast to most previous efforts,183

which rely on cryptic or plain gait descriptors, or on184

less pervasive technologies, the feature set proposed in185

this paper could be embedded in a low-cost vision sys-186

tem (e.g. a mobile phone or a Kinect-based solution) to187

directly assist clinicians in quantifying gait disorders.188

This paper also presents a new dataset, the INIT189

Gait Database, which consists of video recordings of190

a number of volunteers simulating different patterns191

of pathological gait, along with their natural walking192

style. It is intended to validate the effectiveness of the193

features at characterizing known gait disorders. This194

dataset is made publicly available to the research com-195

munity, with the aim of encouraging future studies in-196

volving other tasks or features.197

Experiments involve the new dataset and a general-198

purpose gait database. The latter comprises indepen-199

dent regular gait samples, which were used to establish200

reliable neutrality baselines for all features, and to sta-201

tistically verify whether the INIT samples recorded un-202

der the natural walking style fit this expectation. After-203

ward, the capacity of features to precisely characterize204

irregular gait patterns was statistically studied.205

The rest of the paper is structured as follows. Sec-206

tion 2 establishes the fundamentals of human gait and207

presents the main contributions of this work: the de-208

vised video-based features and the new INIT Gait Da-209

tabase. Experiments are presented and discussed in Sec-210

tions 3 and 4. Finally, Section 5 provides the conclusions211

and some future work highlights.212

2 Theory and methods213

2.1 Human gait214

Normal gait can be defined as a cyclic movement pat-215

tern under two main assumptions [26,29]: i) cycles are216

identical, and ii) left and right limbs perform in a sim-217

ilar way (i.e., both halves of each cycle are symmet-218

rical). These assumptions are normally not fully met219

in practice; however, they can be considered consistent220

expectations for most people.221

A gait cycle is composed of two principal phases:222

stance, where a particular foot is on the ground, and223

swing, where this same foot is no longer in contact with224

the ground and it is moving forward. Start and end of225

these phases are determined by two main gait events:226

a heel strike (HS) of a foot represents its first contact227

with the ground, initiating the stance phase, while the228

transition between stance and swing is produced by a229

toe off (TO) event, when the foot leaves the ground230

starting a new step. Concurrently, the other foot follows231

a similar dynamic pattern half a cycle after (or before).232

In normal gait, stance and swing phases are expected to233

take 62% and 38% of a regular cycle, respectively [29].234

Figure 1 illustrates this distribution, from the right limb235

perspective, along a full gait cycle.236
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TO 

Fig. 1 Gait cycle from the right limb perspective through its
phases stance and swing. Events heel strike (HS) and toe off
(TO) determine the start and end of these phases. The com-
plementary stance/swing distribution for the opposite limb is
also included in the lower part. This image is inspired in one
from [29].

These theoretical assumptions are considered nec-237

essary conditions for normal gait, but not sufficient.238

That is, a pathological gait can potentially yield identi-239

cal symmetrical cycles that meet the 62:38 distribution240

of stance and swing phases. However, gait abnormal-241

ity is generally characterized by asymmetrical patterns242

or by stance/swing imbalance. As a way of example,243

gait asymmetry has been observed in patients affected244

by PD [21] and by cerebrovascular accidents [30]. This245

paper takes advantage of such evidence to formulate a246

comprehensible description of gait (a)symmetry.247

2.2 Data processing248

A number of video-based features have been devised to249

be computed from binary frames, where foreground (a250

silhouette) appears in white over a black background.251

Henceforth, the term feature is used interchangeably252

with measure.253

Given a frame from a gait video, it is binarized by254

simple background subtraction techniques. Then, the255

silhouette is extracted as a new cropped picture keep-256

ing the absolute position of its bounding box in the257

original frame for further calculations. Finally, all sil-258

houette images are scaled under a common height, but259

variable widths to keep their particular aspect ratios.260

Furthermore, some of the proposed measures are261

computed on a silhouette-based gait representation na-262

med Gait Energy Image (GEI) [8], instead of directly263

using raw silhouettes. GEI can be considered the most264

popular model-free method for condensing subject’s dy-265

namic and appearance. It is the mean image of a se-266

quence of normalized binary silhouettes, as illustrated267

in Fig. 2. To construct it, the height-scaled silhouettes268

are horizontally aligned by the x-coordinate of their269

upper-half centroids and, if needed, neutral background270

columns are added to both sides so as to obtain equal-271

sized images. Then, they are pixel-wise averaged. Since272

GEI collects information of many silhouettes, it is widely273

known by its robustness to silhouette defects [20]. More-274

over, its way of computation guarantees the indepen-275

dence of feature values from recording parameters.276

With the aim of obtaining gait asymmetry measure-277

ments, all features (except one related to posture) are278

computed separately for each lower limb. To this end,279

given a full sequence of silhouettes, it is split up into280

segments delimited by midstance/midswing poses, i.e.281

each segment comprises half a cycle. Two groups of seg-282

ments are built taking them by turns, in such a way one283

group contains odd segments and the other, even ones.284

A representative step length is elicited from each group,285

such that group with the shortest (longest) step is la-286

beled as A (B). Since the ultimate goal is to assess gait287

asymmetry, the final correspondence between left/right288

limb and A/B group is irrelevant.289

The representative step length of a group is here290

given by the median of measurements from all segments291

belonging to it. Median was chosen due to its greater292

robustness to outliers as compared to the mean. This293

same strategy is extended to obtain the limb-dependent294

representative values of proposed features, except for295

those based on GEI. In these cases, two GEI represen-296

tations are built from all silhouettes (of every segment)297

belonging to either A or B groups, respectively. Since298

GEI is a mean image, this approach is expected to be299

more reliable than choosing the median of a series of300

rough GEIs comprising single half-cycle data.301

2.3 Gait and posture features302

Figure 3 shows a diagram with the taxonomy of the pro-303

posed features, which have been split up into two cate-304

gories: gait-based (Sect. 2.3.1) and postural (Sect. 2.3.2).305

Regarding the gait-based category, two branches can306

be identified. All features listed on the left side of each307

one are considered primary features, since they are di-308

rectly inferred from gait data. Conversely, features on309

the right side represent asymmetry measurements de-310

rived from corresponding primary features.311

2.3.1 Gait-based features312

Let f denote a generic primary feature. Let fA and313

fB be the representative values of f computed on A314

and B groups, respectively. From them, an f -based gait315

asymmetry measure Af can be defined as follows:316

Af =
|fA − fB |

max (fA, fB)
(1)317

As observed, image of Af is [0, 1], with 0 correspond-318

ing to a perfect symmetrical gait pattern and 1 to the319
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GEI A 

GEI B 

a) Sequence of silhouettes b) GEI 
Fig. 2 Gait sequence through a series of key silhouettes, and the resulting Gait Energy Image (GEI).

Gait features Postural feature 

Based on raw 
silhouettes 

Based on GEI 

Asymmetry Stance 
phase (AStP) 

Asymmetry Swing 
phase (ASwP) 

Asymmetry Step 
length (ASl) 

Asymmetry Amplitude (AAm) 

Asymmetry Intensity (AI) Falling risk (Fr) Stance phase (StP) 

Swing phase (SwP) 

Step length (Sl) 

Amplitude (Am) 

Intensity (I) 

Fig. 3 Taxonomy of the proposed gait and posture features.

maximum gait asymmetry. Equation (1) can be consid-320

ered a normalized relationship between two paired mea-321

surements (fA, fB) from a same subject, what makes322

it suitable for cross-dataset experiments. The devised323

primary gait features f , from which this asymmetry324

measure is elicited, are introduced below.325

As aforementioned, gait-based features are further326

divided into two subgroups as regards the type of input327

data, which can be either the raw binary silhouettes or328

GEI representations. Within the first subgroup, three329

primary features are proposed:330

– Stance phase (StP ). It estimates the relative length331

of the stance phase in a gait cycle. It is formulated as332

StP = stance
stance+swing , where stance and swing are the333

amounts of frames belonging to these two phases.334

– Swing phase (SwP ). It estimates the relative length335

of the swing phase in a gait cycle. It is formulated336

as SwP = swing
stance+swing , where stance and swing337

are the amounts of frames belonging to these two338

phases.339

– Step length (Sl). It represents the distance (in340

pixels) covered by one foot in a step.341

Given a particular limb, StP and SwP compute the342

distribution over time of stance and swing phases, con-343

trary to their common definition in literature as ex-344

clusively temporal measures. In other words, StP and345

SwP are reformulated as the portions ∈ [0, 1] of gait cy-346

cles taken up by stance and swing phases, respectively.347

Note that both measures do not depend on frame rate.348

Conventionally, detection of start and end of these349

phases is carried out by identifying the HS and TO350

events within gait cycles [7,19]. Nevertheless, patholog-351

ical gait styles could entail major difficulties to obtain352

these events. To properly deal with expected gait dis-353

orders, in this work stance phase is assumed to start354

at the moment (video frame) when distance between355

feet is maximum, i.e. the bounding box of the lower356

half of the silhouettes within a segment does not grow357

anymore. For its part, swing phase is deemed to start358

when rear leg is starting to move forward, i.e., bounding359

boxes begin to decrease. This method was statistically360

validated against a standard procedure [7] by the results361

over high-quality neutral sequences, and no significant362

differences were found.363

In the case of Sl, it is generally obtained by mea-364

suring the distance between two consecutive heel strikes365

what, again, could be extremely inaccurate in severely366

affected gait patterns. Therefore, it has been inferred367

here by measuring the width (in pixels) of bounding368

box enclosing the lower part of the silhouette in the369

frame when stance phase starts. The use of pixel as370

unit of measurement in silhouettes with standardized371

sizes also facilitates cross-dataset comparisons.372

The second subgroup comprises two other primary373

features based on GEI representations which, to our374

knowledge, are introduced for first time in this work.375

The proposed features are:376

– Intensity (I). It is defined to show the amount of

movement within a GEI area:

I =

∑
p∈F Ip

|F |
,

where Ip = 1 − |gp−127.5|127.5 measures the motion at377

a foreground pixel p, with gp and F being the gray378

level of p and the set of foreground pixels, respec-379

tively. The closer to 127.5 gp is, the higher the esti-380

mated motion (up to 1). That is, 127.5 would corre-381

spond to a pixel p that has been background (0) in382

half of the frames, and foreground (255) in the other383
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half. This scenario can be considered of maximum384

movement, leading to Ip = 1.385

– Amplitude (Am). It is defined to show the limb

movement’s broadness:

Am =
|F |

|F |+ |B|
,

where F and B are the sets of foreground and back-386

ground pixels, respectively, with |F | and |B| denot-387

ing the cardinality of both sets.388

Since these two features are intended to focus on389

lower limb activity, GEI area was limited to the bot-390

tom 33%, which encloses approximately knees and feet.391

To build F and B, GEI pixels with gray values greater392

than or equal to 10 were considered foreground, while393

those lower than 10 were classified as background. As394

commented in Sect. 2.2, unlike in the previous three fea-395

tures based on raw silhouettes, fA and fB values of each396

GEI-based f are computed from two limb-dependent397

global GEIs.398

2.3.2 Postural feature399

In addition to gait-based features which characterize400

gait dynamics and asymmetry, a way of measuring the401

falling risk (Fr) is formulated by relating patient’s402

support area and body tilt. Both parameters are com-403

puted from those frames in which feet reach the largest404

distance between them. Support area is measured from405

the toe of front foot to the heel of rear foot, while body406

tilt is determined by the head position on x-axis. For-407

mally, falling risk is defined as follows:408

Fr = min

(
1,
|xh − xf |
wf/2

)
where xh is the x-centroid of the head, xf is the middle409

point between feet in the x-plane, and wf is the width410

of the support area. As far as we know, this proposal is411

also a novelty of this paper.412

The minimum falling risk, Fr = 0, is reached when413

xh = xf , that is, when head is vertically aligned with414

the center of the support area. On the contrary, the415

maximum probability of falling, Fr = 1, occurs when416

the x-centroid of the head coincides with, or is located417

beyond, the front limit of the support area. As in the418

silhouette-based measures defined in Sect. 2.3.1, this419

feature is computed once per segment. However, in this420

case there is no further distinction in A and B groups.421

The final Fr value is the median of measurements from422

all segments together.423

2.4 The INIT Gait Database424

The proposed INIT Gait Database1 consists of sequences425

of high-quality binary silhouettes extracted from RGB426

videos recorded in the specialized studio LABCOM,427

which belongs to the audiovisual facilities of University428

Jaume I. Ten healthy volunteers, nine males and one fe-429

male, were required to walk across a green chroma simu-430

lating several abnormal gait styles. The use of such uni-431

form background facilitated the binarization of frames432

and extraction of high-quality silhouettes, thus reduc-433

ing the uncertainty when evaluating the accuracy of434

features.435

Seven impaired gait styles were simulated, in which436

movement of limbs and posture of the entire body were437

altered to some extent. They are inspired by patholog-438

ical gait patterns that are characteristic of certain neu-439

rological diseases such as Parkinson. An eighth style of440

natural and unaffected motion has also been included.441

Each person was recorded twice under each gait pat-442

tern, and all sequences were acquired from a lateral443

view, from which limb motion and body posture can be444

better described. Gait styles of the INIT Gait Database445

are summarized below, named as in the database file446

structure:447

nm It represents the normal gait pattern of a healthy448

person, which is also referred to as neutral or regular449

appearance in the database.450

l-r0.5 It recreates a gait pattern in which right leg451

takes steps roughly one half shorter than left leg.452

l-l0.5 It recreates a gait pattern in which left leg takes453

steps roughly one half shorter than right leg.454

fb It recreates a severely affected gait pattern in which455

the full body presents a number of abnormal gait456

symptoms: subjects walk slowly, bending the knees,457

and taking very short steps barely rising feet from458

ground (shuffling gait). Posture is also considerably459

modified with respect to a healthy gait style, losing460

the vertical position and excessively bending head461

and chest forwards. These symptoms are common462

in advanced stages of the Parkinson’s disease.463

a-r0.5 It recreates a gait pattern in which right arm464

swings approximately one half less than left arm.465

a-l0.5 It recreates a gait pattern in which left arm466

swings approximately one half less than right arm.467

a-r0 It recreates a gait pattern in which right arm468

does not swing at all.469

1 For reviewing purposes, the database can be di-
rectly downloaded from http://www.vision.uji.es/

gaitDB/INIT_GaitDB.zip (password to uncompress:
“INIT GaitDB2017UJI”). The final version will include
a public website with instructions to download.

http://www.vision.uji.es/gaitDB/INIT_GaitDB.zip
http://www.vision.uji.es/gaitDB/INIT_GaitDB.zip
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d) a-l0,5 

e) a-l0 

c) fb 

b) l-l0,5 

a) nm (a) nm: Normal gait pattern of a healthy person.

d) a-l0,5 

e) a-l0 

c) fb 

b) l-l0,5 

a) nm 

(b) l-l0.5: Left leg takes steps approximately one half shorter than right leg.

d) a-l0,5 

e) a-l0 

c) fb 

b) l-l0,5 

a) nm 

(c) fb: Severely affected gait pattern where the full body presents abnormal symptoms.

d) a-l0,5 

e) a-l0 

c) fb 

b) l-l0,5 

a) nm 

(d) a-l0.5: Left arm swings approximately one half less than right arm.
d) a-l0,5 

e) a-l0 

c) fb 

b) l-l0,5 

a) nm 

(e) a-l0: Left arm does not swing at all.

Fig. 4 Samples of the different gait styles in the INIT Gait Database.

a-l0 It recreates a gait pattern in which left arm does470

not swing at all.471

Figure 4 shows a sample of a same subject walking472

under a) nm, b) l-l0.5, c) fb, d) a-l0.5 and e) a-l0 gait473

styles. The remaining three have not been included in474

the figure, since they are realizations of b), d) and e)475

styles but from the contrary limb perspective.476

3 Results477

Two experimental studies have been conducted to eval-478

uate the sensitivity of the proposed features at char-479

acterizing both normal and impaired gait styles. First,480

the expected normality of the nm style was assessed481

by comparing feature values from the nm sequences482

against two references, one theoretical and the other483

empirical. The relevance of proving normality of nm se-484

quences lies in the confidence it provides to subsequent485

comparisons between normal and pathological styles.486

This preliminary analysis was also useful to establish487

early evidence in favor of the consistency of features.488

In a second study, features were computed on several489

styles of the INIT Gait Database, to statistically ver-490

ify whether features are able to reflect the anomalies491

recreated in the different gait patterns.492

In the new INIT Gait Database (2 sequences per493

subject and style), each feature value used in the ex-494

periments results from averaging the two measurements495

obtained from both corresponding sequences of a person496

under analysis. Furthermore, when a primary feature f497

is directly involved in any test, its limb-based measure-498

ments fA and fB are equally considered without any499

distinction.500

3.1 First study: normality assessment of nm sequences501

In this section, the expected regularity of nm sequences502

from the INIT Gait Database is verified from both a503

theoretical perspective and an empirical one.504

3.1.1 Theoretical validation505

The cycle distribution between stance and swing esti-506

mated by StP and SwP on nm sequences was com-507

pared to their theoretical values (62:38) introduced in508
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Table 1 One-sample t-tests given a known population mean
for stance phase (StP ) and swing phase (SwP ) features over
the nm sequences from INIT Gait Database. Symbols “◦”
highlight p-values above the significance level α = 0.05, in-
dicating irrelevant differences between the sample and the
population theoretical mean.

StP SwP
◦ ◦

p-value 0,7711 0,7711

Section 2.1. A one-sample t-test was applied to each509

feature to find out whether the observed StP and SwP510

values could have been generated by a process with the511

mean on paper. This would allow a validation of the512

normality of nm sequences assuming that StP and SwP513

perform satisfactorily and, on the other hand, the as-514

sessment of StP and SwP provided that nm sequences515

fit a normal pattern.516

Table 1 summarizes the results of both parametric517

tests. As can be observed, p-values overtake the signif-518

icance level α, which means that the null hypothesis519

is not rejected and, therefore, that no relevant differ-520

ences between the theoretical mean and our samples521

have been found. This supports the assumption of nor-522

mality of nm sequences.523

3.1.2 Empirical validation524

Four gait features were used to validate the normal-525

ity of the nm sequences from the INIT Gait Database526

with respect to a collection of neutral gait sequences527

from the OU-ISIR Treadmill Dataset B [15]. The lat-528

ter is a general-purpose gait database composed of in-529

door recordings of 68 healthy subjects from their side530

view, wearing up to 32 clothing combinations. Due to531

their neutral appearance, only sequences that combine532

regular pants and full shirt were considered, which cor-533

respond to type 9 sequences according to the dataset534

nomenclature. Given a specific feature, the two popula-535

tion samples (OU-ISIR, INIT) were compared by an536

unpaired two-sample t-test, assuming equal variance.537

Under the reasonable assumption of a normal pattern538

in the selected gait sequences from OU-ISIR database,539

this test is expected to provide further evidence on the540

normality of nm sequences.541

The gait features included in this experiment were542

ASl, AI , AAm and Fr. They were chosen because of543

two reasons: 1) they can be computed from sequences544

of normalized silhouettes, as provided by the OU-ISIR545

database; and 2) they were designed to be robust to546

cross-dataset studies. Results are shown in Table 2. As547

in the theoretical validation, in none of the tests has the548

null hypothesis been rejected. It statistically supports549

that both samples may belong to the same population,550

Table 2 Unpaired two-sample t-tests assuming equal vari-
ances between neutral sequences from INIT Gait Database
and OU-ISIR Database. Features involved are the asym-
metries in step length (ASl), intensity (AI) and amplitude
(AAm), and the fall risk factor (Fr). Symbols “◦” highlight
p-values above the significance level α = 0.05, indicating ir-
relevant differences between both samples.

ASl AI AAm Fr
◦ ◦ ◦ ◦

p-value 0,2957 0,3415 0,9124 0,1634

strengthening the assumption of normality of nm se-551

quences.552

Regarding the remaining features, some evidence553

was found which made them unsuitable to compare554

treadmill walking samples of Japanese people (OU-ISIR)555

against overground gait sequences of European sub-556

jects (INIT). For instance, [2] stressed a lower normal-557

ized step length in Asian people than in European peo-558

ple. Another work [26] showed significant differences in559

step length and stance-swing distribution between over-560

ground and treadmill locomotion, which directly affect561

the intensity and amplitude of leg motion. Exploratory562

tests with Sl, I and Am confirmed these expected dif-563

ferences. In addition, StP and SwP (and their corre-564

sponding asymmetries) could not be accurately com-565

puted from the out-of-context silhouettes provided by566

OU-ISIR, due to the fact that neither their original po-567

sition in the scene nor source recordings are available.568

3.2 Second study: ability of features to characterize569

gait anomalies570

In this study, features introduced in Section 2.3 were571

computed on gait sequences corresponding to four styles572

out of the eight comprised in the INIT Gait Database.573

Styles involved were nm, l-r0.5, l-l0.5 and fb. Only those574

that mimic arm disorders were excluded, motivated by575

the belief that features formulated are not as suitable576

for describing arm motion as for characterizing move-577

ment in leg region. Unlike the latter, arm dynamic is578

largely occluded by torso; thus, appropriate features579

should probably weight the perceived motion by some580

measure of the size of trunk.581

Since every subject appears walking in all styles, a582

number of parametric pairwise tests were applied in or-583

der to find out whether there exist statistical differences584

between feature values computed on normal gait pat-585

terns and those computed on each pathological style.586

This study has been broken down into two subsections,587

focusing on nm vs. fb and nm vs. l-r0.5 /l-l0.5 compar-588

isons, respectively.589
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Table 3 Paired two-sample t-tests performed on the INIT Gait Database between neutral (nm) sequences and full body
affected (fb) sequences. Symbols “◦” (“•”) highlight p-values above (below) the significance level α = 0.05, indicating irrelevant
(substantial) differences between samples.

StP SwP Sl I Am Fr
• • • • • •

p-value 5,56E-07 5,56E-07 6,33E-23 1,88E-13 1,31E-20 2,97E-07

AStP ASwP ASl AI AAm

◦ ◦ • • •
p-value 0,0570 0,8859 0,0136 0,0011 0,0054

3.2.1 Normal style (nm) versus full-body disorder style590

(fb)591

A first analysis involved the six features that do not592

entail asymmetries: stance phase (StP), swing phase593

(SwP), step length (Sl), intensity (I ), amplitude (Am)594

and falling risk (Fr). A second analysis covered the five595

asymmetry-driven measures inferred from previous fea-596

tures: AStP , ASwP , ASl, AI and AAm.597

The upper half of Table 3 shows the results of paired598

two-sample t-tests on the first group of features. As ex-599

pected, significant differences were found in the behav-600

ior of StP, SwP, Sl, I, Am and Fr. These results prove601

the sensitivity of features at reflecting the severe gait602

impairment recreated in fb samples. The second anal-603

ysis comprehends the lower part of Table 3, which in-604

cludes the results over the five asymmetry features. No605

statistical differences were found when computing two606

of them (AStP , ASwP ), while significant changes were607

observed in ASl, AStP and ASwP . Further details about608

these findings are given in Section 4.609

3.2.2 Normal style (nm) versus one-leg disorder styles610

(l-r0.5, l-l0.5)611

The comparison between the nm style and the two one-612

leg disorder styles (l-r0.5, l-l0.5 ) was based on the five613

asymmetry features (AStP , ASwP , ASl, AI , AAm) and614

the falling risk (Fr). The limb-dependent primary fea-615

tures (StP, SwP, Sl, I, Am) were discarded because a616

single general value f representing both limbs makes no617

sense in asymmetrical patterns of leg motion as those618

simulated in l-r0.5 and l-l0.5 styles.619

The t-test results corresponding to the six involved620

features are shown in Table 4. By way of summary, in621

three of them (ASl, AI , AAm), significant differences622

were found between the nm and l-r0.5 /l-l0.5 styles,623

while the remaining three features (AStP , ASwP , Fr)624

showed a statistically similar behavior when operating625

in both scenarios. Next section gives a deeper interpre-626

tation of these results.627

Additionally, by way of supplementary information,628

Appendix A includes two tables with the feature values629

measured on the INIT Gait Database styles considered630

in the experiments. Table 5 shows the limb-dependent631

values of primary features and falling risk for each style,632

while Table 6 reflects the values of asymmetry mea-633

sures. For the sake of clearness, presented feature values634

are averages, together with standard deviations, over all635

subject measurements. Note that these values do not636

match with those used in the experiments, where val-637

ues per person were required to perform the t-tests. As638

it can be seen, broad margins can be identified between639

domains of values from the normal style and those cor-640

responding from pathological styles. This would allow641

physicians to establish reliable thresholds for assessing642

the existence and severity of a gait disorder.643

4 Discussion644

Results have been remarkably consistent with expec-645

tations. This can be explained by two factors that, in646

our opinion, have been extensively verified: 1) the well-647

defined gait styles included in the INIT Gait Database,648

and 2) the effectiveness of features at characterizing the649

normal and pathological gait patterns.650

These two premises were first tested in the study of651

normality of nm sequences (Section 3.1), which estab-652

lished the consonance of the empirical relative lengths653

of stance/swing and their ideal values. It supports both654

the neutrality of the nm sequences and the validity of655

StP and SwP . This study also entailed a successful656

cross-database comparison that proved the robustness657

of features to different video settings. As commented, it658

makes possible to directly compute gait features from659

videos acquired by heterogeneous devices.660

As regards the second study (Section 3.2), Table 3661

shows consistent behaviors of the primary features when662

coping with two quite dissimilar symmetrical styles such663

as nm and fb. This is a relevant finding since the fb style664

is a heavily affected gait pattern that involves extra665

complexity to be analyzed. In particular, the greatest666

differences were obtained in step length (Sl), ampli-667

tude (Am) and intensity (I) of leg motion (their null668

hypotheses of equal means were rejected by larger mar-669

gins). As regards Fr, it was clearly affected by the670
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Table 4 Paired two-sample t-tests performed on the INIT Gait Database between neutral (nm) sequences and right leg half
motion (l-r0.5 ) or left leg half motion (l-l0.5 ) sequences. Symbols “◦” (“•”) highlight p-values above (below) the significance
level α = 0.05, indicating irrelevant (substantial) differences between samples.

AStP ASwP ASl AI AAm Fr

nm vs. l-r0.5
◦ ◦ • • • ◦

p-value 0,5269 0,6510 1,87E-06 0,0024 5,81E-06 0,1611

nm vs. l-l0.5
◦ ◦ • • • ◦

p-value 0,7398 0,7942 1,29E-05 0,0026 7,94E-06 0,7514

hunched posture reflected by fb style, as well as by its671

shorter steps which produce a narrow support area.672

Concerning the asymmetry measures from the lower673

part of Table 3, no statistical differences were found674

when computing AStP , ASwP . This illustrates that any675

underlying alteration in stance/swing portions within676

the gait cycles takes place equally in both limbs, what677

effectively occurs in fb style as compared to normal678

gait (nm), leading to similar asymmetry values. It can679

be easily corroborated checking Table 5. Conversely,680

statistical differences were found on ASl, AI and AAm.681

However, a closer look at their corresponding mean re-682

sults in Table 6 (columns 3-5; rows 1 and 4) reveals very683

low asymmetry values in both nm and fb styles: ≤ 0.1684

in the range [0, 1]. This behavior is explained by the685

greater impact of differences between Sl, I and A mea-686

surements on both limbs (columns A, B from Table 5)687

in the computation of fb asymmetries. That is, the rel-688

ative nature of Eq. 1 stresses the influence of a given689

discrepancy when it comes from smaller magnitudes.690

The fact that such slight differences in these nm and691

fb asymmetry features were deemed significant by the692

statistical tests, proves them as a rigorous and reliable693

validation method.694

Concurrently, asymmetry features were also very695

precise at measuring the one-half shorter step repro-696

duced by one of the legs (Table 4), a disorder that sub-697

stantially affects the symmetry of step length (ASl),698

as well as of intensity (AI) and amplitude (AAm). As699

shown in the table, the null hypotheses (of equal means)700

associated to their corresponding paired two-sample t-701

tests were rejected by very large margins. Nevertheless,702

contrary to what might seem logical at first, a shorter703

step had no impact on stance/swing asymmetry mea-704

sures (AStP , ASwP ). That is, a shorter step does not705

alter the portions of a gait cycle taken up by stance706

and swing stages in comparison to normal gait, as re-707

flected by Table 5. Finally, no significant difference was708

found in Fr computation. This is also in agreement with709

expectations, since one-leg disorder is not supposed to710

influence subject’s posture nor the support area (which711

is determined by the leg with normal motion).712

It is worth recalling that all measures (except Sl)713

range from 0 to 1, what can be directly understood714

by physicians. This fact makes them semantic, easy-to-715

interpret features.716

5 Conclusions717

This work proposes a readable and robust character-718

ization of common gait and posture disorders, which719

consists in a number of video-based gait features. They720

are intended to provide normalized and invariant infor-721

mation when gait is being used to diagnose health con-722

dition, for instance, in primary health care for elderly723

people or in Parkinson’s disease. Moreover, a new gait724

database including normal and impaired gait videos is725

introduced in this paper, with the object of proving the726

suitability of features. This dataset, named INIT Gait727

Database, has been made publicly available to the re-728

search community, aiming at fostering future studies729

about gait measurement.730

A first study was conducted to test both consistency731

of features and neutrality of those gait samples from732

the new database recorded under the normal pattern.733

On the one hand, estimations of the relative lengths of734

stance and swing phases in normal gait samples were735

compared against their expected ideal values. On the736

other hand, behavior of features was analyzed when737

performing on normal gait samples from both the new738

database and a well-known general-purpose gait dataset.739

In a second study, sensitivity of features to reflect the740

impaired gait styles recreated in the new database was741

also assessed.742

Experimental results, all of them supported by sta-743

tistical tests, proved the reliability of the proposed fea-744

tures. In the first study, their values were in statistical745

agreement with their theoretical expectations and with746

each other when they were computed on the two inde-747

pendent collections of normal gait samples. This also748

provided strong evidence in favor of the validity of the749

new database. The second study showed the accuracy of750

features at measuring and describing different walking751

styles.752

By way of conclusion, some promising directions for753

future research are suggested next. First, this paper has754

not delved into effective ways of characterizing arm mo-755

tion. As aforementioned, arm dynamic is heavily over-756



Vision-based gait impairment analysis for aided diagnosis 11

lapped by torso, mainly in binary silhouette images.757

Any satisfactory solution to this problem should con-758

sider the extent of overlapping. To tackle this open mat-759

ter, the INIT Gait Database includes sequences where760

upper limb motion is affected at different degrees. Sec-761

ond, from an applied point of view, the proposed fea-762

tures should be evaluated in truly impaired gait sam-763

ples, for example, from patients of Parkinson’s disease.764

Our immediate goal is to work in this direction. Fi-765

nally, we believe that semantic and invariant gait fea-766

tures like those proposed in this paper, along with the767

ease of gathering gait videos from ubiquitous simple768

devices, open the door to the development of low-cost769

vision systems that can potentially be used in ambula-770

tory services.771
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17. Mart́ınez-Mart́ın, P., Garćıa-Urra, D., del Ser-Quijano,844

T., et al.: A new clinical tool for gait evaluation in Parkin-845

son’s disease. Clinical neuropharmacology 20(3), 183–846

194 (1997)847

18. Mun, K.R., Lim, S.B., Guo, Z., et al.: Biomechanical ef-848

fects of body weight support with a novel robotic walker849

for over-ground gait rehabilitation. Medical & Biological850

Engineering & Computing 55(2), 315–326 (2017)851

19. Nieto-Hidalgo, M., Ferrández-Pastor, F.J., J, V.S.R.,852

et al.: A vision based proposal for classification of nor-853

mal and abnormal gait using RGB camera. Journal of854

biomedical informatics 63, 82–89 (2016)855

20. Ortells, J., Mollineda, R.A., Mederos, B., et al.: Gait856

recognition from corrupted silhouettes: A robust statis-857

tical approach. Machine Vision and Applications 28(1),858

15–33 (2017)859

21. Plotnik, M., Giladi, N., Balash, Y., et al.: Is freezing of860

gait in Parkinson’s disease related to asymmetric motor861

function? Annals of neurology 57(5), 656–663 (2005)862

22. Raheja, J.L., Chaudhary, A., Nandhini, K., et al.: Pre-863

consultation help necessity detection based on gait recog-864

nition. Signal, Image and Video Processing 9(6), 1357–865

1363 (2015)866

23. Rocha, A.P., Choupina, H., Fernandes, J.M., et al.:867

Kinect v2 based system for Parkinson’s disease assess-868

ment. In: 37th Annual International Conference of869

the IEEE Engineering in Medicine and Biology Society870

(EMBC’15), pp. 1279–1282 (2015)871

24. Saner, R.J., Washabaugh, E.P., Krishnan, C.: Reliable872

sagittal plane kinematic gait assessments are feasible us-873

ing low-cost webcam technology. Gait & Posture 56,874

19–23 (2017)875
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A Feature values from the INIT Gait Database916

Table 5 Means and standard deviations of primary features, computed over all subjects for each gait style in the INIT Gait Database.
Values are sorted in such a way that A columns always correspond to the leg with a lower Sl in each style.

StP SwP Sl I Am Fr
A B A B A B A B A B

nm
0.62± 0.61± 0.38± 0.39± 106.13± 108.45± 0.65± 0.66± 0.55± 0.56± 0.07±

0.03 0.03 0.03 0.03 6.75 6.42 0.01 0.02 0.04 0.04 0.04

l-r0.5
0.61± 0.61± 0.39± 0.39± 72.50± 104.30± 0.54± 0.66± 0.40± 0.54± 0.10±

0.03 0.04 0.03 0.04 12.81 11.29 0.09 0.02 0.06 0.06 0.06

l-l0.5
0.63± 0.62± 0.37± 0.38± 70.80± 103.25± 0.51± 0.67± 0.37± 0.55± 0.08±

0.04 0.05 0.04 0.05 14.37 7.04 0.11 0.02 0.06 0.03 0.04

fb
0.71± 0.70± 0.29± 0.30± 60.38± 65.03± 0.36± 0.40± 0.32± 0.34± 0.85±

0.06 0.06 0.06 0.06 5.31 7.09 0.06 0.08 0.03 0.04 0.16

Table 6 Means and standard deviations of asymmetry features, computed over all subjects for each gait style in the INIT Gait
Database.

AStP ASwP ASl AI AAm

nm
0.03± 0.05± 0.02± 0.03± 0.04±

0.01 0.02 0.01 0.01 0.03

l-r0.5
0.04± 0.06± 0.30± 0.18± 0.27±

0.02 0.02 0.09 0.12 0.08

l-l0.5
0.04± 0.06± 0.32± 0.24± 0.32±

0.03 0.04 0.11 0.16 0.09

fb
0.02± 0.05± 0.07± 0.10± 0.08±

0.02 0.04 0.04 0.06 0.03
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