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GLOSSARY

• DNA Deoxyribonucleic acid Nucleic acid that contains the genetic instructions

used in the development and functioning of allknown living organisms.

• CDNA or Complementary DNA DNA that is synthesized in the laboratory from

messenger RNA template.

• RNA Ribonucleic acid Nuclic acid very similar to DNA, but differs in a few

important structural details.

• Gene is a long strand of DNA sequence corresponding to a unit of inheritance .

• Transcription is the synthesis of RNA under the direction of DNA, and then this

RNA sequence information translated to amino acids then to protein.

• Translation is the process in which the mature mRNA is translated into polypep-

tide chain of amino acids (then to protein) according to certain genetic codes.

• Genomics is the study of an organism’s entire genome. The field includes in-

tensive efforts to determine the entire DNA sequence of organisms and fine-scale

genetic mapping efforts.

• Functional Genomics is a field that attempts to make use of the vast wealth of data

produced by genomic projects (such as genome sequencing projects) to describe

gene (and protein) functions and interactions.

• Transcriptome is the set of all messenger RNA (mRNA) molecules or transcripts

produced in one or a population of cells.

• Proteomics is the large-scale study of proteins, particularly their structures and

functions.

• Transcription factor is a protein that binds to specific parts of DNA using DNA

binding domains and is part of the system that controls the transfer (or transcrip-

tion)of genetic information from DNA to RNA.

xi



Glossary xii

• Proteins are large organic compounds made of amino acids arranged in a linear

chain and joined together by peptide bonds.

• Genetic code is the set of rules by which information encoded in genetic material

(DNA or RNA sequences)is translated into proteins.

• Promoter is a regulatory region of DNA generally located upstream (towards the

5’ region of the sense strand) of a gene that allows and controls transcription of

the gene.

• Gene expression is the process by which inheritable information from a gene, such

as the DNA sequence, is made into a functional gene product, such as protein or

RNA.

• Ribosomes complexes of RNA and protein that are found in all cells. Coding

region of a gene is the portion of DNA or RNA that is transcribed into RNA.

• GenBank sequence database is an open access, annotated collection of all publicly

available nucleotide sequences and their protein translations.

• Phenotype is any observable characteristic of an organism, such as its morphology,

development, biochemical or physiological properties, or behavior.

• Eukaryotes organisms whose cells are organized into complex structures enclosed

within membranes and contain nucleus inside the cell.

• Prokaryotes organisms that usually lack a cell nucleus or any other membrane-

bound organelles.

• Gene Ontology (GO) provides a controlled vocabulary to describe gene and gene

product function in any organism.

• Gene regulatory network is a collection of DNA segments in a cell which interact

with each other (indirectly through their RNA and protein expression products)

and with other substances in the cell, thereby governing the rates at which genes

in the network are transcribed into mRNA.
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ABSTRACT

Understanding gene interactions in complex living systems can be seen as the ultimate

goal of the system biology revolution. Hence, to fully understand disease ontology and

to reduce the cost of drug development we need to construct the gene regulatory net-

work (GRN). During the last decade, many GRN inference algorithms that are base on

genome-wide data have been developed to unravel the complexity of gene regulation.

Data dimensionality and variability are important problems in GRN modelling.

We propose an integrated algorithm (SSBBN) for denoising using Spectral Subtrac-

tion(SS), reducing the dimension using Biclustering(B) and Bayesian Network (BN)

learning to overcome these problems. Firstly, the microarray dataset is denoised using

our spectral subtraction novel method to decrease the false positive rate. Secondly, we

divide the whole set of genes into a number of overlapped biclusters using our proposed

BicAT-Plus toolbox. Thirdly, these biclusters are learned using Greedy Hill Climbing

search algorithm to produce small subnetworks. Finally, these subnetworks were in-

tegrated to produce the whole gene regulatory network. The proposed method was

applied to time series gene expression data of Saccharomyces Cerevisiae. The generated

network was validated via available interaction databases and the result revealed the

performance of our proposed method. Also, The generated network from our proposed

method outperformed the network generated from previous methods. The approach

could potentially be applied to other networks in yeast as well as higher organisms.

BicAT-Plus can be downloaded from http://home.k-space.org/BicAT-plus.zip

xiv
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Chapter 1

Introduction

1.1 Thesis Overview

One of the hot topics in the area of bioinformatics is functional genomics. This topic

focuses on the interactions and functions of each gene and its products (mRNA, protein)

through the whole genome. In order to identify the functions of certain gene, we should

be able to capture the associated gene expressions. Gene expression describes how the

genetic information converted into a functional gene product through the transcription

and translation processes. Functional genomics uses microarray technology to measure

the genes expressions levels under certain conditions and environmental limitations.

Microarray has become a central tool in biological research. Consequently, the analysis

of gene expression data is a necessary and important tool for studying regulatory and

other functional relationships among genes. The identification of gene regulatory net-

works (GRN) is of major importance in order to understand the working mechanisms

of the cell in patho-physiological conditions.

Recently, and exactly this year a quartet of studies by researchers at the California In-

stitute of Technology (Caltech) highlight a special feature on gene regulatory networks

to understand how development of an animal occurs [1]. Also researchers at Institute

for Cancer Genetics Columbia University study complex diseases and design novel

therapies using reverse engineering approach [2].

In this dissertation we address the challenge of reconstructing gene regulation network

from gene expression data.

Within the last few years, a number of sophisticated approaches for the reverse engi-

neering of cellular networks from gene expression data have been emerged. This may

include Boolean networks [3], Bayesian networks [4], association networks [5], linear

1



Chapter 1. Introduction 2

models [6], and differential equations [7].

The great challenges in GRN modeling are dimensionality reduction and denoising of

microarray data. Efforts are being done to overcome these problems. Dimensional-

ity reduction was tried many times through clustering algorithms. Clustering algo-

rithms [8–10] were used to reduce data dimensionality. This is based on the assumption

that genes which show similar expression patterns, are co-regulated or part of the same

regulatory pathway. But unfortunately, this is not always true. By learning genes within

each cluster, we get one subnetwork for each cluster. Integrating cluster subnetworks,

we generate the whole GRN.

The problem using clustering is that clustering does not guarantee that genes within

a cluster share the same biological function. This is because clustering algorithms are

based on the similarity matrix, which is calculated using all data experiments. Recent

understanding of the cellular process suggested that some genes should have similar

expression under certain experiments and they differ under the other experiments [11].

A bicluster technique to group similar genes under appropriate experiments is required.

During the last year, more than ten biclustering algorithms have been proposed, but the

question is: which algorithm is better? And do some algorithms have advantages over

others? Generally, comparing different biclustering algorithms is not straightforward

as they differ in strategies, approaches, time complexity, number of parameters and

prediction ability. They are strongly influenced by user-selected parameter values. For

these reasons, the quality of biclustering results is also often considered more important

than the required computation time. Although there are some analytical comparative

studies to evaluate the traditional clustering algorithms [12–14], for biclustering, no

such extensive comparison exist even after initial trails have been taken [15]. At the

end, biological merit is the main criterion for evaluation and comparison between the

various biclustering methods.

To our best knowledge, biclustering algorithms compassion toolbox has not been avail-

able in the literature. We have developed a comparative tool BicAT-Plus [16] that

includes the biological comparative methodology and to be used as an extension to the

BicAT program [17]. BicAT [17] is a common biclustering analysis toolbox in which most

important bi/clustering algorithms like k-means, HCL [18], Bimax [15] , OPSM [19], X-

motif [20],CC [11], and ISA [21, 22] were implemented. In this work one of our goals is

to study the impact of using biclustering algorithms in GRN construction.

Bonneau et al [23] developed GRN algorithm (The Inferelator) based on an integrated

biclustering method (cMonkey) [24]. cMonkey groups genes and conditions into bi-

clusters on the basis of three components: the expression component, the sequence
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component, and the network component, which they are not available for all the organ-

isms. Because all the biclustering algorithms which are either implemented in BicAT or

in our modified version BicAT-Plus, did not require any prior information, we excluded

cMonkey from further analysis.

The problem of data denoising has also been studied. Many algorithms are found in

the literature for data denoising. Among the most powerful techniques that can be

used to separate signal components are those based on blind source separation such as

principal component analysis (PCA) and independent component analysis (ICA) [25].

These techniques decompose the signal sources using either the second order statistics

(as in PCA) or higher order statistics such as the kurtosis (as in ICA) to account for the

non-Gaussian nature of the sources. According to the assumptions of both techniques,

the number of independent signal components must be less than or equal to the num-

ber of signals to be analyzed. Otherwise, the separation of components yields incorrect

results or even may not converge at all as in ICA. Unfortunately, this condition is not

satisfied in microarray datasets. Given the general assumption of uncorrelated noise,

the number of components of random noise alone is equal to the number of signals. The

total number of components has to add the number of components. As a result, the use

of PCA and ICA-based techniques may not be successful in practice unless the noise

signals are sufficiently weak. This may account for the limited use of such techniques

in low SNR applications [26]. Therefore, a technique that suppresses random noise or

removes some of its components would be rather useful for making the use of PCA and

ICA more robust for false positive reduction.

In this thesis, we provide an integrated new technique for denoising and dimensionality

reduction of microarray data. Our proposed algorithm provides a deeper understand-

ing of the biological systems complexity. We applied our algorithm to two well-known

datasets of yeast microarray gene expression (Gasch et al [27]; Spellman et al [28]),

which can downloaded from Stanford Microarray Database(http://smd.stanford.edu/)

Figure 1.1 shows our proposed GRN modeling block digram.

The first step start with the question biologist required to answer for example which

genes are involved in controlling the cell cycle [28] and which genes are showed a similar

drastic response to the environmental changes [27]. The above questions are important

biologically and clinically, and with out assistance of the bioinformatics expert who

have an appropraite tools that help to answer these questions. The next step, is to pre-

pare an appropriate experiments relative to biological question. Next is the extraction

of the gene expression matrix from the microarray experiments using image processing

techniques. Removing of non-informative genes and conditions, normalization and

denoising data using our novel spectral subtraction (SS) method are described in the

preprocessing step(Chapter 3). We chose a filtering procedure that rejects many unre-

liable and uninformative data points. The next step is the partitioning of all the whole
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Figure 1.1: Basic Steps involved in GRN construction. Formulate Hypothesis:start
with biological question?; Experimental Design: prepare relative experiments; Data
Extraction:; Data Preprocessing:to remove non informative genes and reduce signal
variability;Data Partitioning:to overcome data dimensionality problem; Subnetwork
Learning:to construct the submodule network; Subnetwork Integration:to construct
the whole network; Network Analysis and Validation: to test the produced network

via literature.

genes in to small overlapped biclusters using our modified biclustering toolbox(BicAT-

Plus) [16](Chapter 3). After that, we learn each of these biclusters using Bayesian

network structure learning algorithm (Greedy Hill Climbing) to produce overlapped

subnetworks and integrate them to produce the whole network(Chapter 5). Assess-

ment the performance of the resultant network using existing interactome databases is

illustrated in the vaildation step(Chapter 3). Last step, the generated validated network

will open new hypotheses which need to be verified by further experiments.

It could not move without mention important issues have to be considered:

• First, the above steps are not just forward steps but it is forward-backward.If the

modeler is not satisfied with results he could change the parameters to get more

closer results, depends on his first hypothetical assumption.
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• Second the noise in these steps is accumulated, means that the poor microarray

data, alter preprocessing steps which further alter the cluster results that will

change the learning network and the following validation process.

• Finally, a successful GRN construction cannot be performed by a single group or

laboratory, it required resources from many disciplines and of varied backgrounds.

1.2 Thesis Objective

Due to the increasing the application of the gene regulatory network to fully understand

disease ontology and to reduce the cost of drug development.

We are attempt in this thesis, to present an integrated technique that can be applied

to the gene expression matrices to construct a more reliable gene regulatory network.

This technique uses a new method for denoising based on spectral subtraction (SS).

Moreover, we extended the available biclustering algorithm known as BicAT and pro-

vide a new one called BicAT-Plus. BicAT-Plus could be used efficiently for the sake of

dimensionality reduction.

The confidence in the results obtained from our proposed algorithm, will be validated

and analyzed via available previous work and litterer.

1.3 Thesis Organization

In Chapter 2 introductory to biology and description of different data source like the

gene expression data which are used in this thesis are to be introduced. Chapter 3

covers gene expression analysis starting from normilazation, discretization, denoising,

clustering and biclustering. This chapter also include our biclustering comparison

toolbox AGO and BicAT-Plus which were published in [29] and [16]. A brief literature

review about different reverse engineering approaches which were developed during

last ten years were introduced in Chapter 4. It was illustrated why last GRN current

research used Bayesian Network learning algorithms. Assessment the performance of

the our generated network and network analyzing and vaildation via previous methods

and literature are presented in Chapter 5.

Finally Chapter 6 presents the our conclusion and possible improvements in the research

as well as identifying future related research areas.



Chapter 2

Biological Background

In this chapter we will start with brief introductory to bioinformatics(Section 2.1), its

impact on health life and current hot research area. Second, we summarized the basic

elements of biology(Section 2.2)like transcription and translation. Third, we give a short

description of our model organism ”Saccharomyces Cerevisiae”(Section 2.5) and why we

select yeast(Section 2.5.1) in this study?. Finally, we describe the important biological

data sources(Section 2.4) which were used in this study. We give more details about the

microarrays technology(Section 2.3.2) or the gene expression matrix as it is the main

data source in this study.

2.1 Introduction to Bioinformatics

It is interesting to note that there is no one single definition of bioinformatics. Different

organizations define it in their own way. A more simpler definition of bioinformatics

is that it is the application of computer technology to the management and analysis of

biological data. It is an interdisciplinary research area that is the interface between the

biological and computational sciences it’s ultimate goal being to uncover the wealth of

biological information hidden in the mass of data and to obtain a clearer insight into the

fundamental biology of organisms [30].Simply Bioinformatics is the marriage between

biology and information technology. Bioinformatics concerns the development of new

tools for the analysis of genomic and molecular biological data including sequence

analysis ,genetic algorithms, phylogenetic inference, genome database organization

and mining, optical computation and holographic memory, pattern recognition and

image analysis, biologically inspired computational models [31].

6
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2.1.1 Historical Development

The beginning of bioinformatics can be traced back to Margaret Dayhoff in 1968 and

her collection of protein sequences known as the Atlas of Protein Sequence and Struc-

ture [32]. One of the early significant experiments in bioinformatics was the application

of a sequence similarity searching program to the identification of the origins of a viral

gene [33]. In this study, scientists used one of the first sequence similarity searching

computer programs (called FASTP), to determine that the contents of v-sis, a cancer-

causing viral sequence, were most similar to the well-characterized cellular PDGF gene.

This surprising result provided important mechanistic insights for biologists working

on how this viral sequence causes cancer [34]. From this first initial application of

computers to biology, the field of bioinformatics has exploded. The growth of bioin-

formatics is parallel to the development of DNA sequencing technology. In the same

way that the development of the microscope in the late 1600’s revolutionized biological

sciences by allowing Anton Van Leeuwenhoek to look at cells for the first time, DNA

sequencing technology has revolutionized the field of bioinformatics. The rapid growth

of bioinformatics can be illustrated by the growth of DNA sequences contained in the

public repository of nucleotide sequences called GenBank.

2.1.2 The Need for Bioinformatics

The word bioinformatics has become a very popular ”buzz” word in science. Many

scientists find bioinformatics exciting because it holds the potential to dive into a whole

new world of uncharted territory. Bioinformatics is a new science and a new way of

thinking that could potentially lead to many relevant biological discoveries. Although

technology enables bioinformatics, bioinformatics is still very much about biology. Bi-

ological questions drive all bioinformatics experiments. Important biological questions

can be addressed by bioinformatics and include understanding the genotype-phenotype

connection for human disease, understanding structure to function relationships for

proteins, and understanding biological networks. Bioinformaticians often find that the

reagents necessary to answer these interesting biological questions do not exist. Thus,

a large part of a bioinformatician’s job is building tools and technologies as part of

the process of asking the question. For many, bioinformatics is very popular because

scientists can apply both their biology and computer skills to developing reagents for

bioinformatics research. Many scientists are finding that bioinformatics is an exciting

new territory of scientific questioning with great potential to benefit human health and

society.
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2.1.3 Bioinformatics Impact on Health Life

The birth of bioinformatics as a result of the explosion of raw data after the completion

of the Human Genome Project has added another dimension to the drug discovery

process. The pharmaceutical industry has all along operated without bringing together

the disciplines of biology , chemistry and information technology [35]. These fields

,though complimentary had no common interface. The pharmaceutical industry ap-

pears to have been left behind when other industries were implementing information

technology to improve their operations. But due to the genome project and the resultant

data explosion, it was then imperative to join these fields of science together to exploit

the available data and thus expedite the drug discovery process. Traditionally , the drug

discovery process takes an average of 15 years and costs about $880 million to develop

each new medicine that does make it to the market. Nearly 75% of drug candidates

currently being tested by pharmaceutical companies will fall short of expectations and

never reach the market [36]. Added to this is the recent negative perception of the phar-

maceutical industry due to the ever spiraling drug prices, recalls and recent warnings

about popular prescription medications. In an attempt to improve and reduce the cost

of drug discovery, the pharmaceutical industry has recently turned to bioinformatics.

Some analysts predict that bioinformatics could help cut in half the cost of creating a

drug and shave two to three years off its development [36].

2.1.4 Bioinformatics Research Area

Figure 2.1 shows a scheme of the main biological problems where Bioinformatics meth-

ods are being applied. These applications could be classified into six different domains:

1. Genomics

• Extract the location and structure of the genes

• Identification of Regulatory Elements and Non-coding RNA Genes

• RNA Secondary Structure Prediction

2. Proteomics

• Protein Structure Prediction.

3. Microarrays

• Pre-processed
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Figure 2.1: Bioinformatics Current Research Area (Copyright© [37]).

• Expression Pattern Identification

• Classification

• Genetic Network Induction.

4. Systems Biology

• Modelling Biological Networks

Genetic Networks

Signal Transduction Networks

Metabolic Pathways

5. Evolution

• Phylogenetic Tree Reconstruction

• Multiple Sequence Alignment

6. Text Mining

• Knowledge Extraction
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• Functional Annotation,

• Cellular Location Prediction

• Protein Interaction Analysis

2.2 Basic Biology

2.2.1 Prokaryotic and Eukaryotic Cell Types

All organisms consist of small cells, typically too small to be seen by a naked eye, but

big enough for an optical microscope [38].There are estimated about 6x1013 cells in a

human body, of about 320 different types. For instance there are several types of skin

cells, muscle cells, brain cells (neurons), among many others. The world of organisms

could be divided into two types: Prokaryotic and Eukaryotic cells

• Prokaryotic Cells: Prokaryotic Cells are smaller than eukaryotic cells (See Fig-

ure 2.2)(a typical size of a prokaryotic cell is about 1 micron in diameter) and

have simpler structure (e.g., they do not have any inner cellular membranes that

are always present in Eukaryotes, see below). Prokaryotes are single cellular or-

ganisms, but note that being a single cell does not mean that an organism is a

prokaryote. Being smaller than eukaryotes does not mean that prokaryotes are

any less important. For instance it is quite likely that the number of bacteria living

in the mouth and digestive tract of a human are larger than the number of eu-

karyotic cells in the same individual and many of these bacteria are necessary for

a human being to live a normal life (these numbers are rather difficult to estimate,

rather a hypothesis). Prokaryotes are sometimes also known as microbes.

• Eukaryotic Cells: A Eukaryotic cell has a nucleus, which is separated from the

rest of the cell by a membrane. The nucleus contains chromosomes, which are the

carrier of the genetic material. There are internal membrane enclosed compart-

ments within eukaryotic cells, called organelles, e.g., centrioles, lysosomes, golgi

complexes, mitochondria among others 2.2, which are specialised for particular

biological processes. The mitochondria are found in all eukaryotes and are spe-

cialised for energy production (respiration). Chloroplasts are organelles found

in plant cells which produce sugar using light. Light is the ultimate source of

energy for almost all life on Earth. The area of the cell outside the nucleus and the

organelles is called the cytoplasm. Membranes are complex structures and they
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are an effective barrier to the environment, and regulate the flow of food, energy

and information in and out of the cell.

An essential feature of most (prokaryote and eukaryote) living cells is their ability to

grow in an appropriate environment and to undergo cell division. The growth of a

single cell and its subsequent division is called the cell cycle. However, not all cells

continually grow and divide, for example neurons only undergo an initial growth

phase. Prokaryotes, particularly bacteria, are extremely successful at multiplying - it

is likely that natural selection has favoured single celled organisms able to grow and

divide quickly. Multicellular organisms typically begin life as a single cell, usually

as a result of fusion of a male and a female sex cell (gametes). The single cell has to

grow, divide and differentiate into different cell types to produce tissues and in higher

eukarotyes, organs. Cell division and differentiation need to be controlled. Cancerous

cells grow without control and can go on to form tumours. Development of single cells

into complex organisms is in itself an area of study called developmental biology.

Figure 2.2: Model of a Eukaryotic and Prokaryotic Cell.

2.2.2 Molecules of Life

There are four basic types of molecules involved in life: (1) small molecules, (2) proteins,

(3) DNA and (4) RNA. Proteins, DNA and RNA are known collectively as biological



Chapter 2. Biological Background 12

macromolecules.

2.2.2.1 Small Molecules

These can be the building blocks of the macromolecules or they can have independent

roles, such as signal transmission or being a source of energy or material for a cell. Some

important examples besides water are sugars, fatty acids, amino acids and nucleotides.

For instance, biological membranes are constructed from fatty acids, into which macro-

molecules are embedded. There are 20 different amino acid molecules, which are the

building blocks for proteins (to be more precise, there are 19 amino acids and one which

has a slightly different structure and therefore is called amino acid). Figure 2.3 shows

three examples of amino acid moleclues, there are 17 more. They differ by R side chains

which determine their properties and the order of these different amino acids within the

protein determines the three dimensional structure of the protein . There is a convention

that each amino-acid is denoted by a letter in Latin alphabet, for instance arginine is

denoted by R, histidine by H, lysine by L and there are 20 such letters.

Figure 2.3: Amino Acid Structure.
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2.2.2.2 Proteins

Proteins are the main building blocks and functional molecules of the cell, taking up

almost 20% of a eukaryotic cell’s weight, the largest contribution after water (70%).

Among others, there are:

• Structural Proteins, which can be thought of as the organism’s basic building

blocks. An example is collagen, which is the major structural protein of connective

tissue and bone.

• Enzymes, which perform (catalyse) a multitude of biochemical reactions, such

as altering, joining together or chopping up other molecules. Together these

reactions and the pathways they make up is called metabolism. For example the

first step in the glycolysis pathway, which is the conversion of glucose to glucose

6-phosphate, is catalysed by the enzyme hexokinase. Usually enzymes are very

specific and catalyse only a single type of reaction, however the same enzyme can

play role in more than one pathway.

• Transmembrane Proteins are key in maintenance of the cellular environment,

regulating cell volume, extraction and concentration of small molceules from the

extracellular environment and generation of ionic gradients essential for muscle

and nerve cell function. An example is the sodium/potassium pump.

Proteins have complex three dimensional (3D) structure (see Figure 2.4).PDbe 1 is a

database of known protein structures, which is housed and developed at the EBI. The

images below shows the structure of triosephosphate isomerase visualised by RasMol

software package, a 3D viewer for PDBe structures.

Proteins are much too small to be seen in an optical microscope - a characteristic protein

size varies from about 3 to 10 nanometers (nm), i.e., 3 to 10 times 10-9 m, and solving

(i.e., discovering) their structure is a difficult and expensive exercise (approximately

€50,000 - €200,000 per novel structure), which is done by a variety of methods including

X-ray crystallography, nuclar-magnetic resonance spectroscopy, and advanced electron

microscopy. There are roughly 15,000 protein structures deposited in public databases,

though many of them are very similar to each other. Whether to consider two protein

structures similar or different depends on the similarity threshold (as with cell types).

Structural biologists think that currently there are about 1,500 different representative

protein structures known.

Predicting protein structure from the amino-acid sequence is one of the most important

problems of computational biology (another name for bioinformatics, though some try

1http://www.ebi.ac.uk/pdbe/
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Figure 2.4: 3D Structure of Triosephosphate Isomerase Visualised by RasMol Software
Package.

to make a distinction between these two terms) and is far from being solved. Character-

istic, frequently reoccurring structural elements are called protein domains. Sometimes

it is possible to identify these domains in proteins of unknown structure, if their se-

quence is similar to that of a known structural domain. Structural domains are often

associated with a particular protein function. Protein similarity is also deemed to be

the result of evolutionary relationship.

2.2.2.3 DNA

DNA is the main information carrier molecule in a cell. DNA may be single or double

stranded. A single stranded DNA molecule, also called a polynucleotide, is a chain of

small molecules, called nucleotides . There are four different nucleotides grouped into

two types, purines: adenosine and guanine and pyrimidines: cytosine and thymine.

They are usually referred to as bases (in fact bases are the only distinguishing element

between different nucleotides, see Figure 2.5 and denoted by their initial letters, A,C ,G

and T (not to be confused with amino acids!).
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Different nucleotides can be linked together in any order to form a polynucleotide,

Figure 2.5: DNA Basic Structure: Nucleotide is the Basic Element of DNA, Picture
Taken from On-Line Biology Book 2.

for instance, like this A-G-T-C-C-A-A-G-C-T-T. Polynucleotides can be of any length

and can have any sequence. The two ends of this molecule are chemically different, i.e.,

the sequence has a directionality, like this A−〉G−〉T−〉C−〉C−〉A−〉A−〉G−〉C−〉T−〉T−〉 .

The end of the polynucleotide are marked either 5’ and 3’ (this has chemical reasons

in the numbering of the -OH groups of the sugar ring); by convention DNA is usually

written with 5’ left and 3’ right, with the coding strand at top. Two such strands are

termed complementary , if one can be obtained from the other by mutually exchanging

A with T and C with G, and changing the direction of the molecule to the opposite.

For instance, T − 〈C − 〈A − 〈G − 〈G − 〈T − 〈T − 〈C − 〈G − 〈A − 〈A − 〈 is complementary

to the polynucleotide given above. Specific pairs of nucleotides can form weak bonds

between them. A binds to T, C binds to G (to be more precise, two hydrogen bonds can

be formed between each A-T pair, and three hydrogen bonds between each C-G pair).

Although such interactions are individually weak, when two longer complementary

polynucleotide chains meet, they tend to stick together, like this:

A−〉 G−〉 T−〉 C−〉 C−〉 A−〉 A−〉 G−〉 C−〉 T−〉 T−〉

T − 〈 C − 〈 A − 〈 G − 〈 G − 〈 T − 〈 T − 〈 C − 〈 G − 〈 A − 〈 A − 〈

Vertical lines between two strands represent the forces between them (to be more

accurate we could draw triple lines between each C and G and double lines between

A and T). The A-T and G-C pairs are called base-pairs (bp). The length of a DNA

molecule is usually measured in base-pairs or nucleotides (nt), which in this context

is the same thing. Two complementary polynucleotide chains form a stable structure,

which resembles a helix and is known as a the DNA double helix (Figure 2.6). About

2http://www.estrellamountain.edu/faculty/farabee/biobk/biobooktoc.html
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10 bp in this structure takes a full turn, which is about 3.4 nm long. This structure was

Figure 2.6: DNA Double Helix Model: DNA Helix Structure was First Figured in 1953
by Watson and Crick where Later they got the Nobel Prize for this discovery, Picture

Taken from On-Line Biology Book 3.

first figured out in 1953 in Cambridge by Watson and Crick (with the help of others),

Later they got the Nobel Prize for this discovery, for more see the book by Watson - The

Double Helix.

It is remarkable that two complementary DNA polypeptides form a stable double helix

3http://www.estrellamountain.edu/faculty/farabee/biobk/biobooktoc.html
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almost regardless of the sequence of the nucleotides. This makes the DNA molecule a

perfect medium for information storage. Note that as the strands are complementary,

each one of them fully determining the other, therefore for the information purposes it is

enough to give only one strand of the genome molecules. Thus, for many information

related purposes, the molecule used on the example above, can be represented as

CGATTCAACGATGC. The maximal amount of information that can be encoded in

such a molecule is therefore 2 bits times the length of the sequence. Noting that

the distance between nucleotide pairs in a DNA is about 0.34 nm, we can calculate

that the linear information storage density in DNA is about 6x10 8 bits/cm, which is

approximately 75 GB or 12.5 CD-ROMs per cm.

2.2.2.4 RNA

RNA like DNA is constructed from nucleotides. But instead of the pyrimidine thymine

(T), it has an alternative uracil (U), which is not found in DNA. Because of this minor

difference RNA do not form a double helix, instead usually they are single stranded,

but may have complex spatial structure due to complementary links between the parts

of the same strand as for instance in tRNA. RNA can bind complementary to a single

strand of a DNA molecule, even though T is replaced by U, so molecules like this:

A−〉 G−〉 T−〉 C−〉 C−〉 A−〉 A−〉 G−〉 C−〉 T−〉 T−〉 DNA

U − 〈 C − 〈 A − 〈 G − 〈 G − 〈 U − 〈 U − 〈 C − 〈 G − 〈 A − 〈 A − 〈 RNA

Since the discovery of DNA and RNA in the 1950s, scientists have studied the function

and structure of the components that makeup these structures. The various types and

functions of RNA have been investigated by numerous researchers, including Spanish

physiologist Severo Ochoa (19051993), who received a Nobel prize in 1959 for his

contributions to our understanding of how RNA is synthesized4.

There are five major types of RNA that are found in the cells of eukaryotes. These include

heterogeneous nuclear RNA (hnRNA), messenger RNA (mRNA), transfer RNA tRNA),

ribosomal RNA (rRNA), and small nuclear RNA. Structurally, hnRNA and mRNA

are both single stranded, while rRNA and tRNA form threedimensional molecular

configurations. Each type of RNA has a different role in various cellular processes. In

addition to these functions, RNA plays an important role in the ability of certain viruses

to cause infection.
4http://science.jrank.org/pages/5892/RNA-Function.html
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One of the primary functions of RNA is to facilitate the translation of DNA into protein.

This process begins in the nucleus of the cell with a series of enzymatic reactions that

transcribe DNA into heterogeneous nuclear RNA by complementary base pairing.The

mRNA attaches to the ribosome to allow for the initiation of protein synthesis. Part of

this process involves another type of RNA that is located in the ribosome called tRNA.

tRNA is an adapter molecule, which functions as a bridge between a specific three-base

sequence or codon in the mRNA strand and the amino acids that are used to construct

the protein. The tRNA carries an amino acid that matches the specific codon and this

process begins and stops based on specific sequences in the mRNA. Each amino acid is

transferred to the growing polypeptide by chemical interactions to produce a full-length

protein. Another type of RNA that is part of the ribosome and is involved in protein

synthesis is rRNA. rRNA has two primary functions. First, it provides the structure and

shape producing the catalytic regions of the ribosome. Second, it helps speed up, or

catalyze, protein synthesis by interactions between the tRNA and the protein synthesis

machinery.

2.2.2.5 Chromosomes and Genomes

In a typical cell there are one or several long double stranded DNA molecules organ-

ised as chromosomes. In eukaryotes chromosomes have a complex structure where

DNA is wound around structural proteins called histones. A human has 23 pairs of

chromosomes , which are large enough to be seen in an optical microscope. The total

length of the DNA in one human cell, if we could stretch it out, would be more than

1m. Mitochondria contain DNA too, but the amount is minuscule in comparison to

chromasomal DNA. Chromasomal and mitochondrial DNA forms the genome of the

organism. All organisms have genomes and they are believed to encode almost all

the hereditary information of the organism. In eukaryotes chromosoms are in the nu-

cleus (apart from mitochondrial genomes), contained by the nuclear membrane. All

cells in an organism contain identical genomes (with few rather special exceptions), as

the result of DNA replication at each cell division. There is a molecular machinery in

cells, which keeps both DNA strands intact and complementary (i.e., if one strand is

damaged, it is repaired using the second as a template). This is important as DNA

damage (caused by environmental factors like radiation) can result in breaks in one or

both strands, or mispairing of the bases, which would disrupt DNA replication among

other things. If damaged DNA is not repaired the result can be cell death or tumors.

Changes in genomic DNA are known as mutations. The total genome size differ quite

considerably in different organisms, as given in the Table 2.1.
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Table 2.1: Genome Size and Number of Chromosomes of various Organism

Organism Number of Chromosomes Genome size in base pairs
Bacteria 1 400,000 - 10,000,000
Yeast 12 14,000,000
Worm 6 100,000,000
Fly 4 300,000,000
Weed 5 125,000,000
Human 23 3,000,000,000

2.2.3 Genes and Protein Synthesis

There are many discussions between biologists to find a comprehensive definition of a

gene, which is not easy, if possible at all.

A gene is a continuous stretch of a genomic DNA molecule, from which

a complex molecular machinery can read information (encoded as a string

of A, T, G, and C) and make a particular type of a protein or a few different

proteins.

The above ”definition” is not precise, and to better understand it we need to describe

the molecular machinery making proteins based on the information encoded in genes.

This process is called protein synthesis and has three essential stages: (1) transcription,

(2) splicing, and (3) translation.

1. In transcription phase one strand of DNA molecule is copied into a complemen-

tary pre mRNA (pre stands for preliminary and m for messenger) by the protein

complex RNA polymerase II(Figure 2.8) . In the process the two-stranded DNA

double helix is unwound and information is read only from one strand (sometimes

called the W-strand).

2. Splicing removes some stretches of the pre mRNA(Figure 2.7), called introns, the

remaining sections called exons are then joined together. Note that the removal of

introns is a consequence of the way how eukaryote genomes are organised. The

genomic DNA that corresponds to the coding part of genes is not continuous, but

consists of exons and introns. Exons are the part of the gene that code for proteins

and they are interspersed with non coding introns which must be removed by

splicing. The number and size of introns and exons differs considerably between

genes and also between species. Only very few genes in yeast have introns, while

for human threre are about 4 introns per gene on average, and the average size of
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exons is 150 bp and just above 3400 bp for introns. Prokaryote genes do not have

introns and the splicing step is not present. The result of splicing is mRNA. Many

eukaryote genes are known to have different alternative splice variants, i.e. the

same pre-mRNA producing different mRNAs, known as alternative splicing.

Figure 2.7: Splicing: Remove of Introns and Splice Exons. Picture Taken from On-Line
Biology Book 5.

3. Translation is the process of making proteins by joining together amino acids in

order encoded in the mRNA(Figure 2.8). The order of the amino acids is deter-

mined by 3 adjacent nucleotides (triplets) in the DNA. This is known as the triplet

or genetic code . Each triplet is called a codon and codes for one amino acid. As

there are 64 codons and only 20 amino acids the code is redundant, for example

histidine is encoded by CAT and CAC. In cytoplasm the mRNA forms a complex

with ribosomes, which are large complexes of proteins and RNA molecules. The

precise interactions and functions of all protein in ribosomes are not yet fully

understood. Different transfer or tRNA molecules each carries one specific amino

acid to the ribosome and specifically recognises one codon on the mRNA. The

amino acid carried by the tRNA is added to the nascent (growing) protein. The

translation is a complex process and not all the details are understood. Luckily

most of these details are not crucial for understanding of bioinformatics. What is

crucial however is to realise that there is nothing magical about proteins synthesis.

The end of translation is the final part of gene expression and the final product

5http://www.estrellamountain.edu/faculty/farabee/biobk/biobooktoc.html
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is a protein, the sequence of which corresponds to the sequence encoded by the

mRNA. Proteins can be post-translationally modified e.g., by adding of sugars or

cleavage (chopping), and this affects their location and function.

Figure 2.8: Transcription and Translation.

Biologists used to believe in paradigm - ’one gene - one protein’. Now this is known

not to be true - due to alternative splicing and post-translational modifications one gene

can produce a variety of proteins. There are also genes that do not encode proteins but

encode RNA (for instance tRNA and ribosomal RNA).

Table 2.2 shows genes number and percentage of the whole genome that encodes

protein per different organism. One of the surprises is the relatively small number of

genes in a human genome in comparison to worm. Before most of the human genome

sequencing was accomplished, it was estimated that there should be about 100,000
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genes in a human. In fact some experts still think that there must be at least 40,000

- 50,000 genes in the human genome, and that 30,000 just reflects the unreliability of

in silico (i.e., computational) gene prediction. Still, it seems that there is no simple

correlation between the intuitive (not well-defined) complexity of an organism and the

number of genes in its genome (for instance, intuitively fly is more complex organism

than worm ). One reason for the low number of genes in the human genome may be

Table 2.2: Genome Percentage that Encodes Proteins

Organism The Number of Part of the Genome
Predicted Genes that Encodes Proteins (Exons)

E.Coli (bacteria) 5000 90%
Yeast 6000 70%
Worm 18,000 27%
Fly 14,000 20%
Weed 25,500 20%
Human 30,000 <5%

that there are more splice variants per gene in humans, though this has yet to be proved

(otherwise human vanity may have to suffer).The presence of 95% of non-coding DNA

in the human genome (sometimes called the junk DNA) remains a mystery. There are

several hypotheses explaining this, but none is generally accepted. One controversial

hypothesis (promoted by Richard Dawkins) is based on the idea of so-called selfish

DNA. It states that the DNA is the basic element for natural selection, implying that

DNA tries to propagate (multiply and amplify) itself, while the cells and organisms are

vehicles to achieve this.

2.2.4 Gene Function

The first, and very important, step in the elucidation of the function of a novel gene is to

compare the amino-acid sequence of its predicted protein product with those of other

protein sequences in the public data libraries to see whether it is similar to a protein of

known function that has previously been characterized in another organism [39].

Second, elucidation of gene function either by identifying homologs of known func-

tion from other species [39]. As the different systematic genome sequencing projects

progress, there is a growing set of genes that have homologs in a range of organisms

but in none of these organisms is their function understood.

Finally, A powerful way to elucidate the function of novel genes uncovered by sys-

tematic genome sequencing projects is to determine the physiological conditions, or
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developmental stage, where those genes are expressed and relate their expression pat-

terns to those of genes whose function is well known.

2.3 Data Acquisition Methodologies

2.3.1 DNA Sequencing Methodology

Determining the four letter sequence for a given a DNA molecule is known as the DNA

sequencing. The first full genome for a bacterium was sequenced in 1995. The yeast

(Saccharomyces cerevisiae) genome was sequenced in 1997, worm (nematode Caenorhab-

ditis elegans) in 1999, fly (Drosophila melanogaster) in 2000, and weed (Arabidopsis

thaliana ) at 2001. Human genome was completed in 2003, this is known as the draft

human genome. Rapid and efficient methods for DNA sequencing were first devised in

the mid-1970s. Two different procedures were published at almost the same time [40]

• The chain termination method (Sanger et al., 1977), in which the sequence of a

single-stranded DNA molecule is determined by enzymatic synthesis of comple-

mentary polynucleotide chains, these chains terminating at specific nucleotide

positions;

• The chemical degradation method (Maxam and Gilbert, 1977), in which the se-

quence of a double-stranded DNA molecule is determined by treatment with

chemicals that cut the molecule at specific nucleotide positions.

Both methods were equally popular to begin with but the chain termination procedure

has gained ascendancy in recent years, particularly for genome sequencing. This is

partly because the chemicals used in the chemical degradation method are toxic and

therefore hazardous to the health of the researchers doing the sequencing experiments,

but mainly because it has been easier to automate chain termination sequencing. Se-

quencing of the relatively small bacterial genomes has become routine and is largely

done by sequencing robots and completed by human researchers, the main problem

being the minimisation of costs per letter, and maximisation of the speed while main-

taining quality. Sequencing of larger genomes, like a human genome, is still difficult,

though most of the problems are computational. Sequencing robots are able to sequence

only relatively short stretches of DNA, which afterward have to be assembled together

by a computer using assembly algorithms. The main difficulty is that genomes of

higher eukaryotes (like humans) have many repeated subsequences, which makes the
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assembly rather tricky, this means that considerable human intervention is still needed

in the final stage of sequencing projects. The worlds largest public genome sequencing

project is housed at the Sanger Institute .

2.3.2 Microarray Technology

In the 1960s, in the absence of methods for direct analysis of mRNAs, cellfree trans-

lation systems provided an indirect approach to measure the abundance of a specific

mRNA. The amount of a specific protein produced during the cell-free translation of an

mRNA population was assumed to reflect the abundance of the cognate mRNA in that

population which have many disadavatage like: First, it does not give an indication

of the integrity of the mRNA being analyzed. Second, it can be difficult to quantitate

low-abundance mRNAs accurately because of relatively high backgrounds [39].

During short period a variety of other approaches have been developed to determine

the level of gene expression during biological process, for instance: RT-PCR, North-

ern Analysis, Reporter Genes ,cDNA Technologies,Serial Analysis of Gene Expression

(SAGE),Hybridization Array Technology which have been described in detail else-

where. The former, which we will be focused in this section has been growing expo-

nentially during last years.

The Hybridization Array Technology or the DNA microarray is a high-throughput tech-

nology used in molecular biology and in Medicine and plays a central role in the field

of functional genomics. With this new technology it is possible to measure the mRNA

abundance (gene expression) for tens of thousands of genes in parallel in a single exper-

iment. It makes use of the sequence resources created by the genome projects and other

sequencing researches to find out what genes are expressed in a particular cell type of

an organism, at a certain condition, at specific environmental restrictions. Also, it can

be used to predict the gene functions by evaluating the microarray genes subsets (after

clustering) with standard gene annotations such as Gene Ontology (GO) (see Section 3.3

for details). This approach has been successfully used on yeast to predict the function of

over 800 uncharacterized genes [41].Moreover, microarrays can detect viruses or other

pathogens in blood samples [42].Finally, gene expression profiling is another important

application of microarrays. It can be used to identify genes whose expression is changed

in response to pathogens or disease by comparing gene expression in infected to that in

uninfected cells.

Microarrys technology help answer important questions like:which genes are expressed

in all cell types, what are the functional roles of these genes, how big is the gene function

universe, how many genes are needed for life, how it can be that a worm has more genes
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than a fly, and the human only a bit more than a worm, and, of course, we can always

revisit the question of the meaning of life.

2.3.2.1 Microarray Concepts

A microarray is typically a glass on which DNA molecules are attached at fixed coor-

dinates (spots). There may be tens of thousands of spots on an array, each containing

a huge number of identical DNA molecules(Figure 2.9). In the experiments of gene

expression profiling, each of these DNA molecules in the spot should identify one gene

or one exon in the genome; however, in fact, this is not always the case due to the

families of similar genes in a genome. The spots printed on the microarrays by a robot,

or synthesized by ink-jet printing. There are distinct methods how microarrays can be

used to measure the gene expression levels. One way is to compare the gene expres-

sion levels in two different samples, e.g., the same cell type in a healthy and diseased

status(Figure 2.10). The mRNA from the cells in two different conditions is extracted

and labeled with two different fluorescent labels: green dye for normal cells and a red

dye for tumor. Both extracts are washed over the microarray. Labeled gene products

from the extracts hybridize to their complementary sequences in the spots due to the

preferential binding(Figure 2.11). The dyes enable the amount of sample bound to a

spot to be measured by the level of fluorescence emitted when it is excited by a laser

scanner. If the RNA from the normal sample is in abundance, the spot will be green,

if the RNA from the tumor sample is in abundance, it will be red. If both are equal,

the spot will be yellow (red + green), while if no color is exist it will not fluoresce at all

and appear black. Thus, from the fluorescence intensities and colors for each spot, the

genes expression levels can be measured. See Figure 2.10.

The raw data that are produced from microarray experiments are the hybridised

microarray images. To obtain information about gene expression levels, these images

should be analysed, each spot on the array identified, its intensity measured and com-

pared to the background. This is called image quantitation.

Image quantiation Figure 2.12 is done by image analysis software. To obtain the final

gene expression matrix from spot quantiations, all the quantities related to some gene

(either on the same array or on arrays measuring the same conditions in repeated ex-

periments) have to be combined and the entire matrix has to be scaled to make different

arrays comparable.

Recently, several gene expression microarray databases have been founded to store

such huge amount of microarray data. Also these databases can be queried, compared

6http://www.affymetrix.com
7http://www.affymetrix.com
8http://www.ebi.ac.uk/microarray/biology intro.html#Molecules
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Figure 2.9: Microarray Chip: There May be Tens of Thousands of Spots on an Array,
each Containing a Huge Number of Identical DNA Molecules. Picture Taken from

Affymetrix 6.

and analyzed by various software tools. Gene Expression Omnibus (GEO), Array

Express, GeneX and Stanford Microarray Database (SMD) are the commonly used mi-

croarrays online databases.

2.3.2.2 Gene Expression Data Analysis

Capturing and storage of microarray data is not an end in itself. The amounts of

data from even a single microarray experiment are so large, that preprocessing step

have to be used to make any sense out of it. Data denoising, clustering, biclustering,

normailzation, are typical methods currently used in gene expression data analysis and

described in details in the next chapter.
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Figure 2.10: Microarray Experiment: The Total mRNA from the Normal and Tumor
Cells is Extracted and Labelled with two Different Fluorescent Labels: For Example a

Green Dye for Normal Cells and a Red Dye for Tumor Cells.

2.3.2.3 Microarray Data Limitations

Microarrays have some limitations, and one should note the following potential sources

of problems: manufacturing reproducibility; variation in how the experiments are per-

formed such as exposure duration, temperature gradients and flow conditions. These

problems might cause negative effects on the hybridization process [43].

Many microarrays problems concerning specificity, accuracy, reproducibility and the

biology have been addressed and assessed in the literature [44, 45]. If an mRNA is

present in relatively high abundance it can probably be detected reliably, however,

low-copy numbers lead to problems. Cross-hybridization is likely to be common and

adds to the noise in the measurements. One has to keep in mind that microarrays

only measure the mRNA concentration, but mRNA half-life is sequence dependent and

varies widely. Some mRNAs are being stored for a long time until needed. Therefore,

a high concentration of a mRNA does not necessarily mean that the corresponding

gene is active; the concentration of a particular mRNA might not be correlated with the

concentration of the corresponding protein, nor the concentration of the active form of

the protein, because all posttranscriptional steps can be regulated individually.



Chapter 2. Biological Background 28

Figure 2.11: Microarray Hybridization: Labeled Gene Products from the Extracts
Hybridize to their Complementary Sequences in the Spots. Picture Taken from

Affymetrix 7.

2.4 Biological Database

Biological databases are libraries of life sciences information, collected from scientific

experiments, published literature, high throughput experiment technology, and com-

putational analyses. They contain information from research areas including genomics,

proteomics, metabolomics, microarray gene expression, and phylogenetics [30]. Infor-

mation contained in biological databases includes gene function, structure, localization

(both cellular and chromosomal), clinical effects of mutations as well as similarities of

biological sequences and structures [46].

• Primary Sequence Databases All the public DNA sequences are stored in the

EMBL database (also known as EMBL-Bank), which is in fact a collaboration of
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Figure 2.12: Microarray Image Quantitation: Each Spot on the Array Identified, its
Intensity were Measured and Compared to the Background which is Called Quuanti-

tation. Picture Taken from EBI 8.

three databases EMBL in Europe, GenBank in the USA and DDBJ in Japan (each

database mirrors the others and they exchange data every 24 hours).

Figures 2.13(a),2.13(b),2.13(c)show how the DNA sequence is formatted.

• Protein Sequence Databases

1. UniProt: Universal Protein Resource (UniProt Consortium: EBI, Expasy, PIR)

2. PIR Protein Information Resource (Georgetown University Medical Center

(GUMC)). Figure 2.13(d) shows PIR sequence format.

3. Swiss-Prot: Protein Knowledgebase (Swiss Institute of Bioinformatics). Its

format is very similar to EMBL format, except considerably more information

about the physical and biochemical properties of the protein is provided.

• Protein Structure Databases

1. Protein Data Bank (PDB) (Research Collaboratory for Structural Bioinformat-

ics (RCSB))

2. CATH Protein Structure Classification

3. SCOP Structural Classification of Proteins
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4. SWISS-MODEL Server and Repository for Protein Structure Models

5. ModBase Database of Comparative Protein Structure Models (Sali Lab, UCSF)

• Protein Protein Interactions

1. BioGRID A General Repository for Interaction Datasets (Samuel Lunenfeld

Research Institute)

2. STRING: STRING is a database of known and predicted protein-protein

interactions. (EMBL)

3. DIP Database of Interacting Proteins

(a) EMBL Sequence Entry Format (b) GenBank DNA Squence Entry

(c) FASTA Sequence Entry Format (d) Protein Information Resource Sequence
Format

Figure 2.13: Examples of Biological Databases Format.

2.5 Saccharornyces Cerevisiae

In April 1996, the complete genome sequence of the brewers and bakers yeast Sac-

charornyces Cerevisiae was sequenced. The project was launched by an initiative of A.

Goffeau (1989) and the European Commission (EU) to sequence chromosome 111 in

a pilot study. This was an important event, not just because it was the first complete

eukaryotic genome sequence, but also because it was the first total sequence for an

important model organism for which there is a large constituency of researchers ready

and able to exploit the sequence data.
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2.5.1 Why Yeast

We can summarized why the current research focus on Yeast as following

1. Yeast has already provided biologists with a valuable resource for determining

the function of individual human genes involved in medical problems, such as

cancer, neurological disorders, and skeletal disorders. Over the next few years,

scientists in the United States and Europe will piece together for the first time a

comprehensive look at how all the genes in a eukaryotic cell function as an inte-

grated system.”The yeast genome is closer to the human genome than anything

completely sequenced so far,” said Dr. Francis Collins, director of the National

Center for Human Genome Research (NCHGR), part of the National Institutes of

Health (NIH).

2. Biologists have studied yeast, known by its scientific name Saccharomyces Cere-

visiae, for many decades because it offers valuable clues to understanding the

workings of more-advanced organisms. Humans and yeast, for example, share a

number of similarities in their genetic make up. For one, many regions of yeast

DNA contain stretches of DNA subunits, called bases, that are very close or iden-

tical to those in human DNA. These similarities tell scientists the genes in those

regions play a critical role in cell function in both species, or they would have been

lost during the 1 billion years of evolution that separate yeast and humans. About

one-third of yeast genes are related to those in the human. Some of these critical

processes include DNA copying and repair of damaged DNA, protein synthesis

and transport across membranes, and control of metabolic processes.

3. In cancer research, S. Cerevisiae has emerged as an important model for studying

control of the eukaryotic cell cycle.Although yeast DNA shares many similarities

with human DNA, finding yeast genes is easier because the yeast genome lacks

the long stretches of filler DNA and repeated bases the human genome contains,

which often cause scientists problems when examining a long DNA piece for the

presence of genes. Yet, scientists know

4. The difficulty of experiments on human body.

5. Nobel Laureates in Physiology or Medicine for 2001 have awarded to Leland

H. Hartwell, R. Timothy (Tim) Hunt and Paul M 9. Nurse. They made seminal

discoveries concerning the control of the cell cycle. They have identified key

molecules that regulate the cell cycle in all eukaryotic organisms, including yeasts,

plants, animals and human based on study on Yeast. Defects in cell cycle control

9http://nobelprize.org/nobel prizes/medicine/laureates/2001/press.html
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may lead to the type of chromosome alterations seen in cancer cells. This may in

the long term open new possibilities for cancer treatment.

6. Yeasts have recently been used to generate electricity in microbial fuel cells, and

produce ethanol for the biofuel industry.

2.5.2 Yeast Genes Features

To date of writing this thesis 10 the complete sequence reveals approximately 6607

protein-encoding genes, 27 ribosomal RNA genes, 21 pseudogene, and 299 tRNA genes.

Figute 2.14 shows that one-third of yeast genes remain uncharacterized. The uncharac-

terized ORF is an open reading frame (ORF) is one that is likely to encode an expressed

protein, as suggested by the existence of orthologs in one or more other species, but

for which there are no specific experimental data demonstrating that a gene product is

produced in S.Cerevisiae. Structural characteristics on every yeast ORF can be accessed

through the MIPS WWW server11. This information is continuously and automatically

updated as new sequence and structure information becomes available. Other sources

of 3D structural information related to the yeast genome are the GeneQuiz resource12 at

EMBL (Heidelberg) and the Sach3D facility13 provided by the Saccharomyces Genome

Database (SGD) at Stanford. Functional analysis of the Saccharornyces Cerevisiae genes

using gene ontology lastes version are shown in figure 2.15.

2.5.3 Yeast Gene Naming

2.5.3.1 Standard Name

The official Gene Name of an S. Cerevisiae gene is referred to as the Standard Name on an

SGD locus page, and generally becomes the standard name based on its publication in

a peer-reviewed paper describing characterization of that gene. Any alternative Gene

Name is referred to as an Alias [47].

Gene Names in S. Cerevisiae are generally three letters followed by a number. Example

CDC28 - a Gene Name conferred on a nuclear ORF on the basis of genetic characteriza-

tion. Different copies of duplicated genes may be indicated by an extension to the end

of the Gene Name. This extension can made by either adding a letter, e.g. ’A’ or ’B’, as

in the case of the ribosomal protein genes, or by adding a hyphen and a number, e.g.

10http://www.yeastgenome.org/cgi-bin/search/featureSearch
11http:/ /www.mips.biochem.mpg.de
12http:/ /www.embl-heidelberg.de/-genequiz/ yeast.htm1
13http://genome-www.stanford.edu/Sacch3D
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Figure 2.14: Chromosomal Features of the S.Cerevisiae.

Figure 2.15: Classification of Saccharornyces Cerevisiae Genes According to the Func-
tional Category (GO).
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’-1’, ’-2’, as in the case of the YRF1 genes encoding the Y’-helicase or the ribosomal RNA

genes. Example RPL1A - a Gene Name conferred on one copy of the gene encoding a

copy of large subunit protein 1

RPL1B - a Gene Name conferred on the other copy of the gene encoding a copy of large

subunit protein 1

2.5.3.2 Systematic Names

The Systematic Name is the name generated by the systematic sequencing project, or

conferred later according to the appropriate guidelines for systematic nomenclature for

that type of new feature or gene [48].

YAL001C - first ORF to the left of the centromere on chromosome I (A is the 1st letter of

the English alphabet), on the complement or Crick strand.

For mitochondrially encoded ORFs, the systematic names start with a ’Q’, to designate

the mitochondrial chromosome; the rest consists of a four digit number.

Example

Q0010 - an ORF encoded in the mitochrondrion

Q0032 - another ORF encoded in the mitochrondrion. For tRNAs, the systematic names

begin with a lowercase ’t’; the second letter corresponds to the single letter code for the

appropriate amino acid, e.g. A = alanine, C = cysteine, etc.; next the sequence of the

anticodon of the tRNA is given in the 5’ -¿ 3’ direction within parentheses, e.g. (AGC),

(GUC); finally, there is an indication of which chromosome the tRNA gene resides on

using the letters ’A’ through ’P’ to designate nuclear chromosomes (in the same way as

for nuclear-encoded ORFs).

tC(GCA)B - a tRNA for cysteine, with the anticodon sequence ’GCA’, located on chro-

mosome II

tS(AGA)D1 - a tRNA for serine, with the anticodon sequence ’AGA’, one of two or more

tRNAs from this family (containing the AGA anticodon) located on chromosome IV.

2.5.4 Yeast Databases

2.5.4.1 Genome Database

The complete yeast genome is presented on the (World Wide Web) WWW by sev-

eral groups that have either independently or collaboratively developed different ap-

proaches to organize, present, and access yeast genome data. SGD and MIPS are the

important data base about the Yeast.
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• The SGD at Stanford provides access to knowledge associated with yeast genes

for both yeast and non-yeast researchers. It administers a S.Cerevisiue Gene

Name Registry and is interconnected to other major resources as YPD, GenBank,

Medline, MIPS, SWISS-PROT, and the Kyoto Encyclopedia of Genes. In addition

BLAST and FASTA searches against the yeast genome sequence are provided and

polymerase chain reaction (PCR) primer design is available.

• The MIPS resource14 includes a large set of detailed annotations on yeast proteins

and provides comprehensive access to several query and graphical interfaces to

browse the genome

2.5.4.2 Microarray Database

There are four major microarray repositories listed as the following:

• GEO: Gene Expression Omnibus at the NCBI, provides data in a tab-delimited

format.

• ArrayExpress: part of the EBI, provides data in MAGE-ML format.

• SMD: Stanford Microarray Database, provides data published at Stanford Uni-

versity.

• YMGV: Yeast Microarray Global Viewer, provided by the Jacq group in Paris,

France.

Also, There are many web tools to retrive Yeast microarrays experiments like: SPELL15,

Webminer 16, Expressionconnection 17 in addition, for a list of micoarray database please

see18 Table 2.3 show the list of popular microarray experiments on Yeast.

In the below section we are described the two widely important dataset which are

Spellman [28] and Gasch [27].

2.5.5 Spellman Cell Cycle Experiment

The cell division cycle is a complex self-regulating program, such that many genes

involved in aspects of the cell cycle are also controlled by it. Such regulation might

14http://speedy.mips.biochem.mpg.de/mips/ yeast
15http://function.princeton.edu/SPELL
16 http://genome-www.stanford.edu/webminer/
17 http://www.yeastgenome.org/cgi-bin/expression/expressionConnection.pl
18http://microarrayworld.com/DatabasePage.html
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Table 2.3: Examples of Popular Yeast Microarray Dataset from Stanford University

Expierments Type and Time Points Author
the cell division cycle after synchronization by Spellman et al.,1998

alpha factor arrest (ALPH; 18time points)

centrifugal elutriation (ELU; 14time points)

temperature-sensitive cdc15 mutant (CDC15; 15time points)
Sporulation (SPO;11 time points) Chu et al., 1998
shock by high temperature P.T.S., J.Cuoczo, C.Kaiser,
(HT, 6time points) P.O. B., and D.B.,

unpublished work
reducing agents (D, 4time points)
shock by low temperature (C; 4time points)
diauxic shift(diau;7 time points) DeRisi, J. L et al 1997
temperature-sensitive cdc28 mutant (CDC28; 17time points) Cho et al., 1998
heat shocks (35+5 time points) Gasch et al., 2000
hydrogen peroxide(15+5 time points)
superoxide-generating drug menadione (9 time points)
sulfhydryl-oxidizing agent diamide (9 time points)
disulfide-reducing agent dithiothreitol (15 time points)
hyper- and hypo-osmotic shock (12 time points)
amino acid starvation (5 time points)
nitrogen source depletion(10 time points)
progression into stationary phase(8 time points)
diauxic shift(7)
overexpression(3)

be required for the proper functioning of mechanisms that maintain order during cell

division. Alternatively, regulation of these genes could simply allow conservation of

resources. Spellman et al 19[28] try to identify the genes whose RNA levels varied

periodically during the cell cycle. The obtained microarray data were analyzed by

deriving a numerical score based on a Fourier algorithm (testing periodicity) and by a

correlation function that identified genes whose RNA levels were similar to the RNA

levels of genes already known to be regulated by the cell cycle. Spellman et.al [28] found

that ;800 genes are cell cycle regulated, which constitutes 10% of all protein-coding genes

in the genome. Furthermore, analyzing cell cycleregulated genes for known and new

promoter elements showing that several known elements (or variations thereof) contain

information predictive of cell cycle regulation.

19http://genome-www.stanford.edu/cellcycle/



Chapter 2. Biological Background 37

2.5.6 Gasch Environmental Changes Experiment

The complexity of the yeast cells system for detecting and responding to environmental

variation is only beginning to emerge. Genes whose transcription is responsive to a

variety of stresses have been implicated in a general yeast response to stress. Other

gene expression responses appear to be specific to particular environmental conditions.

Several regulatory systems have been implicated in modulating these responses, but

the complete network of regulators of stress responses and the details of their actions,

including the signals that activate them and the downstream targets they regulate,

remain to be elucidated. Gasch et al 20[27] explored genomic expression patterns in the

yeast Saccharomyces Cerevisiae responding to diverse environmental transitions. DNA

microarrays were used to measure changes in transcript levels over time for almost

every yeast gene, as cells responded to temperature shocks, hydrogen peroxide, the

superoxide-generating drug menadione, the sulfhydryl-oxidizing agent diamide, the

disulfide-reducing agent dithiothreitol, hyper- and hypo-osmotic shock, amino acid

starvation, nitrogen source depletion, and progression into stationary phase. A large

set of genes (; 900) showed a similar drastic response to almost all of these environmental

changes. Promoter analysis on these genes provided clues to novel regulators.

20http://genome-www.stanford.edu/yeast stress
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Gene Expression Data Analysis

From the previous chapter we defined the gene expression matrix n X m as expres-

sion level of n genes, getting from m microarray experiments. Because of experi-

mental error this matrix contains missed vales, low gene profile and high noise ratio.

In this chapter we attempt to overcome data dimensionality problem using cluster-

ing/biclustering techniques(section 3.3,sec:biclustering) and reduce data noise using

preprocessing steps(data denoising(section 3.2.6), remove non informative gene pro-

files(section 3.2.2,....).

3.1 Data Acquisition

The data used in this work are the two well-known datasets of yeast microarray gene

expression (Gasch et al [27]; Spellman et al [28]), which can downloaded from Stanford

Microarray Database 1. The Spellman dataset consists of four synchronization exper-

iments (alpha factor arrest, elutriation and arrest of CDC15 and CDC28 temperature-

sensitive mutants) which were performed for a total of 73 microarrays during cell-cycle.

The Gasch dataset contains 6152 genes and 173 conditions of diverse environmental

transitions such as temperature shocks, amino acid starvation, and nitrogen source

depletion.

3.2 Preprocessing

Measurements of microarrays may be biased by diverse effects such as efficiency of

RNA extraction, reverse transcription, label incorporation, exposure, scanning, spot

1http://smd.stanford.edu/

38
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detection, etc. This necessitates the preprocessing of microarrays prior to data anal-

ysis. The datasets used in this work have been already preprocessed for background

correction and normalization. Further preprocessing steps should be applied for data

refinement.

3.2.1 Update Genes List

As many chromosomal changes occurred from the date of Gasch et al [27] and Spellman

et al [28] experiments, they contain genes that are not exist any more. We used the SGD

Batch Download web tool 2 to remove all the merged, deleted and retired genes from

any further processing.

Based on the Saccharomyces Genome database (SGD) [49] There are 6607 ORF genes

of the S.Cerevisiae versus 6152 genes which were reported in Gasch dataset [50]. The

Annotation/sequence properties of these genes are shown in Table 3.1.

Table 3.1: The Annotation/sequence properties of the Saccharomyces Cerevisiae genes:
SGD database genes Vs genes which were reported in Gasch [27] dataset

Sequence Properties Number of Genes
SGD Gasch

Merged 38 20
Deleted 48 2
Verified 4807 4767

Uncharcterized 989 795
Dubious 811 568

The description of the chromosomal features which are shown in Table3.1 are described

as following:

• Merged Feature: A chromosomal feature that was once annotated as a distinct

entity, but that has now been subsumed by another feature. Typically, features

become ”Merged” because of a change in chromosomal sequence or annotation

(e.g. YAR004W). For record keeping, the ”Merged” feature is not removed from

SGD, but is instead given the ”Merged” status as a flag 3.

• Deleted Feature A chromosomal feature that has been removed from the yeast

genome catalog. Typically, features are ”Deleted” because they are effectively

destroyed by a sequence or annotation change (e.g. YCL006C), or because the

original annotation was in error or inappropriate (e.g. YCRX03C). For record

2http://www.yeastgenome.org/cgi-bin/batchDownload
3http://www.yeastgenome.org/help/glossary.html#merged
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keeping, the ”Deleted” feature is not removed from SGD, but is instead given

”Deleted” status as a flag. Note that ”Deleted” features are distinct from ”Dubi-

ous” features in that ”Deleted” features have been demonstrated to be incorrect

and have been officially withdrawn 4.

• Dubious ORF A Dubious open reading frame (ORF) is one that is unlikely to

encode an expressed protein. Dubious ORFs may meet some or all of the following

criteria: 1) the ORF is not conserved in other Saccharomyces species; 2) there is no

well-controlled, small-scale, published experimental evidence that a gene product

is produced; 3) a phenotype caused by disruption of the ORF can be ascribed to

mutation of an overlapping gene; and 4) the ORF does not contain an intron.

Many ORFs classified as ”Dubious” are small and overlap a larger ORF of the

class ”Verified” or ”Uncharacterized”; however, overlap with another ORF does

not mandate that an ORF be classified as ”Dubious”5.

• Uncharacterized ORF An Uncharacterized open reading frame (ORF) is one

that is likely to encode an expressed protein, as suggested by the existence of

orthologs in one or more other species, but for which there are no specific experi-

mental data demonstrating that a gene product is produced in S. Cerevisiae. While

most Uncharacterized ORFs have systematic names only (e.g., YKL100C), a few

have been given genetic names (e.g., PAU8). Evidence from large-scale analyses

that indicates an ORF may be biologically relevant is sometimes but not always

enough to upgrade an ORF from ”Uncharacterized” to ””Verified, depending on

the individual case. Also see the description of ”Dubious” ORFs 6.

• Verified ORFs ORFs for which experimental evidence exists that a gene product

is produced in S. Cerevisiae. Generally these have obvious orthologs in one or

more other Saccharomyces species. Most named genes are in this class. Evidence

from large-scale analyses that indicates an ORF may be biologically relevant is

sometimes but not always enough to upgrade an ORF from ”Uncharacterized” to

”Verified”, depending on the individual case 7.

From Table 3.1, we found that some of Gasch genes become aliases, merged for other

genes and some of them were deleted as in Tables[ 3.2, 3.3, 3.4] sequentially. These

tables were produced by comparing the feature table file which was updated monthly

by SGD curator [49] with Gasch ORF genes [50].

The changed in the ORF could be due to sequence changes and corrections,and ORF

4http://www.yeastgenome.org/help/glossary.html#deleted
5http://www.yeastgenome.org/help/glossary.html#dubious
6http://www.yeastgenome.org/help/glossary.html#uncharacterized
7http://www.yeastgenome.org/help/glossary.html#verified
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merges8. For an example gene YCL006C and YCR103C were deleted i.e do not encode a

protein; these ORFs were removed when a sequence update created a stop codon after

residue. Another example is YAR044W which is merged open reading frame, that does

not encode a discrete protein; YAR044W was originally annotated as an independent

ORF, but as a result of a sequence change, it was merged with an adjacent ORF into a

single reading frame, designated YAR042W as shown in Table 3.3.

Table 3.2: Gasch ORF Genes Which Become Aliases for Other Genes

Genes were reported in Gasch New Systematic Name
dataset which become alias for other genes
YAL035C-A 9 YAL034C-B
YAL043C-A YAL042C-A
YAL058C-A YAL056C-A
YBL101W-A YBL100W-A
YBL101W-B YBL100W-B
YEL076W-C YEL075W-A
YGR272C YGR271C-A
YIL015C-A YIL014C-A
YML010C-B YML009C-A
YML013C-A YML012C-A
YML032C-A YML031C-A
YML035C-A YML034C-A
YML048W-A YML047W-A
YML058C-A YML057C-A
YML095C-A YML094C-A
YML102C-A YML101C-A
YML117W-A YML116W-A
YMR158W-A YMR158W-B

After above gene merging and deletion from Gasch genes list, Gasch dataset was re-

duced to contain 6130 genes which can be downloaded from the below link:

http://home.k-space.org/FADL/Downloads/PhD/Data/Gasch-6130.txt

3.2.1.1 Important S. Cerevisiae Genes Which Are Not Included In Gasch Dataset

Gasch dataset [50] contains 6152 genes and 173 experiments. Not all S.Cerevisiae genes

were included with Gasch genes list. Table 3.5 shows the list of important genes

which are not included in Gasch experiment. These genes have high connectivity in

the interaction databases. Interactome databases using Bionetbuilder [51] client server

contains more than 98700 which are extracted from different online interaction data

base like:BIND(107), BIOGRID(926), DIP(88), HPRD(1), INtACT(73),Interologger(2),

8personal communication with the SGD curator

http://home.k-space.org/FADL/Downloads/PhD/Data/Gasch-6130.txt
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Table 3.3: Gasch ORF Genes Which have Merged with Other genes

Genes as were reported in Gasch dataset New Systematic Name
which were merged with other genes
YAR044W YAR042W
YBR075W YBR074W
YBR100W YBR098W
YCL012W YCL014W
YCR062W YCR061W
YDL038C YDL039C
YDR474C YDR475C
YFL006W YFL007W
YFL043C YFL042C
YFR024C YFR024C-A
YGL046W YGL045W
YJL017W YJL016W
YJL018W YJL019W
YJL021C YJL020C
YKL158W YKL157W
YKL199C YKL198C
YML033W YML034W
YOR088W YOR087W
YOR240W YOR239W
YPR090W YPR089W

Table 3.4: Gasch Genes which were Deleted From the S Cerevisiae Genome

Genes in Gasch dataset which were deleted
YCL006C
YCR103C

KEGG(101), MINT(12), MPPI(0) and prolinks(0). The connectivity properties for each

some of these genes are shown in Table 3.5. for instance,Edgecount is the number of

edges connected to or from the corresponding genes(it indicates the degree of activity

of this gene), Indegree is the number of inputed edges to the gene(indicates how much

it was effected by other genes) and the Outdegree is the number of outputed edges from

the gene(indicates gene effectiveness on other genes). Ignorance of these genes from

analysis cost losing of 1309 interactions (1.3%).

3.2.2 Filtration

There are small changes of thousands of genes with important biological outcomes

effected by small relative changes in the expression levels which cannot be reliably
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Table 3.5: Important ORF S.Cerevisiae Genes Which Are Not Included in Gasch Dataset
[50]

ORF EdgeCount Indegree Outdegree
ORF:YDR363W-A 166 31 135
ORF:YBR111W-A 116 111 5
ORF:YLR337C 100 57 43
ORF:YPL249C-A 90 77 13
ORF:YCR028C-A 55 49 6
ORF:YCR020W-B 47 6 41
ORF:YHR039C-A 46 18 28
ORF:YLR438C-A 44 25 19
ORF:YBR089C-A 43 2 41
ORF:YFL017W-A 43 42 1
ORF:YKL053C-A 40 16 24
ORF:YBR058C-A 40 40 0
ORF:YER087C-B 38 12 26
ORF:YFR032C-A 34 31 3
ORF:YCR073W-A 33 29 4
ORF:YML081C-A 32 21 11
ORF:YOL077W-A 31 24 7
ORF:YDR320C-A 25 25 0
ORF:YKL138C-A 24 22 2
ORF:YFL034C-B 21 21 0
ORF:YCR087C-A 16 2 14
ORF:YIL017C 15 8 7
ORF:YBL071W-A 15 15 0
ORF:YEL020W-A 13 5 8
ORF:YKR035W-A 10 4 6

and reproducibly distinguished from noise. This may mean that even though tens of

thousands of genes were measured in a microarray experiment,only obtain hundreds of

genes that are reasonably convinced are involved in a particular biological system [52].

From the last section the dataset is quite large ”6130 expression profiles” and a lot of the

information corresponds to genes that do not show any interesting changes during the

experiment. In this section we try to remove genes with expression profiles that do not

show anything of interest. Below we use a number of techniques to reduce the number

of expression profiles to some subset that contains the most significant genes.

3.2.2.1 Conditions Filtration

We deleted conditions that have more than 20% missed entities as it is recommended by

the imputation technique which was used in section 3.2.3. The excluded experiments

are 6,8 and 57, so the resultant dataset will be 6130 x 170.
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3.2.2.2 Genes Filtration

In this step, We use the filtering functions in the Bioinformatics Toolbox10 to remove

genes with various types of profiles that do not provide useful information about genes

affected by the metabolic change.

3.2.2.3 Remove Genes with Large Missed Values

Approximately 3% of the 6130 x 170 Gasch data were missed. Missing values occur for

diverse reasons, including insufficient resolution, image corruption, or simply due to

dust or scratches on the slide. Missing data may also occur systematically as a result

of the robotic methods used to create them [53]. Genes which have more than third of

its values were deleted, part of them are shown in Figure 3.1. The size of the resultant

dataset after removing these genes is 6096x170.

Figure 3.1: Part of the Removed Genes which Third of its Values Were Missed, The
Dense Black Region Motivate Deletion These Genes.

3.2.2.4 Remove Genes with Small Profile Variance

From plotting the expression profiles of all the 6096 remaining profiles, we would see

that some profiles are flat and not significantly different from the others. This flat

data is obviously of use as it indicates that the genes associated with these profiles

are not significantly affected by the multiple conditions and may still show variation

due to measurement noise. If these genes are not filtered out, such measurement

noise can be amplified by normalization and can appear as a true signal. The variance

for each gene expression profile in data were calculated and then were deleted the

expression profiles with a variance less than the 1th percentile. Figure 3.2 shows the

expression profile of two genes (YFL014W and YNL020C) which have large and low

variance sequentially. the gene function annotation of these genes are explained the

large variance values of the YFL014W gene where it’s function include the following [cell

adhesion, cellular response to heat, hyperosmotic response, response to heat, response

to oxidative stress, response to stress]. Comparing Gasch experiments conditions with

these functions make more confidence why gene YFL014W has large variance value

as also figure is described. Table 3.6 shows the properties of the part of deleted genes

10www.mathworks.com/
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which indicate its important whereas they did not response significantly to Gasch

experiments. Table 3.6 indicate the importance of design an experiments by including

more conditions to target these genes in the further analysis. If the user interested in

these deleted genes, he can search for suitable experiments from microarray tools like

SPELL 11, Webminer 12,expressionConnection 13 and Rosetta Compendium 14. These

tools could identified which datasets are most informative for the user interested genes,

then within those datasets additional genes are identified with expression profiles most

similar to the query set.

Now after above filtration procedure the resultant dataset become 6035 x 170.

Figure 3.2: Gene Expression Activity of Two Genes have Large and Small Variance
Values under Gasch Conditions[50].

3.2.2.5 Remove Genes with Low Absolute Values

In spite of removing genes with low variance, gene expression profiles of the remaining

6017 genes still have data where the absolute values are very low. The quality of

this type of data is often bad due to large quantization errors or simply poor spot

hybridization. It is commonly believed that low gene expression measurements are

less reliable than high gene expression measurements. If the low expression levels

are particularly noisy, this can cause artifacts in the downstream clustering process, or

worse, cause the creation of incorrect clusters.

Figure 3.4 shows expression profiles of two genes (YHR139C & YHL020C) which they

have large and small absolute values sequentially . Moreover Table 3.7 shows them

properties which emphases the need of improving the quality of experiments to get full

11http://imperio.princeton.edu:3000/yeast/
12http://genome-www.stanford.edu/cgi-bin/webminer
13http://www.yeastgenome.org/cgi-bin/expression/expressionConnection
14http://www.rii.com
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Figure 3.3: Gene Expression Activity for two genes in figure 3.2 under temperature
stress conditions

Table 3.6: Properties of Part of Genes That Have Low Variance Expression Values
Lower Than 1%

ORF EdgeCount Indegree Outdegree
ORF:YDR477W 265 54 211
ORF:YLR373C 166 94 72
ORF:YIL084C 162 61 101
ORF:YDR207C 162 27 135
ORF:YOR304W 160 129 31
ORF:YGL025C 146 140 6
ORF:YBR095C 125 119 6
ORF:YKL139W 109 58 51
ORF:YCR033W 98 89 9
ORF:YBR289W 89 4 85
ORF:YAL032C 69 0 69
ORF:YGR186W 68 27 41
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view of the story. On the other hand investigation Table 3.7 indicates that removing

these genes will loss important genes in further process, but we believed that removing

genes from further process will decrease the cost of the false positive when including

these genes as described in Figure 3.5. Figure 3.5shows the trade off between the false

positive and false negative cost from getting or neglecting genes from further process.

Figure 3.4: Gene Expression Activity of Two Genes have large and Low Absolute
Values.

Table 3.7: Properties of Part of Genes That Have Low Absolute Values Lower Than
log2(2)

ORF EdgeCount Indegree Outdegree
YLR085C 249 137 112
YPL269W 82 66 16
YOR297C 75 57 18
YDR363W 73 17 56
YLR399C 54 30 24
YKL089W 49 27 22
YGL172W 40 9 31
YAL030W 37 0 37
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Figure 3.5: A Decision Analytic Procedure for Picking a Threshold For Selecting Genes
for Further Process (copyrith @ [52])

At the conclusion of this filtering stage, expression values of 6017 ORFs at 170 time

points remained.

3.2.2.6 Remove Genes with Low Entropy

Genes can demonstrate spiking behavior, where low expression levels are seen in all

samples except one. The single high expression can dominate a pairwise analysis using

correlation coefficients. Heyer et.al [54] study the effect of this spiky on increase the

false positive of high correlation coefficient between unrelated genes as described in

Figure 3.6.

There are two approach to remove genes with these spiky, First Heyer et al. [54] use

of the jackknife correlation coefficient to counter the spiking problem. The jackknife

correlation coefficient is an alternative dissimilarity measure to the standard (Pearson’s)

correlation coefficient. To compute this measure for two genes measured in n samples,

the technique involves computing n different correlation coefficients, each time with

one of the samples removed. The jackknife correlation coefficient is then the minimum

of the separate correlation coefficients. Second an entropy filter can be used to remove

genes that demonstrate spiking behavior,or, in other words, that are not well distributed

over its range of values. Entropy is a measure of the amount of disorder in a variable

which is defined by:
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H(x) =
∑

i p(xi)log2(p(xi))

where x is the variable whose entropy H is being calculated, log2 is base 2 logarithm, and

p(xi) is the probability a value of x was within quantile i of that feature. For example, if

one were using 10 quantiles, and a gene with the expression amounts 20, 22, 60, 80 and

90 would have deciles 7 units wide, with two values in the first decile, one in the sixth

decile, and one in the ninth and tenth decile, making H = 1.92 [52].

First, the entropies of the dynamics time series are calculated for each gene, with the

above equation. Then genes are ranked according to their entropies, and the bottom 1%

(entropy threshold ,6.67) are excluded from the analysis. Figure 3.7 display three genes

which they have low entropy and table 3.8 shows connectivity properties of some of

excluded genes.

At this stage, 5957 ORFs remained from the original 6130.

Table 3.8: Properties of Part of Genes Which Have Low Entropy Values Lower Than
1% (Entropy Threshold, 6.67).

ORF EdgeCount Indegree Outdegree
ORF:YML032C 276 260 16
ORF:YLR320W 209 125 84
ORF:YCL016C 187 171 16
ORF:YGR252W 178 74 104
ORF:YOR039W 148 114 34
ORF:YPL008W 121 101 20

The Filtration steps and the resultant data set have described in this section are imple-

mented in these link:

http://home.k-space.org/FADL/Downloads/PhD/Matlab Function code/datasetFilter.m

http://home.k-space.org/FADL/Downloads/PhD/Data/Filtered-data-ALL.xls

3.2.3 Imputation Missing Values

Many analysis methods,such as principle components analysis or singular value de-

composition, require complete matrices. Of course, one solution to the missing data

problem is to repeat the experiment. This strategy can be expensive, but has been used

in validation of microarray analysis algorithms. Missing log2 transformed data are often

replaced by zeros or, less often, by an average expression over the row, or row average.

This approach is not optimal, since these methods do not take into consideration the cor-

relation structure of the data [53]. Olga Troyanskaya et.al [53] compare several methods

(Singular Value Decomposition (SVD) based method (SVDimpute), weighted K-nearest

http://home.k-space.org/FADL/Downloads/PhD/Matlab_Function_code/datasetFilter.m
http://home.k-space.org/FADL/Downloads/PhD/Data/Filtered-data-ALL.xls
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Figure 3.6: a) Expression data for YJR068W (RFC2) and YJR132W (NMD5). The gene
pair has a correlation coefficient of 0.87. (b) Expression data for the same two genes
with time 100 removed(spiky point). Using only the remaining points results in a
correlation coefficient of -0.29. (Solid line) RFC2; (broken line) NMD5. (Copyright

©[54].
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Figure 3.7: Example of Gene Expression Activity of genes with low entropy

neighbors (KNNimpute),and row average) for the estimation of missing values in gene

microarray data. KNNimpute appeared to provide a more robust and sensitive method

for missing value estimation. The KNN-based method selects genes with expression

profiles similar to the gene of interest to impute missing values. If we consider gene

A that has one missing value in experiment 1, this method would find K other genes,

which have a value present in experiment 1, with expression most similar to A in exper-

iments 2N (where N is the total number of experiments). A weighted average of values

in experiment 1 from the K closest genes is then used as an estimate for the missing

value in gene A. the percentage of the missed values after missing values imputation,

was reduced to 2.7% which motivate us to use the KNNimpute algorithm implemented

in

http://smi-web. stanford.edu/projects/helix/pubs/impute/.

3.2.4 Normalization

In an experimental context, normalisations are used to standardize microarray data

to enable differentiation between real (biological) variations in gene expression levels

and variations due to the measurement process. Since it is assumed that the cDNA

microarray data is already normalized, as it is input after performing log ratio log2
R
G ,

normalization was not performed on Gasch data. We rescaled the expression level of

each gene, so that the relative expression of all genes have the same mean and variance.

http://smi-web.stanford.edu/projects/helix/pubs/impute/
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3.2.5 Discertization

Some of biclustering and structure learning algorithms required the input data to be

discredited. On other hand Florian et al [55] suggest that discretization of the continuous

data leads to a large information loss. Di Camillo et.al [56] confirm that the use of

discrete rather than continuous data is advantageous when few samples are available.

Continuous approaches are likely to become advantageous with increasing number

of samples. There are many discretization methods the simple one is to map gene

expression to 0 and 1 by setting an appropriate threshold(see [56] for more details). We

discretize gene expression values into three categories: -1,0 and 1 depending whether

the expression rate is significantly lower than, similar to, or greater than the respective

control as in [4].

3.2.6 Data Denoising

Many algorithms are found in the literature for data denoising. Among the most

powerful techniques that can be used to separate signal components are those based on

blind source separation such as principal component analysis (PCA) and independent

component analysis (ICA) [25]. These techniques decompose the signal sources using

either the second order statistics (as in PCA) or higher order statistics such as the

kurtosis (as in ICA) to account for the non-Gaussian nature of the sources. According

to the assumptions of both techniques, the number of independent signal components

must be less than or equal to the number of signals to be analyzed. Otherwise, the

separation of components yields incorrect results or even may not converge at all as

in ICA. Unfortunately, this condition is not satisfied in microarray datasets. Given the

general assumption of uncorrelated noise, the number of components of random noise

alone is equal to the number of signals. The total number of components has to add

the number of components. As a result, the use of PCA and ICA-based techniques may

not be successful in practice unless the noise signals are sufficiently weak. This may

account for the limited use of such techniques in low SNR applications [26]. Therefore,

a technique that suppresses random noise or removes some of its components would

be rather useful for making the use of PCA and ICA more robust for false positive

reduction.

Yasser Kadah [57] developed a new denoising algorithm for noise suppression in event-

related functional magnetic resonance imaging (fMRI) data and we applied it with

the gene expression data. The proposed algorithm is an adaptive signal-preserving

technique for gene expression data based on spectral subtraction. The block diagram

of the proposed denoising method is shown in Figure 3.8.



Chapter 3. Gene Expression Data Analysis 53

Figure 3.8: Spectral Subtraction Denoising Algorithm Block Diagram.

We will consider a model that is composed of the sum of one deterministic component

d(t) incorporating both the true gene expression signal and the experimental noise and

an uncorrelated stochastic component n(t). That is

s(t) = d(t) + n(t)

Since these two component are assumed to be independent, the corresponding power

spectra are related by

Pss(w) = Pdd(w) + Pnn(w)

where cross terms vanish because the two components are assumed uncorrelated.

Hence, an estimate of the power spectrum of the deterministic component takes the

form [58]

Pdd(w) = Pss(w) − Pnn(w)
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That is, the signal power spectrum is obtained by spectral subtraction of the noisy sig-

nal and noise power spectra. In order to compute the deterministic signal component

from its power spectrum, the magnitude of the Fourier transform can be obtained as

the square root of the power spectrum. The problem now becomes that of reconstruct-

ing the signal using magnitude only information about its Fourier transform. Several

techniques can be used to do that. The one used here relies on an estimate obtained

from the phase of the Fourier transform of the original signal S(w) . Hence, the Fourier

transform of the processed signal Sd(w)can be expressed as

Sd(w) =
√

Pdd(w).e jphase(S(w))

The enhanced deterministic signal sd(t) is then computed as the real part of the inverse

Fourier transformation of this expression.

To test the performance of SS denoising technique we applied this algorithm to DREAM3

In Silico Network Challenge4 [59]. In this challenge, the expression data(knock out and

perturbation)obtained from a synthetic 10-gene network in yeast and Ecoli were pro-

vided. This allows the inference of a GRN for which the true network structure is

known. Figure 3.9 shows the result of data denoising using spectral subtraction (third

column) and Multi-Wavelet(fourth column) with the original signal(first column). It is

clear from Figure 3.9 that the spectral subtraction denosing method outperforms the

Multi-Wavelet method. The prediction error of Spectral Subtraction and Multi-Wavelet

algorithms are 0.088 and 0.13 respectively.

The new strategy based on spectral subtraction method is adaptive and simple to im-

plement while offering a substantial improvement of the SNR. Very few assumptions

about the nature of the noise model and no assumptions about the deterministic signal

components are made.

The Matlab code of SS denoising method with DREAM3 data could be downloaded from

http://home.k-space.org/FADL/Downloads/PhD/RECOMB paper/spectral subtraction denoising

3.3 Data Partitioning: Clustering Algorithms

Detecting groups (clusters) of closely related objects is an important problem in bioinfor-

matics and data mining in general. Laboratories apply every existing clustering method

to their microarray data sets, hoping to find some significant genes or clusters[52]. In

this section we first give basic background on clustering. We then describe two cluster-

ing algorithms used for gene expression analysis.

 http://home.k-space.org/FADL/Downloads/PhD/RECOMB_paper/spectral_subtraction_denoising/
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Figure 3.9: Comparison of Spectral Subtraction and Multi-Wavelet Denosing Al-
gorithms Denoising of the DREAM3 In-Silico Network Challenge4 Signals, drawn
represent gene expression time serious data a long 84 time points. Rows represent
gene signals(shown 5 genes); columns represents Dream3 challenge 4 data as follow-
ing: DREAM3 noiseless data (First Column);DREAM3 submitted data(Second Col-
umn); DREAM3 denoised data using Spectral Subtraction(Third Column); DREAM3
denoised data using Multi-Wavelet(Fourth Column). This Figure showed the high

accuracy of Spectral Subtraction over Multi-Wavelet.

3.3.1 What is Clustering?

A large number of clustering definitions can be found in the literature. The simplest

definition is shared among all and includes one fundamental concept: the grouping

together of similar data items into clusters [60].

Clustering is an important explorative statistical analysis of gene expression data. It

aims to identify and group genes that exhibit similar expression patterns over several

conditions and also group the conditions based on the expression profiles across set

of genes. The successful clustering approach should guarantee two criteria which are

homogeneity high similarity between elements in the same cluster, and separation - low

similarity between elements from different clusters. When homogeneity and separation

are precisely defined, those are two opposing objectives: The better the homogeneity

the poorer the separation, and vice versa [61]. Several algorithmic techniques were pre-

viously used for clustering gene expression data, including hierarchical clustering [62],

self organizing maps [63], and graph theoretic approaches [64]. For more extensive
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reviews and more information and background on clustering, see [65].

3.3.2 K-means

K-means is a classical clustering algorithm [9]invented in 1956 to classify or to group

objects (genes) based on attributes or features (experimental conditions) into K number

of groups (clusters). K is positive integer number and assumed to be known. Kmeans

computational approach starts by placing K points into the space represented by the

objects that are being clustered. These points represent initial group centroids. We can

take any random objects as the initial centroids or the first K objects in sequence can

also be used as the initial centroids. Then the K means algorithm will do the four steps

below until convergence:

1. Determine the centroids coordinate.

2. Determine the distance of each object to the centroids using the Euclidean distance

which is defined as:
√

(p1 − q1)2 + (p2 − q2)2 + (pn − qn)2 =
√∑n

i=1(pi − qi)2

Where p is the object (gene expression) value of i condition, q is centroid point

value of i condition and n is the total number of conditions.

3. Group the objects based on minimum distance.

4. Iterate the above steps till no object moves its assigned group.

Each iteration of k-means modifies the current partition by checking all possible mod-

ifications of the solution, in which one element is moved to another cluster. This is

done by reducing the sum of distances between objects and the centers of their clusters.

This procedure is repeated until no further improvement is achieved (No object move

the group) and all the objects are grouped into the final required number of clusters.

A disadvantage of K-means algorithm could be perceived in the need to specify the

number of clusters K as a parameter value prior to running the algorithm. In cases

where there is no expectation about K, user has to make trails with several values of K

or use external techniques to guess the no of clusters may be exist.



Chapter 3. Gene Expression Data Analysis 57

3.3.3 Hierarchical clustering (HCL)

Hierarchical clustering does not partition the genes into subsets. Instead it builds a

down-top hierarchy of clusters using agglomerative methods or top - down hierar-

chy of clusters using divisive methods. The traditional graphical representation of

this hierarchy is called dendrogram tree. The divisive method begins at the root and

starts to breaks up clusters whose having low similarity. Whereas, the Agglomerative

method begins at the leaves of the tree and starts with an initial partition into sin-

gle element clusters and successively merges clusters until all elements belong to the

same cluster [66]. (See Figure 3.10) The agglomerative method is widely used than

Figure 3.10: HCL:Agglomerative and Divisive Methods.

the divisive one which is not generally available, and rarely has been applied. The

idea of the agglomerative method can be summarized as following: Given a set of N

items (genes in our case) to be clustered, and an N*N distance (or similarity) matrix [67],

1. Assign each item to a cluster, so you have N clusters, each containing just one

item.

2. Find the closest (most similar) pair of clusters and merge them into a single cluster.

3. Compute distances (similarities) between the new cluster and each of the old

clusters.

4. Repeat steps 2 and 3 until all items are clustered into a single cluster of size N.

In Step 3, distance or similarity measurements between the merged clusters and all

the other clusters can be calculated in one of three schemes: single-linkage, complete-

linkage and average-linkage.

3.4 Biclustering Algorithms

Traditional clustering approaches such as k-means and hierarchical clustering put each

gene in exactly one cluster based on the assumption that all genes behave similarly in
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all conditions. However, recent understanding of cellular processes shows that it is

possible for subset of genes to be co expressed under certain experimental conditions,

and at the same time; to behave almost independently under other conditions. From this

context, a new two mode clustering approach called biclustering or co-clustering has

been introduced to group the genes and conditions in both dimensions simultaneously.

This allows finding subgroups of genes that show the same response under a subset of

conditions, not all conditions. Also, genes may participate in more than one function,

resulting in one regulation pattern in one context and a different pattern in another.

Example, if a cellular process is only active under specific conditions and there is a gene

participates in multiple pathways that are differentially regulated, one would expect

this gene to be included in more than one cluster; and this cannot be achieved by

traditional clustering techniques.

Many biclustering methods exist in the literature [68]. Table 3.9 summarized some

of promising biclustering algorithms developed during the last ten years. In brief

we described some of these algorithms according to their prediction strength, their

promising results, to what they extend in the community, whether an implementation

was available, and the feedback from their authors to explain some ambiguous issues.

Table 3.9: Biclustering Algorithms Comparison

Algorithm Approach Time Complicity Prediction ability
Bivisu [69] Exhaustive Bicluster Enumeration O(m2nlogm)a Coherent values
MSBE [70] Greedy Iterative Search O((n + m)2) Coherent values
Bimax[15] Divide-and-Conquer O(nmβlogβ) Coherent values
ROBA [71] Matrix algebra O(nmLNb) Coherent Evolution
x-motif [20] Greedy Iterative Search nmO(log(1/α)/log(1/β)) Coherent Evolution
SAMBA [72] Exhaustive Bicluster Enumeration O(n2d) Coherent Evolution
OPSM [19] Greedy Iterative Search O(nm3I) Coherent Evolution
Plaid [73] Distribution Parameter Identification XXXb Coherent values
ISA [21] Iterative Signature Algorithm XXX Coherent values
CC [11] Greedy Iterative Search O((n + m)nm), Coherent values
a n and m are the row and column sizes of the expression matrix
b not available

3.4.1 Cheng and Church (CC)

CC algorithm [11] is considered to be the first real biclustering implementation after the

primary idea has been introduced by Hartigan [74] in 1972.

CC defines a bicluster as a subset of rows and a subset of columns with a high simi-

larity. The proposed similarity score is called mean squared residue (H) and it is used

to measure the coherence of the rows and columns in the single bicluster. Given the
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gene expression data matrix A = (X;Y); a bicluster is defined as a uniform submatrix

(I;J) having a low mean squared residue score as following:

The CC Mean Squared Residue:

H(I, J) = 1∥∥∥I
∥∥∥ ∥∥∥J

∥∥∥ ∑
i∈I, j∈J(ai j − aiJ − aI j + aIJ)2

Where: ai j is gene expression level at row i and column j, aiJ is the mean of row i, aI j is the

mean of column j, aIJ is the overall mean. CC algorithm will identify the submatrix as

a bicluster if the score is below a level alpha which is a user input parameter to control

the quality of the output biclusters. Generally; CC algorithm performs the following

major steps:

1. Delete rows and columns with a score larger than alpha.

2. Adding rows or columns until alpha level is reached.

3. Iterate these steps until a maximum number of biclusters is reached or no bicluster

is found [11].

3.4.2 Iterative Signature Algorithm (ISA)

The ISA algorithm [21, 22] is a novel method for the biclustering analysis of large-scale

expression data. It is an efficient algorithm based on the iterative application of the

signature algorithm presented in [21]. ISA considers a bicluster to be a transcription

module which can be defined as a set of coexpressed genes together with the associated

set of regulating conditions(Figure 3.11). Starting with an initial set of genes, all samples

(conditions) are scored with respect to this gene set and those samples are chosen for

which the score exceeds a certain threshold (usually defined by the user). In the same

way, all genes are scored regarding the selected samples and a new set of genes is

selected based on another user-defined threshold. The entire procedure is repeated

until the set of genes and the set of samples converge and do not change anymore.

Multiple biclusters can be discovered by running the ISA algorithm on several initial

gene sets. This approach requires identification of a reference gene set which needs to

be carefully selected for good quality results. In the absence of pre-specified reference

gene set, random set of genes is selected at the cost of results quality [21].
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Figure 3.11: The recurrence signature method. a, The signature algorithm. b, Recur-
rence as a reliability measure. The signature algorithm is applied to distinct input sets
containing different subsets of the postulated transcription module. If the different
input sets give rise to the same module, it is considered reliable. c, General application

of the recurrent signature method.Copyright© [21].

3.4.3 Biclusters Inclusion Maximal (Bimax)

Bimax [15] is a simple binary model and new fast divide-and-conquer algorithm used

to cluster the gene expression data. It is presented in 2006 by Computer Engineering

and Networks Laboratory ETH Zurich, Switzerland. Bimax discretized the gene ex-

pression data matrix and convert it into a binary matrix by identifying a threshold,

so transcription levels (genes expression values) above this threshold become ones and

transcription levels below become zeros (or vice versa). Then, it searches for all possible

biclusters that contain only ones. This can be done by iterating these steps:

1. Rearrange the rows and columns to concentrate ones in the upper right of the

matrix.

2. Divide the matrix into two sub matrices.

3. Whenever in one of the submatrices only ones are found, this sub matrix is

returned.
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So up or down-regulated constant biclusters are found. In order to get satisfying results

the above steps have to be restarted several times with different starting points [15]

3.4.4 Order Preserving Submatrix(OPSM)

The order preserving submatrix (OPSM) algorithm [19] is a probabilistic model intro-

duced to discover a subset of genes identically ordered among a subset of conditions. It

focuses on the coherence of the relative order of the conditions rather than the coherence

of actual expression levels. In other words, the expression values of the genes within a

bicluster induce an identical linear ordering across the selected conditions. Accordingly,

the authors define a bicluster as a subset of rows whose values induce a linear order

across a subset of the columns. The time complexity of this model is O(nm3I) where n

and m are the number of rows and columns of the input gene expression matrix respec-

tively and I is the number of biclusters. A disadvantage of OPSM algorithm is that it

takes long time for high dimensional datasets. And this is because its time complexity

is cubic with regards to the number of columns (dimensions) of the input matrix [19].

3.4.5 Maximum Similarity Bicluster(MSBE)

MSBE Biclustering algorithm [70] is a novel polynomial time algorithm to find an

optimal biclusters with the maximum similarity. The idea behind this algorithm is to

find subset of genes that are related to a reference gene. The reference gene is known in

advance. MSBE algorithm uses the similarity score for a sub-matrix to find the similar

expressions in the microarray datasets. And the threshold of the average similarity

score is a user input parameter in order to allow the user to control the quality of the

biclustering results.

3.5 AGO:Automatic Gene Ontology Software Tool for Bicluster

and Cluster Comparisons

The analysis of microarrays data poses a large number of exploratory statistical aspects

including clustering and biclustering algorithms which help to identify similar patterns

in gene expression data and group genes and conditions in to subsets that share biolog-

ical significance.

During the last year, more than ten biclustering algorithms have been proposed(Table 3.9),

but the question is: which algorithm is better? And do some algorithms have ad-

vantages over others? Generally, comparing different biclustering algorithms is not
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straightforward as they differ in strategies, approaches, time complexity, number of pa-

rameters and prediction ability. They are strongly influenced by user-selected parameter

values. For these reasons, the quality of biclustering results is also often considered

more important than the required computation time. Although there are some ana-

lytical comparative studies to evaluate the traditional clustering algorithms [12–14],

for biclustering; no such extensive comparison exist even after initial trails have been

taken [15]. At the end, biological merit is the main criterion for evaluation and compar-

ison between the various biclustering methods.

To our best knowledge, biclustering algorithms compassion toolbox has not been avail-

able in the literature. So, we have developed a comparative tool Automatic Gene

Ontology (AGO)15 [29] that includes the biological comparative methodology. The

Goal of AGO is to enable researchers and biologists to compare between the different

bi/clustering methods based on set of biological merits and draw conclusion on the bio-

logical meaning of the results. Also AGO help researchers in comparing and evaluating

the algorithms results multiple times according to the user selected parameter values

as well as the required biological perspective on various datasets.

AGO paper, program, help file and supplementary data could be downloaded from:

http://home.k-space.org/FADL/Downloads/PhD/AGO paper

3.5.1 Comparison Methodology

Internal indices such as homogeneity and separation have not been suggested for bi-

clustering methods [75]. This is because these indices did not consider matching in

two direction(genes and conditions). For example, if we have two biclusters contain

the same genes set and they differ in conditions set. Even the two biclusters look bad

at genes dimension for the separation index, they have good separation distance in

the condition dimension. For this reason external indices are used to assess the meth-

ods under consideration as in most biclustering papers [15]. Also Gat-Viks et al. [75]

and Handl et al. [76] recommend external indices for evaluating the performance of

(bi)clustering methods.

There are four external indices in-order to test the enrichment of the bicluster via avail-

able databases. We said the bicluster is enriched if one of following has strong statistical

evidence as following:

15F. M. Al-Akwaa and Y.M. Kadah. Automatic gene ontology software tool for bicluster and cluster
comparisons. In IEEE Symposium on Computational Intelligence in Bioinformatics and Computational
Biology, Nashville, TN, USA, 2009. IEEE Computational Intelligence Society.

http://home.k-space.org/FADL/Downloads/PhD/AGO_paper/
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• The bicluster is enriched if its genes or some of them share the same function.

This could be tested by applying the hypergeometric test of bicluster genes to the

Gene Ontology (GO) data base.

• The bicluster is enriched if its genes or some of them participate in the same

pathway. This could be tested by applying the hypergeometric test of bicluster

genes to the Kyoto Encyclopedia of Genes and Genomes (KEGG) data base.

• The bicluster is enriched if its genes products(proteins) or some of them have

biological interactions. This could be tested by analyzing the Protein Protein

Interaction data base like BIOGRID.

• Bicluster is enriched if the promoter region of its genes and some of them have a

conservative motif. This could be done by aligning the 50-100 base pair of genes

DNA sequence upstream region.

Because PPI and KEGG databases are still incomplete, hypergometric test using GO

data base is still the meaningful tool for biclustering comparison.

We have to define many important terms for comparing biclusters:

• The percentage of enriched or overrepresented biclusters This percentage is cal-

culated for each algorithms with one or more GO term per multiple significance

levels (p-values) for each algorithm using the below equation:

Percentage o f Enriched Biclusters =
Number o f Enriched Biclusters

Total Number o f Biclusters x 100

• Percentage of annotated genes per each bicluster

Some times even the bicluster is enriched, it contains few annotated genes. So

we defined the percentage of annotated genes per each bicluster as more specific

comparison metric as following:

Percentage o f Annotated Genes per Each Bicluster =
No o f Genes Sharing GO−Term in aBicluster

Total Number o f Genes in this Bicluster

3.5.2 Gene Ontology

In the last five years, biologists faced a problem of annotating the completed genome

sequences especially for the Drosophila and the S.cerevisiae species and the organizations

of the complex databases start to provide their own classification terminologies.

Consequently, these wide variations in terminologies and annotations inhibit effective

searching by both computers and people [42]. For example, if biologist was searching for
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new targets for antibiotics, If one database describes these molecules as being involved

in ’translation’, whereas another uses the phrase ’protein synthesis’, it will be difficult

for biologist and even harder for a computer to find functionally equivalent terms.

Therefore formal and explicit specifications of the gene annotation terms (in the shape

of well-structured and controlled vocabularies) used and the relationships between

them have been defined 16. This is called Gene Ontology and referred as GO. Using GO,

biologists and researchers have systematic consistent classification of genes functions,

in the form of a dictionary of functional terms that are hierarchically structured to allow

both attribution and querying at different levels of granularity (See Figure 3.12). The

Figure 3.12: Tree view of Biological Process Gene Ontology Category of S.cerevisiae.

building blocks of the Gene Ontology are the terms (sometimes called functional classes

or functional categories). Each GO term has a unique number and a textual name. E x,

GO: 0042660: positive regulation of cell fate specification. Each GO term is assigned to

one of the three subontologies(Figure 3.13) in GO: biological process, molecular function

and cellular component.

1. Biological process(GO:0008150): A function represented in a series of events and

activities of a living system, mediated by protein or RNA.

2. Molecular function(GO:0003674): A function associated with the biochemical

activity (including specific binding to ligands or structures) of a gene product.

16http://www.geneontology.org/GO.tools.shtml.
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Figure 3.13: Example of Gene Ontology to Illustrate the Structure and Style used by
GO to Represent the Gene Ontologies and to Associate Genes with Nodes within an

Ontology(Copyright© [77]).

3. Cellular component( GO:0005575): A function refers to the place in the cell where

a gene product is active. It can be a general term such as nucleus or a specific term

such as ribosome.

Particularly, The GO project is a collaborative work across many laboratories and con-

trolled by the gene ontology Consortium (set of model organism and protein databases

and biological research communities actively involved in the development and appli-

cation of the Gene Ontology) [77].

3.5.3 Hypergometric Test

If the bicluster we want to test its enrichment contains genes like [g1, ...gn]. The enrich-

ment question is like this: Are there any GO terms that have a larger than expected

subset of our bicluster genes in their annotation list? If so, these GO terms will give

us insight into the functional characteristics of our bicluster. The hypergeometric test

calculates the probability of drawing r genes with a certain GO function from a sample
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of size k from a population of size n given that this GO function exists in fraction p in

the population set of genes. The basic question answered by hypergometric test is as

described by Steven et.al [78]

when sampling X genes (test set) out of N genes (reference set, either a

graph or an annotation), what is the probability that x or more of these

genes belong to a functional category C shared by n of the N genes in the

reference set?.

The hypergeometric test, in which sampling occurs without replacement, answers

this question in the form of P-value. Its counterpart with replacement, the binomial

test, which provides only an approximate P-value, but requires less calculation time.

More details about hypergeometric test and its software implementation can be found

in [79, 80].

3.5.4 GO Enrichment Programs

There are various tools (web based and standalone applications) introduced to analyze

GO term enrichment in a given genes set. Some of these tools have been developed

by the GO Consortium such as AmiGO and OBO-Edit, while other tools have been

developed outside the GO Consortium for use with GO ontologies such as BiNGO [78],

GeneMerge [81], GOEAST [80] and FuncAssociate [82]. A comprehensive list of all

these tools can be found at GO website 17.

The shortcoming of these programs is that you should to enter each bi/cluster manually

and then count the enriched and unriched clusters , which is consuming time and hard

to do manually. AGO was proposed to overcome all of these shortcomings as described

in the following sections.

3.5.5 AGO Implementation

We test AGO on a desktop PC with P4 1.8G CPU and 2.0 G memory running windos

XP operating system and Matlab 7.2.

AGO block diagram is shown in Figure 3.14. First, As illustrated in this figure AGO

input are the biclustering output files, which contains the biclusters results from one

of available biclustering toolbox like BicAT toolbox [17],Bivisu program [69], MSBE

17http://www.geneontology.org/GO.tools.shtml.
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package [70]). Second, function enrichment was analyzed for each biclusters/clusters

using GeneMerge Perl program [81] by setting sufficient significance level and interested

GO category. Third, As the number of generated biclusters varies strongly among the

considered methods, a postprocessing filtration procedure, has been applied to the

output of the algorithms to provide a common basis for the comparison. Finally, Using

one of comparison methodology which were implemented in AGO, the user could test

the performance of various algorithms.

AGO provides reasonable methods for comparing the results of different biclustering

Figure 3.14: Blook diagram of the AGO.

algorithms by:

1. Identifying the percentage of enriched or overrepresented biclusters with one or

more GO term per multiple significance levels for each algorithm. A bicluster is

said to be significantly overrepresented (enriched) with a functional category if

the p-value of this functional category is lower than the preset threshold P-value.

The results are displayed using a histogram for the entire compared algorithms

at the different preset significance levels, and the algorithm which gives higher

proportion of enriched biclusters per all significance levels is considered to be the

optimum one as it does group effectively the genes sharing similar functions in

the same bicluster.

2. Identifying the percentage of annotated genes per each enriched bicluster.
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3. Estimating the algorithms predictability power to recover interesting pattern.

Genes whose transcription is responsive to a variety of stresses have been impli-

cated in a general yeast response to stress. Other gene expression responses appear

to be specific to particular environmental conditions. AGO Compare biclustering

methods based on which of them could recover known patterns in experimental

datasets. For example in Gasch et al [27] measure changes in transcript levels over

time responding to panel of environmental changes. So it was expected to find

enriched biclusters with one of response to stress (GO:0006950) Gene Ontology

category like response to heat (GO:0009408), response to cold (GO:0009409) and

response to glucose starvation(GO:0042149).

3.5.6 AGO Testing: Case Study

To test AGO, we run biclustering algorithms on the gene expression data of S. cerevisiae

provided by Gasch et al [27]. The dataset contains 2993 genes and 173 conditions of

diverse environmental transitions such as temperature shocks, amino acid starvation,

and nitrogen source depletion.

Table 3.10 shows the biclustering algorithms parameters setting as authors recom-

mended in their corresponding publications. There are three type of parameters. First,

Parameters recommend by author which we could not alter it as in the previous pub-

lication [15, 21, 70]. Second, parameters depend on the data itself like noise threshold

which equals data Standard Devision [69]. Third, parameters alter number of generated

biclusters [11, 15] and biclusters size (min number of genes per each bicluster [15, 83]).

Table 3.11 demonstrates the statistical comparison of the biclusters output for each

algorithm. They differ in the number of bicluster outputs, the number of genes and

conditions within each bicluster and the ability to recover genes and conditions within

its biclusters.

Comparing these algorithms using the percentage of the enriched biclusters histogram

is shown in Figure 3.15. By comparing Figure 3.15 and Figure 3 in [15, 70], we found

that the percentages of enriched biclusters for the matched algorithms are almost the

same. This does validate the results of the proposed comparative tool. Investigating

both figures, we observed that OPSM algorithm gave a high portion of functionally

enriched biclusters at all significance levels (from 85% to 100 %). Next to OPSM, ISA

shows relatively high portions of enriched biclusters.

According to many simulations, we found that most of the enriched biclusters contains

low number of annotated genes. Figure 3.16 shows the percentage of enriched biclusters

if at least half of their genes were annotated using any GO category. Figure 3.16 shows
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Table 3.10: Parameters Setting of Biclustering Algorithms Applied to Gasch [27]
Dataset

Algorithm Parameters Parameter Description
ISA tg=2.0 Genes threshold level

tc = 2.0 Condition threshold level
SN= 500 Number of seeds

CC Delta=0.5 Maximum of accepted score
Alpha=1.2 Scaling factor
M=100 Number of bicluster to be found

OPSM l = 100 Number of passed models for each iteration
K-means M=100 Number of Bicluster to be found

IN=100 Number of Iteration
RN=10 Number of replication
DM=ED Distance Metric is Euclidean Distance

Bivisu NT=0.82 Data Noise threshold
% NR=0.33 Minimum % of rows
NC=5 Minimum number. of columns
O%=25% Maximum overlap allowed

Table 3.11: Statistical Comparison of Biclusters Produced by Applying Biclustering
Algorithms to Gasch [27]Dataset

Biclustering No of BiclustersClusters Size GeneCoverage% ConditionCoverage%
Algorithm Biclusters Min Max
ISA 9 50 x 35 155 x 37 25 97
CC 69 11 x 5 2259 x 134 100 100
OPSM 2 11 x 15 575 x 6 88.5 32.9
BiVisu 100 27 x 142 99 x 52 55 100
Kmeans 100 20 x 173 50 x 173 100 100

that OPSM and ISA have highly enriched biclusters that have large number of annotated

genes. On the other hand, Bivisu biclusters are strongly affected by this filtration as

they contains a lower number of annotated genes per each category. Figure 3.16 helps in

identifying the powerful and most reliable algorithms which are able to group maximum

numbers of genes sharing same functions in one bicluster.

Finally, given the ease of comparison allowed by the AGO, it was straightforward to do

further analysis to address predictability power to recover interesting patterns. That is,

to compare biclustering methods based on which of them could recover known patterns

in the particular experimental dataset used. Table 3.12 shows the difference between

the biclusters contents based on its predictability to recover response to stress category.

Although OPSM showed high percentage level of enriched biclusters, it did not have
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Figure 3.15: Percentage of Enriched Biclusters: This Figure draws the percentage of
enriched biclusters for Biological Process GO annotations (y-axis) against the selected
biclustering algorithms(x-axis) at different significance levels. The biclustering algo-
rithms and k-means were applied to Gasch dataset [27] using parameter setting in
Table 3.10 with GO annotations of Biological Process category. A bicluster is said to
be significantly overrepresented (enriched) with a functional category if the p-value of
this functional category is lower than the preset threshold P-value. OPSM algorithm
gave a high portion of functionally enriched biclusters at all significance levels (from
85% to 100 %). Next to OPSM, ISA show relatively high portions of enriched biclusters.

any biclusters with genes matching any of the known GO categories for Gasch data set.

Although the low number of ISA biclusters (9 biclusters) and GeneCoverage% (25%), it

showed better performance with one of its biclusters having 11 genes matching response

to oxidative stress (GO:0006979). We can see also that three methods(k-means, CC and

ISA) were able to define biclusters that have 4 out of 5 genes in the cellular response

to nitrogen starvation functional category, which is very remarkable. Finally, we can

observe also that there are several methods assumed to be unique in detecting biclusters

related to certain function categories. For example, ISA and CC detected 2 genes belong

to response to cold and cellular response to starvation functions respectively.

The comparison methodology used in this study indicates that the present methods

do not show a clear winner and in fact it seems that all methods should somehow be

integrated together to capture the information in the data.
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Table 3.12: Statistical Comparison of Biclusters Produced by Applying Biclustering
Algorithms to Gasch [27]Dataset

GO Term /number of annotated genes K-means CC ISA Bivisu OPSM
GO:0042493
Response to drug (118) 4 5 7 6 0
GO:0006970
Response to osmotic stress (83) 3 5 6 3 0
GO:0006979
Response to oxidative stress (79) 2 7 11 0 0
GO:0046686
Response to cadmium ion (102) 2 3 2 2 0
GO:0043330
Response to exogenous dsRNA (7) 2 3 2 2 0
GO:0046685
Response to arsenic (77) 2 0 2 2 0
GO:0006950
Response to stress (532) 9 11 16 2 0
GO:0009408
Response to heat (24) 3 0 2 2 0
GO:0009409
Response to cold (7) 0 0 2 0 0
GO:0009267
Cellular response to starvation (44) 0 2 0 0 0
GO:0006995
Cellular response to nitrogen starvation (5) 4 4 4 0 0
GO:0042149
Cellular response to glucose starvation (5) 0 2 0 0 0
GO:0009651
Response to salt stress (15) 2 7 0 0 0
GO:0042542
Response to hydrogen peroxide (5) 0 0 0 2 0
GO:0006974
Response to DNA damage stimulus (240) 0 22 0 3 0
GO:0000304
Response to singlet oxygen (4) 2 0 0 0 0

We test the predictability ability of different biclustering algorithms to recover gene
ontology category within response to stress (GO:0006950). Rows represent the known
gene ontology function categories under response to stress category and the different
biclustering methods in the columns with the highest performance relevant cluster
result as the entry for a given functional category and clustering method. Several
interesting observation can be made.
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Figure 3.16: Percentage of Enriched Biclusters using Restricted Criteria: This Figure
is similar to Figure 3.15 with restriction on enrichment definition. A bicluster is said to
be significantly enriched if the p-value of any of GO category is lower than the preset
threshold P-value and at least half of its genes was annotated with this GO category.
Bivisu biclusters are strongly affected by this filtration as they contains a lower number
of annotated genes per each category. This filtration criteria helps in identifying the
powerful and most reliable algorithms which are able to group maximum numbers of

genes sharing same functions in one bicluster.

3.6 BicAT-plus: An Automatic Comparative Java Tool For Bi/-

Clustering Algorithms Used In Analysis And Visualization

of Gene Expression Data Obtained Using Microarrays

To facilitate the comparison algorithms, it is preferable to implement AGO with one

of wide biclustering available toolbox. So we incorporate AGO in BicAT toolbox [17].

BicAT [17] is a common biclustering analysis toolbox in which most important bi/clus-

tering algorithms like k-means, HCL [18], Bimax [15] , OPSM [19], X-motif [20],CC [11],

and ISA [21, 22] were implemented (Fig3.17). The new version of BicAT toolbox is

called BicAT-Plus18 [16] and manual file can be downloaded from:
18Al-Akwaa FM, Ali MH, Kadah YM. BicAT-Plus: An Automatic Comparative Tool For BiClustering

of Gene Expression Data Obtained Using Microarrays. 26th National Radio Science Conference (NRSC)
Cairo, Egypt, 2009.
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Figure 3.17: Bi/clustering Algorithms Employed by BicAT (Copyright©[17])

http://home.k-space.org/FADL/Downloads/PhD/Bicat-Plus paper/

BicAT-plus has many features added to BicAT which could summarized in the follow-

ing:

1. Adding more algorithms to the BicAT tool in order to have one software package

that employs most of the commonly used bi/clustering algorithms. The addi-

tional algorithms are MSBE constant biclustering(Figure 3.18) and MSBE additive

biclustering(Figure 3.19) [70].

2. Extending the BicAT to perform functional analysis using the three subontologies

or categories of Gene Ontology (GO) (biological process, molecular function and

cellular component)(Figure 3.20) and visualizing the enriched GO terms per each

bi/cluster in a separate histogram.

3. Evaluating the quality of each bi/clustering algorithm (Figure 3.21) results after

applying the GO functional analysis and displaying the percentage of the enriched

bi/clusters at the standard P-values (significance levels) which are:

0.00001,0.00005,0.0001,0.0005,0.001,0.005,0.01 and 0.05.

4. Comparing between the different bi/clustering algorithms according to the per-

centage of the functionally enriched bi/clusters at the required significance lev-

els, the selected GO category and with certain filtration criteria for the GO

terms(Figure 3.20).

5. Evaluating and comparing the results of external bi/clustering algorithms (not

included in the BicAT-plus current version). This gives the BicAT-plus the advan-

tage to be a generic tool that doesn’t depend on the employed methods only. For

http://home.k-space.org/FADL/Downloads/PhD/Bicat-Plus_paper/
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example; it can be used to evaluate the quality of the new algorithms introduced

to the field and compare against the existing ones.

6. Displaying the analysis and comparison results using graphical and statistical

charts visualizations in multiple modes (2D and 3D)(Figure 3.22).

Figure 3.18: Constant MSBE Biclustering Input Dialog Implemented in Our BicAT-
Plus Toolbox [16]: alpha, beta and gamma to be determined by the user and the

number of reference genes.

Figure 3.19: Additive MSBE Biclustering Input Dialog Implemented in Our BicAT-
Plus Toolbox [16]:alpha, beta and gamma to be determined by the user and the number

of reference genes and conditions.

3.6.1 BicAT-Plus Development and Architecture

Before using the BicAT-plus, Active Perl version 5.10 and Java Runtime Environment

(JRE).version 6 are required to be installed on your machine. BicAT-plus has been
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Figure 3.20: Algorithms required to compare could dragged from available list to
compared list. External biclustering results for other algorithms could be included
in the comparison process. Also organism model, selectable significance level, GO
category should be selected. Finally Comparison criteria have to be selected based on

the user biological metric.
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Figure 3.21: Percentage of Enriched Biclusters: This Figure draws the percentage of
enriched biclusters for Biological Process GO annotations (y-axis) against the selected

biclustering algorithms(x-axis) at different significance levels.

Figure 3.22: Functional analysis of the selected algorithm results
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tested and show good performance on a PC machine with the following configurations:

CPU: Pentium 4, 1.5 GHZ, RAM: 2.0 GB, Platform: windows XP professional with

SP2. BicAT-plus is structured in the hierarchy of packages which are shown in Fig 3.23.

The highlighted blocks with red color are the additional modules developed for the

comparative tool while the black ones are the original modules of the BicAT program.

We faced many problems during the implementations like:

1. lack of documentation of the BicAT tool which influenced the planned time to

understand the source code and extend it.

2. All bugs reported about BicAT should be fixed in order to avoid its effect on the

comparative tool. Ex: delete node from the navigation tree.

3. Technical problems like calling GeneMerge Perl script from java code. The used

solution was to save the Perl commands in a batch file, then call the batch file from

the java code using the Runtime class provided by SUN.

4. One of the objectives of this research was to enrich the BicAT (written using java)

with more biclustering algorithms. But, some of these algorithms are written

using C and C++. Thus, to solve such a compatibility problem, we converted the

C files to dynamic link library (DLL) file then loaded it to the system class path

library. Another possible solution was to use the Java native interface (JNI) to call

the C files.

3.6.2 BicAT-Plus Comparison Process Steps

The following process diagram shown in Fig 3.24 summarizes the required steps by the

user to compare between the different algorithms using the BicAT-plus.

1. Download BicAT-plus from our site (http://home.k-space.org/BicAT-plus.zip).

2. Load Gene Expression Data to BicAT-plus then run the selected five prominent

biclustering methods with setting parameters as Table 3.10.

3. Run GO comparison tool in the BicAT-plus and add the available bi/clustering

algorithms to the compared list as shown in Figure 3.20.

4. Select one of the available GO category e.g. biological process, molecular function

and cellular components as in Figure 3.20.

5. Select the P-values e.g. 0.00001, 0.0001, 0.01, 0.005, and 0.05.
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Figure 3.23: The general design of the BicAT-Plus. Red color for the comparative tool
packages and classes. The black entities are the original packages and interfaces of the

BicAT program. (Modified from [84]).

Figure 3.24: BicAT-Plus Comparison Process Steps.
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6. Press compare button.

7. Press comparison menu, Functional enrichment and select 2D or 3D charts see

Figure 5.(Figure 3.22)



Chapter 4

Bayesian Network

In the last years numerous methods have been developed and applied to reconstruct

the structure and dynamic rules of gene-regulatory networks from different high-

throughput data sources such as gene expression data. In this chapter we summarized

some of the promising modeling approaches(Section 4.1) to obtain a better under-

standing of their relative strengths and weaknesses. We focus on probabilistic mod-

els(Bayesian Network)(Section 4.4) that use stochasticity to account for measurement

noise, variability in the biological system, and aspects of the system that are not cap-

tured by the model. Finally, in Section 4.5 we compare between different Bayesian

Network Structure Learning algorithms.

4.1 Reverse Engineering Approach

Many approaches have been developed to reverse the gene network. Many review

papers [85, 86, 86–93] had been published comparing these approaches.

We choose four modeling approach which are Bayesian Network (BYN), Boolean Net-

work (BNN), Non Linear Ordinary Differential Equation (NLODE), and Association

Networks (AN), based on their promising results, to they extend on the community

and the availability of its implementation which makes an easy for the reader to test

each approach on synthetic or read data set with out involving in the implementation

complicity. The available software for each method are Bayesnet Toolbox [94], Proba-

bilistic Boolean Network [95], Genetic Network Analyzer (GNA) [96] and ARACNE [97]

respectively.

Table4.1 compares between promising GRN modularity approaches as following:

80
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Table 4.1: Comparison Between GRN Modeling Approaches

Approach Static(s)/ Discreet(d)/ Deterministic(d) / Qualitative(ql)/
dynamic(d) Continuous(c) Stochastic(s) quantitative(qn)

Bayesian Network s d,c s qn
Boolean Network d d d ql
NLDEa d c d qn
Association Network s c d qn
a Non Linear Definitional Equations

• Discrete or continuous Ivan et al [98] Compared fine-scale stochastic-differential

equation models with coarse-scale discrete models in the context of currently

available data and with respect to their description of switch-like behavior among

specific groups of genes. They find that a discrete model has predictive power

comparable to that of the stochastic differential equation model under the as-

sumption of complete knowledge of the parameters of the fine-scale model.

• Deterministic or Stochastic In deterministic models we assume that the next state

of the system is determined by the current state and the external inputs. However,

in real world systems stochastic effects may play an important role. For instance,

for some genes in yeast the number of mRNA molecules is close to one copy

per cell [99]. This means that it is likely that there is a considerable intrinsic

noise element present - some cells apparently have more mRNA molecules of

the given species present than others. Thus modeling a cell by using continuous

concentrations effectively means modeling an ensemble of cells by mean values

of stochastic variables. Simulating a stochastic model is computationally more

expensive, because the simulations have to be run several times to provide a

good impression of the system behaviour. But stochastic models are not always

necessary; it depends on the system that is to be modeled. If the number of

molecules involved is small and if important processes depend on random effects,

stochastic models might be the best choice.

• Data Discretization Reconstructing regulatory networks from gene expression

profiles is a challenging problem of functional genomics. In microarray studies

the number of samples is often very limited compared to the number of genes,

thus the use of discrete data may help reducing the probability of finding ran-

dom associations between genes. On other hand the previous studies [55] were

suggested that discretization of the continuous data leads to a large information

loss. Barbara Di Camillo et.al [56] confirmed that the use of discrete rather than

continuous data is advantageous when few samples are available. Continuous
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approaches are likely to become advantageous with increasing number of sam-

ples.

4.1.1 Boolean Network

The simplest dynamic models synchronous Boolean network models were used as

a model for gene regulatory networks already in the 1960’s by Stuart Kauffman [3].

Boolean networks are based on the assumption that binary on/off switches functioning

in discrete time steps can describe important aspects of gene regulation. In synchronous

Boolean network models all genes switch states simultaneously (Figure 4.1). We can

Figure 4.1: Example for a small Boolean network consisting of 3 genes X, Y, Z. There
are different ways for representing the network: A as a graph, B Boolean rules for state
transitions, C a complete table of all possible states before and after transition, or D as

a graph representing the state transitions. Copyright© [85].

introduce the concept of the state of the network defined as an n-tuple of 0s and

1s describing which genes in the network are or are not expressed at the particular

moment (Figure 4.1). As time progresses, the network navigates through the ’state

space’, switching from one state to another, as shown in Figure4.1 D. For a network

of n genes, in total there are 2n possible different states, for instance, for a three gene

network the possible states are (0,0,0), (0,0,1), ..., (1,1,1). We can follow the succession

of states with time and study which states are reached. Some states might never be
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reached. It is possible to look for attractors: these are states or series of states that once

reached will not be left anymore. The small example network in Figure 4.1 has two

attractors: one attractor is a single state (0,0,1), and the second attractor consists of two

alternating states (1,0,1) and (0,1,0). This approach has been generalized in a number

of ways. Randomly generated networks are used to study the dynamics of complex

systems [100]. Stochastic extensions to deterministic Boolean networks were proposed

so-called noisy networks by Akutsu et al. [88] and Probabilistic Boolean Networks by

Shmulevich et al. [101].

4.1.2 Non Linear Definitional Equations

Nonlinear ordinary differential equations are probably the most-widespread formalism

for modeling genetic regulatory networks. They represent the concentration of gene

products mRNAs or protein by continuous, time-dependent variables, that is, x(t), t ∈ T,

T being a closed time interval (T ∈ R≥0). The variables take their values from the set of

nonnegative real numbers (x : T → R≥0), reflecting the constraint that a concentration

cannot be negative. In order to model the regulatory interactions between genes, func-

tional or differential relations are used.

More precisely, gene regulation is modeled by a system of ordinary differential equa-

tions having the following form:

dx
dt = f (x)

where x = [x1, ..., xn]′ is the vector of concentration variables of the system, and the

function f =[ f1, ..., fn]′, usually highly nonlinear, represents the regulatory interactions.

The above system does not include the delays resulting from the time it takes to com-

plete transcription, translation, and the other stages of the synthesis and the transport

of proteins you can see [102] for more details.

The above definitions can be illustrated by means of a simple network in Figure 4.2.

Each of the genes encodes a regulatory protein that inhibits the expression of the other

gene, by binding to a site overlapping the promoter of the gene.

An ordinary differential equation model of the network in Figure 4.2 is shown in Fig-

ure 4.3. The variables xa and xb represent the concentration of proteins A and B, encoded

by genes a and b, respectively. The temporal derivative of xa is the difference between the

synthesis term kah−(xb,Θb,mb) and the degradation term γaxa. The first term expresses

that the rate of synthesis of protein A depends on the concentration of protein B and is

described by the function h−. This so called Hill function is monotonically decreasing.
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It takes the value 1 for xb = 0, and asymptotically reaches 0 for xb ≤ ∞. It is characterized

by a threshold parameter θb and a cooperativity parameter mb (Figure 4.3b). For mb >1,

the Hill function has a sigmoidal form that is often observed experimentally [103]. The

synthesis term kah−(xb,Θb,mb) thus means that, for low concentrations of protein B,

gene a is expressed at a rate close to its maximum rate ka(ka > 0), whereas for high con-

centrations of B, the expression of the gene is almost completely repressed. The second

term of the differential equation, the degradation term, expresses that the degradation

rate of protein A is proportional to its own concentration xa, γa being a degradation pa-

rameter (γa > 0). Unfortunately, they are difficult to treat mathematically for networks

comprising more than two genes, in which case we have to take recourse to numerical

simulation. However, the application of numerical techniques is often difficult in prac-

tice, due to the absence of numerical values for the parameters in the model. A possible

alternative is the use of linear ordinary differential equations. Powerful techniques for

solving these equations exist, as well as techniques for estimating parameter values

from experimental data.

Figure 4.2: Example of a simple genetic regulatory network, composed of two genes a
and b, the proteins A and B, and their regulatory interactions. Copyright© [104].

4.1.3 Stochastic Differential Equation

Real genetic networks are subject to considerable noise, and hence ideally should be

modeled them using stochastic differential equations, or some other type of random

process [86]. However, as far as we are aware, due to the complexity involved in

estimating, solving and analysing stochastic models, these are rarely used to model real

networks of more than two or three genes and it is beyond this study.
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Figure 4.3: Nonlinear ordinary differential equation model of the mutual-inhibition
network (Figure 4.2). The variables xa and xb correspond to the concentrations of
proteins A and B, respectively, parameters ka and kb to the synthesis rates of the pro-
teins, parameters γa and γb to the degradation constants, parameters Θa and Θb to the
threshold concentrations, and parameters ma and mb to the degree of cooperativity of
the interactions. All parameters are positive. (b) Graphical representation of the char-
acteristic sigmoidal form, for m ¿ 1, of the Hill function h−(x,Θ,m). Figure Copyright

© [104].

4.1.4 Association Network

If two genes show similar expression profiles, they are supposed to follow the same

regulatory regime. To put it more pointedly: coexpression hints at coregulation. Coex-

pression networks (also known as relevance networks) are constructed by computing

a similarity score for each pair of genes. If similarity is above a certain threshold, the

gene pair gets connected in the graph, if not, it remains unconnected. Networks of

coexpressed genes provide a widely applicable framework for assigning gene func-

tion [105]. Also, the coexpression agrees well with functional similarity as it is encoded

in the Gene Ontology [77]. The first critical point in building a coexpression network

is how to formalize the notion of similarity of expression profiles. Several measures

have been proposed, the most simple of which is correlation. In a Gaussian model,

zero correlation corresponds to statistical independence. The second critical step in

building coexpression networks is assessing the significance of results. Many pairs of

genes show similar behavior in expression profiles by chance even though they are not

biologically related. Even high similarity of expression tells us little about the under-

lying biological mechanisms. Coexpression networks include regulatory relationships,

but we cannot distinguish direct from indirect dependencies based on the similarity of

expression patterns. Figure 4.4 exemplifies this problem on a small set of three highly

coexpressed genes, which form a clique (a completely connected subgraph) in a coex-

pression network.

Figure 4.4 shows that several regulatory mechanism can explain this observation, and

from coexpression data alone we have no way of choosing between them. There are
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Figure 4.4: Different mechanisms can explain coexpression. The left plot in the dashed
box shows three coexpressed genes forming a clique in the coexpression graph. The
other three plots show possible regulatory relationships that can explain coexpression:
The genes could be regulated in a cascade (left), or one regulates both others (middle),
or there is a common ”hidden” regulator (right), which is not part of the model. Figure

Copyright© [93].

two possible solutions. Functional genomics has a long tradition of perturbing the

natural state of a cell and inferring a gene’s function from the observed effects. These

interventions allow us to distinguish between the three models in Figure 4.4, because

each model results in different predictions of effects, which can be compared to those

obtained in experiments. For example, perturbing gene Y in the cascade X ≤ Y ≤ Z

will only have an effect on gene Z but none on gene X. In the case where Y regulates

both X and Z, perturbing it will result in changes at both regulatees. In the last case,

where all three genes are regulated by a hidden regulator, perturbing one of them will

not lead to changes at the other two. In the absence of perturbation data statistical

methods may be used to find which of the possibilities is most likely. The theoretical

background is the concept of conditional independence. Please see [93] for more details.

4.2 Which Model Should I Select?

We need to say that these models without real and clear problem statement are like

computer games simulation. i.e you should to fit your problem with one of these

models; not all models work perfectly. For example If we are not interested in predicting

the exact concentrations of different substances, but only in the patterns of the systems

behaviour such as steady states, we can often use simplified Boolean-type networks

instead of differential equations [106].
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4.3 Data Sources and Requirements

Gene network inference techniques are data-hungry [107]. Time series and steady-state

data are the available gene expression data. Time series has the advantage of being able

to identify causal relations, i.e. gene-regulatory relations, between genes without the

need of actively perturbing the system. Spellman et al. [28] generated time series data

under different culture conditions and using different mutant backgrounds in order to

reveal a more comprehensive picture about gene regulation during the yeast cell cycle.

Table 4.2 shows how many data points do we really need to infer a gene network on N

genes depends on the model used to do the inference [107].

The need for large numbers of data points, and many different conditions, implies that

Table 4.2: Data Requirements of Difference Reverse Engineer-
ing Approach: Data Size to Recover Gene Networks with N

Genes and Connectivity K

Model Data needed
Boolean, fully connecteda 2Nb

Boolean, connectivity Kc 2Klog(N)
Boolean, connectivity K, lin. sep.d Klog(N/K)
Continuous, fully connected, additive N
Continuous, connectivity K, additivee Klog(N/K)
Pairwise correlation log(N)
a Each gene can receive regulatory inputs from all

other genes
b No of genes
c Maximum regulatory inputs per gene
d Linearly separable, for Boolean functions
e Regulation can be modeled as a weighted sum

successful modeling efforts will probably have to use data from different sources like

from different high-throughput data sources, mainly microarray based gene expression

analysis, promoter sequence information, Chromatin immunoprecipitation (ChIP) and

protein-protein interaction assays.

The requirements on data size and data quality that must be met by a successful network

reconstruction could be summarized as the following:

• Short time series generated under transcription factor knock-out are optimal ex-

periments in order to reveal the structure of gene regulatory networks.

• The benefit of using of prior knowledge within a Bayesian learning framework is

found to be limited to conditions of small gene expression data size.
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• The results suggest that discretization of the continuous data leads to a large

information loss.

• Results indicate, that network reconstruction with currently available data will

still give rise to many false predictions (FDR 50%).

4.4 Bayesian Network

While a variety of computational methods have been considered for reconstructing

gene networks from observational gene expression data, Bayesian network (BN) based

approaches have shown great promise to infer causal relationships between genes and

receive increasing attention. One of the first seminal papers promoting this approach

aimed to learn gene regulatory networks in Saccharomyces Cerevisiae from gene expres-

sion profiles with Bayesian networks [4].

BN are especially suitable for learning genetic regulatory networks for the following

reasons: (1) the sound probabilistic semantics allows BNs to deal with the noises that

are inherent in experimental measurements; (2) BNs can handle missing data and per-

mit the incomplete knowledge about the biological system and (3) BNs are capable of

integrating prior biological knowledge into the system [108].

4.4.1 Bayesian Networks Representation

Consider a finite set x=X1,X2, ...,Xnof random variables where each variable Xi may

take on a value xifrom the domain Val(Xi). we use capital letters, such as X,Y,Z for

variable names and lowercase letters x,y,z to denote specific values taken by those vari-

ables. Sets of variables are denoted by boldface capital letters X,Y,Z and assignments of

values to the variables in these sets are denoted by boldface lowercase lettersx,y,z. We

denote I(X;Y—Z) to mean X is independent of Y conditioned on Z. A Bayesian network is

a representation of a joint probability distribution. This representation consists of two

components. The first component, G , is a directed acyclic graph (DAG) whose vertices

correspond to the random variablesX1,X2, ...,Xn. The second component, Θ describes

a conditional distribution for each variable, given its parents in G . Together, these two

components specify a unique distribution on X1,X2, ...,Xn.

The graph G represents conditional independence assumptions that allow the joint dis-

tribution to be decomposed, economizing on the number of parameters. The graph G

encodes the Markov Assumption:

(*) Each variable Xi is independent of its non-descendants, given its parents in G.
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By applying the chain rule of probabilities and properties of conditional independen-

cies, any joint distribution that satisfies (*) can be decomposed into the product form:

p(x1, ...., xn) =

n∏
i=1

P(xi|paG(Xi))

Where paG(Xi)is the set of parents of Xi in G.Figure 4.5 shows an example of a graph G

, lists the Markov independencies it encodes, and the product form they imply.

Figure 4.5: An example of a simple Bayesian network struc-
ture. This network structure implies several conditional independence
statements:I(A; E), I(B; D|A,E), I(C; A,D,E|B), I(D; B,C,E|A), I(E; A,D) The net-
work structure also implies that the joint distribution has the product form

P(A,B,C,D,E) = P(A)P(B|A,E)P(C|B)P(D|A)P(E). Figure Copyright© [4]

4.4.2 Bayesian Networks Structure Learning

The theory of learning networks structure from data has been examined extensively

over the last decade(see Figure 4.6).

The problem of learning a Bayesian network can be stated as follows. Given a training

set D = X1,X2, ...,XN of independent instances of X , find a network B = (G,Θ)that best

matches D. More precisely, we search for an equivalence class 1of networks that best

matches D [4].
1Set of graph which can imply exactly the same set of independencies.
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Figure 4.6: Bayesian Network Structure Learning Problem: From the Expression
Level of Five Genes Shown(left), It was Required to Construct the Network Structure

Between Them(Right)

Many structure learning methods have been proposed in the literature, and it is impor-

tant to understand their relative merits and shortcomings. They can be categorized

as either conditional independence (CI) test-based methods or scoring-based methods.

The CI-based methods analyze the dependence and independence relationships among

variables via CI tests and construct the networks that characterize these relationships.

The scoring-based methods consist of two components: (1) a scoring function that as-

sesses how well a network fits the data and (2) a search method to find networks with

high scores.

4.4.2.1 Scoring Function

Learning a BN structure is to find a DAG that best matches the dataset. The common

method of structure learning is to define a scoring function that evaluates how well the

DAG explains the data and then to search for the best DAG that optimizes the scoring

function. NormalGamma, MeanSquareError, BIC (Bayesian Information Criterion) and

BDe are the common scoring function were used. For all three scoring functions used,

the component scores and the total network score are always negative numbers; a better

network has a higher score, i.e. a negative score of smaller magnitude.

A commonly used scoring function for discrete data is called BDe scoring metric which
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computes the posterior probability of a network for the given data [109].

In this score, we evaluate the posterior probability of a graph given the data:

S(G : D) = logP(G|D) =logP(D|G) + logP(G) + C

where C is a constant independent of G and P(D|G) =
∫

P(D|G, θ)P(θ|G)dθ is the

marginal likelihood which averages the probability of the data over all possible pa-

rameter assignments to G. The particular choice of priors P(G) and P(θ|G) for each G

determines the exact Bayesian score.

4.4.2.2 Heuristic Search

The number of DAGs as a function of the number of nodes, G(n), is super-exponential

in n, and is given by the following recurrence:

For example DAG space of 10 genes are 4.2x1018. Also, It takes around 50 hours using

a Sun Fire 15K supercomputer with 96 CPUs, 900MHz each, to compute the gene regu-

latory network of just 20 genes [110]. Since the number of DAGs is super-exponential

in the number of nodes, we cannot exhaustively search the space, so we either use a

local search algorithm (e.g., greedy hill climbining, perhaps with multiple restarts) or

a global search algorithm (e.g., Markov Chain Monte Carlo). These algorithms were

compared in the below section.

4.4.2.3 Model Averaging

Instead of taking the best network which have the best score or posterior probability,

we can consider the average of the predicted networks. Using available dataset there

are many different networks that score approximately equally well(Figure 4.7).Each

predicted networks have common edges. Important edges are those appeared in a

majority of the search results. So we have to average the produced networks to get the

final network with high confidence level(Figure 4.8). For example, we could build the

network which its edges appear in the results of more than half the searches. Also, we

could generalized like this an edge will then appear in the final network if it appears
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in the results of more than N% of the searches. (100% means the edge appeared in the

results of all runs; 95% means it appeared in 95% of runs; etc.).

Figure 4.7: Schematic Representation of Possible Posterior Distributions in a Re-
verse Engineering Problem: The horizontal plane represents the search space of all
possible networks and the vertical axis corresponds to the score (e.g., the posterior
probability). The dots are tentative networks inferred by a reverse engineering algo-
rithm. (A) The data is sufficient to identify a unique, distinctive global optimum. (B)
The problem is underdetermined by the available datathere are many different net-
works that score approximately equally well. (C) There are several distinctive classes

of networks that fit the data well. Figure Copyright© [111]

Figure 4.8: Bayesian Networks Averaging: From Data(left) using Multiple Searches,
we have four DAGs. Averaging Them to Get the Final Network. Edge Assign 100%

Means the Edge Appeared in the Results of All Runs
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4.5 Performance Comparison of the Structure Learning Bayesian

Network Algorithms Using Gene Expression Data

Many structure learning methods have been proposed in the literature, and it is impor-

tant to understand their relative merits and shortcomings. They can be categorized

as either conditional independence (CI) test-based methods or scoring-based methods.

The CI-based methods analyze the dependence and independence relationships among

variables via CI tests and construct the networks that characterize these relationships.

The scoring-based methods consist of two components: (1) a scoring function that as-

sesses how well a network fits the data and (2) a search method to find networks with

high scores.

In this section we apply currently available Structure learning algorithms on actual

microarray data to obtain a better understanding of their relative strengths and weak-

nesses on the system biology community and we have carried out a series of exper-

iments to evaluate their behavior from different perspectives. The structure learning

algorithms were used in this comparison are: K2 algorithm[5], Markov Chain Monte

Carlo (MCMC) [112], Bayesian Network Power Constructor (BNPC) [113] and Greedy

Search in the Markov Equivalent Space (GSMES) [114]. An overview of these algo-

rithms is presented in [113].

4.5.1 K2 algorithm

The K2 Algorithm [109] is a greedy search algorithm that learns the network structure

of the BN from the data presented to it. It attempts to select the network structure

that maximizes the network’s posterior probability given the experimental data. The

K2 algorithm reduces this computational complexity by requiring a prior ordering of

nodes as an input, from which the network structure will be constructed. The ordering

is such that if node Xi comes prior to node X j in the ordering, then node X j cannot be a

parent of node Xi. In other words, the potential parent set of node Xi can include only

those nodes that precede it in the input ordering.

4.5.2 MCMC

Markov chain Monte Carlo (MCMC) methods, are a class of algorithms for sampling

from probability distributions based on constructing a Markov chain that has the desired

distribution as its equilibrium distribution. The state of the chain after a large number
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of steps is then used as a sample from the desired distribution. The quality of the

sample improves as a function of the number of steps. We can use a Markov Chain

Monte Carlo (MCMC) algorithm called Metropolis-Hastings (MH) to search the space

of all DAGs [112].

4.5.3 BNPC

The BN Power Constructor (BNPC), uses independence tests and mutual informa-

tion [113]. This algorithm has a three-phase operation: drafting, thickening, and thin-

ning. In the first phase, the algorithm computes mutual information of each pair of

nodes as a measure of closeness, and creates a draft based on this information. In the

second phase, the algorithm adds arcs when the pairs of nodes are not conditionally

independent on a certain conditioning set. In the third phase, each arc is examined

using conditional independence tests and will be removed if the two nodes of the arc

are conditionally independent.

4.5.4 GSMES

Recent works have shown the interest of searching in the Markov equivalent space . It

has proved that a greedy search in this space (with an equivalent score) is more likely

to converge than in the DAGs space [114]. This method works in two steps. First, it

starts with an empty graph and adds arcs until the score cannot be improved, and then

it tries to suppress some irrelevant arcs.

4.5.5 The dataset

A powerful approach to test our understanding of gene regulatory networks is to build

new networks from scratch in an approach called synthetic biology(Figure4.9). Then

we could compare model predictions with networks output. This approach allows us

to investigate in depth the effect of noise, data size and hidden variables in the form of

unobserved processes on the reconstruction of gene regulatory network[115].

The structure learning algorithms was tested with synthetic data samples randomly

generated from Raf signaling network, depicted in Figure 1. The random generation of

data samples was done to ensure the robustness of the algorithms. We used the sampling

function which was implemented in Bayesnet Toolbox [94]. Raf network includes 11

nodes and 20 arcs. Raf is a critical signalling protein involved in regulating cellular

proliferation in human immune system cells. The deregulation of the Raf pathway can
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Figure 4.9: Validation strategies for network inference methods. (A) The true network
structure of biological gene networks is in general unknown or only partly known,
which hinders systematic performance evaluation. (B) Since the structures of in silico

networks are known, predictions can be validated. Figure Copyright© [116]

lead to carcinogenesis, and the pathway has therefore been extensively studied in the

literature [117].

4.5.6 Comparison Methodology

The comparison methodology used in this paper is similar with the method was used

in [108]. The existence of the known network structures allows us to define three im-

portant terms, which indicate the performance of the algorithm (in terms of the number

of graphical errors in the learnt structure).

• Correct edges(C): Edges present in the original network and in the learnt network

structure.

• Missing edges (M): Edges present in the original network but not in the learnt

network structure.
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Figure 4.10: Raf signalling pathway: The graph shows the currently accepted sig-
nalling network. Nodes represent proteins, edges represent interactions and arrows
indicate the direction of signal transduction. In the interventional studies, the follow-
ing nodes were targeted. Activations: PKA and PKC. Inhibitions: PIP2, AKT, PKC and

MEK..Figure Copyright© [117]

• Wrongly oriented edges (WO): Edges present in the learnt network structure, but

having opposite orientation when compared with the corresponding edge in the

original network structure.

• Wrongly connected edges (WC): Edges not present in the original network but

included in the learnt network structure.

Table 4.3: Bayesian Structure Learning Algorithms Parameters
Setting

Learning Algorithm Parameters setting
K2 (known order) xxa

K2(order from MWSTb) max-fan-in = 2
K2 (random order) xx
MCMC Nsamples=100*11; burnin=5*11
GSMES xx
BNPC epsilon=0.05
a No Parameters
b Maximum Weight Spanning Tree [118]

simulations of these structure learning algorithms in our comparative evaluation study

were carried out with the Bayesnet Toolbox [94] and Structure Learning Package [119].

The tests are carried on an Intel Core Due 1.8 GHz CPU and 1 GB RAM. Table I

shows the parameters for each candidate learning algorithms. Tables 4.4,4.5 show the

performances of the algorithms for the Raf networks with 1000 and 100 data samples

generated randomly 100 times , respectively. Tables4.4,4.5 report the mean results (the

results averaged over 100 trial runs).

Tables 4.4,4.5 show that these algorithms differ significantly in their predictability power
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and how could using larger data set improve algorithms performance except for BNPC

and GSMES which is against our expectation. We attempt to contact the corresponding

authors to explain these results. Also the low performance of the small data set promote

the importance of solving the dimensionality reduction of the gene reverse engineering

algorithms where the number of experiments are minimal.

For the k2 algorithm we present the results obtained with the correct order (of which

we have the knowledge, since the network structure is known), order known from

Maximum Weight Spanning Tree (MWST) [120] and with the random order. The results

for K2 with correct order are the optimal results one can get. K2 algorithms outperforms

the learning algorithms. For its result with known order about 17 over 20 edge were

covered perfectly. Also its result with random order outperform the tested algorithms.

Moreover the results of k2 algorithm getting order from MWST directed the authors to

develop a new algorithm to get network order. GSMES is the only method which have

wrong orientation edges.

Table 4.4: Bayesian Structure Learning Algorithms Comparison Results: These
Learning Algorithms Were Applied to Raf Network [117] with 1000 Data Samples

Generated Randomly 100 Times.

Learning Algorithm C M WO WC
K2 (known order) 17.12 2.88 0 0.16
K2(order from MWST) 12.49 7.51 0 7.35
K2 (random order) 8.43 11.57 0 10.86
MCMC 5.86 14.14 0 13.84
GSMES 9.82 10.18 1.72 10.31
BNPC 2.35 17.65 0 5.08

Table 4.5: Bayesian Structure Learning Algorithms Comparison Results With Small
Data Samples: These Learning Algorithms Were Applied to Raf Network [117] with

100 Data Samples Generated Randomly 100 Times.

Learning Algorithm C M WO WC
Learning Algorithm C M WO WC
K2 (known order) 12.82 7.18 0 2.82
K2(order from MWST) 8.81 11.19 0 6.29
K2 (random order) 5.76 14.24 0 9.51
MCMC 3.98 16 0 12.19
GSMES 9.18 10.82 1.51 8.91
BNPC 1.97 18.03 0 2.1

In this section we aim to compare the structure learning algorithms performance on

a gene expression data. We see how could the data set size alter their performance.

Also we show the importance of developing the correct network order algorithms. For
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simulated data was used here, the true structure of the regulatory network is known;

this allows us, in principle, to faithfully evaluate the prediction results. However, the

sampling approach used for data-generation is a simplification of real molecular bio-

logical processes, and this might lead to systematic deviations and a biased evaluation.

We can overcome this using real laboratory data.

4.6 Dream Project

DREAM is a Dialogue for Reverse Engineering Assessments and Methods. Its main

objective is to catalyze the interaction between experiment and theory in the area of

cellular network inference. The fundamental question for DREAM is simple: How can

researchers assess how well they are describing the networks of interacting molecules

that underlie biological systems? The answer is not so simple. Researchers have used

a variety of algorithms to deduce the structure of very different biological and artificial

networks, and evaluated their success using various metrics. What is still needed, and

what DREAM aims to achieve, is a fair comparison of the strengths and weaknesses of

the methods and a clear sense of the reliability of the network models they produce. The

reader could refer to the recent previous DREAM conference meeting to look for new

reverse engineering approaches [121]. The purpose of DREAM is not to produce the

best possible network, but to evaluate the best tools for producing networks. The choice

of tools depends in part on the nature of the available data. The uploaded results with

DREAM2 challenge show that the networks inferred from the data differed significantly

from the real network, which is precisely known. What is not known is whether the

data given are, by themselves, sufficient to distinguish the networks. An interesting

blinded competition on DREAM3 2008 assess the ability of scientists and their computer

servants to infer networks from experimental data, by comparing their predictions to

”gold-standard” networks whose structure is thought to be known. Predictors could

know their ranking online.

At the basis of any modelling, including network modelling, there is a realisation and

acceptance that a model describes only some properties of the ’real world’ system, and

ignores others. Thus it emphasizes particular aspects of reality, leaving out details that

are not relevant for the purpose of the study. How far are we from being able to build

realistic cell models? The availability of large-scale data sets such as microarray gene

expression and genomic localisation data triggered the search for suitable approaches

to model complex biological systems. By prediction gene network just from gene

expression data we were ignoring the last 30 years of molecular biology literature in

the design of the network. The question is how to make predictions in addition of

what is known. We need also to standardize the methods of comparing gene network
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models. What is not known is whether the data given are, by themselves, sufficient

to distinguish the networks. Finally from the Gene Ontology project the function of

about one third of all genes is still unknown for the yeast Saccharomyces cerevisiae despite

it being one of the best-studied organisms. And even for many of the better-known

genes and core processes that have been studied for decades, like the cell cycle, there

is still not enough data available to exactly know all changes in concentration and

activation patterns. Currently it seems not feasible to simulate even relatively simple

cells like yeast. Mechanisms like RNA interference, regulated degradation of mRNAs

and proteins, chemical modifications of key molecules and others might play a larger

role than anticipated in current models, other processes might still be unknown. It

is obvious that the separation into gene regulatory networks, metabolic networks and

protein interaction networks is possible only up to a certain degree. To what extent

can the transcription regulation networks be decoupled from other networks, such as

signal transduction networks? We need to integrate many types of information if we

want to build realistic dynamic models, however, for current modelling approaches we

have to limit the complexity of the systems we are dealing with2.

2http://wiki.c2b2.columbia.edu/dream/discuss/
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Results

In this chapter we applied our algorithm to Spellman [28] dataset and generated GRN

network. The goal of this chapter are to make confident of our approach by comparing

the generated network via previous algorithms(see section 5.1) and existing interactome

databases(see section 5.2). Also we asses the credibility of this network by analyzing

the network topology(see section 5.5.1) and finding putative modules(see section 5.5.2).

The results in this chapter were submitted to the RECOMB conference 1 which will be

hold in MIT, USA during 2 Dec-4 Dec 2009 and could be downloaded from:

http://home.k-space.org/FADL/Downloads/PhD/RECOMB paper/

.

5.1 Comparison to Previous Algorithms

We need to test the algorithm performance via previous algorithms. To accomplish this

task we face many challenges listed as following:

1. Network generated from some of inference algorithms are not available like the

Inferelator [23] which was developed at Institute of System Biology, Seattle.

2. Part of network inference algorithm are not freely distributed.

3. Part of network inference algorithms are just applicable for certain organism like

E.Coli. For example of these algorithms are the CLR [123] which was developed

at Bioinformatics Program, Boston University.
1F. M. Al-Akwaa, N. H. Solouma, and Y. M. Kadah, ”SSBBN: Gene Regulatory Network Construction

using Spectral Subtraction Denoising, Biclustering and Bayesian Network,” in The 6th Annual RECOMB
Satellite on Regulatory Genomics, the 5th Annual RECOMB Satellite on Systems Biology, and the 4th
Annual DREAM reverse engineering challenges., MIT, 2009.

100

http://home.k-space.org/FADL/Downloads/PhD/RECOMB_paper/
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4. Part of network inference algorithm used prior biological knowledge or con-

straints. For example CLR algorithm assumed that the edges in the network are

just created between Transcription Factor (TF) and non TF genes. For clarity we

assumed we have not any prior knowledge about genes.

5. Part of the network inference algorithm used expression dataset which is not

available.

6. Part of network inference algorithm required large number of samples which is

not applicable with the dataset which was used in this study.

From the above challenges we could recognize that Friedman network2 is suitable for

our comparison. Friedman [4] developed a new framework for discovering interac-

tions between genes based on multiple expression measurements which are capable of

discovering causal relationships, interactions between genes other than positive corre-

lation, and finer intra-cluster structure.

Friedman used SparseCandidate algorithm where a relatively small number of candi-

date parents could be identified for each gene based on simple local statistics (such

as correlation). Using SparseCandidate algorithm the search space is restricted to net-

works in which only the candidate parents of a variable can be its parents, resulting

in a much smaller search space in which a good structure quickly hope to be found.

To overcome with small sample size Friedman used bootstrap method where the per-

turbed versions of original data set was generated, and learned network from them. In

this way many networks were collected, all of which are fairly reasonable models of the

data [4].

Friedman applied his approach to the data of Spellman et al. [28], containing 76 gene

expression measurements of the mRNA levels of 6177 S. cerevisiae ORFs. These ex-

periments measure six time series under different cell cycle synchronization methods.

Spellman et al. [28] identified 800 genes whose expression varied over the different

cell-cycle stages. For computational reason Friedman applied his algorithm on only

these 800 cell cycle genes. 702 genes over these 800 genes are not singleton genes which

they have 1163 edges. To work with these 702 genes we have faced many problems as

following:

1. Some of Friedman genes are alias for different genes, for instance ALPHA1 is alias

of HMLALPHA1(YCL066W) and MATALPHA1 (YCR040W). We do not know

which genes Friedman used. As this genes has low edge connectivity in Friedman

network, we deleted these genes from evaluation.

2http://www.cs.huji.ac.il/ nirf/GeneExpression/top800/
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2. We did not find any biological information for some of potential connected gene

in Friedman network like EXPERIM (12 edges) and PHASE (12 edges) in the

literature. Even these gene become alias for other genes, it should be mentioned

in the SGD data base, so we have to delete these genes from further comparison.

3. Some gene names used by Friedman were been become retired names by SGD

curator like HSN1 and HDR1. (A ’ Retired name ’ is a gene name that was

reserved for an ORF by a member of the yeast community, but never published.

A gene name reservation is good for one year. After this time, if SGD is unable

to determine that the gene name has been published and unable to contact the

person who made the reservation or if the submitter of the reserved gene name

requests that SGD discontinue/delete the gene name reservation, such gene names

become Retired names. SGD retains such gene names rather than deleting them

since these names have existed in the database for a significant period of time

(usually more than 2 months). When this occurs, it is documented with a note in

the Locus History Page of the relevant ORF)3.

4. Some genes were written wrongly like PST1 was wrote PTS1. It needs a lot time

and effort to filter all the gene names.

5. Friedman network contains genes which were merged to other genes. for instance,

YCL012W, YCL060C were merged to YCL014W & (YCL061C) respectively. All

edges corresponding to the removed genes were removed from the Friedman

network. For more details about merged genes see section 3.2.1.

6. Some of Friedman network genes were deleted by SGD curator like YCLX09W,

so all its corresponding edges are removed from comparison. For more details

about merged genes see section 3.2.1.

7. Finally, Friedman network contains genes not included in Spellman data like

SNR17A which is small nucleolar RNA. We do not know why Friedman included

them unless he mentioned that his network will base on Spellman cell cycle genes.

692 genes of Friedman network were passed the above filtration criteria and were

considered in our evaluation.

5.2 Comparison to Literature

During the last 5 years, interactome databases are continuously increasing. The term

interactome denotes the complex network (pathways) of intermolecular interactions
3http://www.yeastgenome.org/help/glossary.html#verified
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that wires together the vast number of genes, proteins and small molecules. Information

about the interactome are very promising to assist the GRN inference and or to validate

the obtained networks. There are two important different type of interaction [124]as

following:

• Protein-DNA interactions are those that occur between TF and their DNA binding

sites. The development of large-scale experiments such as ChIP-on-chip (chro-

matin immunoprecipitation combined with microarray technology) allows to ob-

tain such TF-DNA interactions (also called DNA binding location data) for a given

TF. Thereby, the ChIP-on-chip experiment identifies the regions of a genome that

are bound by this TF in vivo. Afterwards, this information can be used to predict

its potential gene regulatory effects (i.e. its target genes).

• Protein-protein interactions (PPIs) play a major role for intercellular signaling and

can be experimentally identified by methods such as yeast two-hybrid arrays. The

protein interaction network in S. Cerevisiae is the best-studied PPI network today,

but information for other organisms are continuously increasing too. Given the

existing data sets for yeast proteins a total of 10.000-30.000 pairwise interactions

are estimated, i.e. roughly 3-10 interactions per protein [125].

Molecular interaction information can be extracted from different sources. Pathguide [126],

a so-called metadatabase, provides an overview of more than 230 web-accessible bi-

ological pathway and network databases4. Pathguide distinguishes 8 approximate

categories based on the content of databases (see table 5.1).

The Interaction databases (table 5.1) use different identifiers to identify the same

gene (GI, SwissProt, internal identifiers, etc.) requiring the resolution of synony-

mous names/IDs across databases. So, we want to integrate molecular interactions

and other types of high-throughput data from different public databases to build bi-

ological networks automatically. For this purpose we used BioNetBuilder [51] which

is an open-source client-server Cytoscape plug-in that offers a user-friendly interface

to create biological networks integrated from several databases. The BioNetBuilder is

available as a Java Webstart, providing a platform-independent network interface to

these public databases(Figure 5.1). Figure 5.1 shows the number of interaction for the

S. Cerevisiae from [(BIND,16244);(BioGrid,99485); (DIP,17465);(IntAct; 14331);(Interolog-

ger,5395); (KEGG,5478);(MINT,11907)].

For 692 filtered genes(see section 5.2) only 635 genes have interactions from BioNet-

Builder, so the gold standard network we will compare with consists of 635 genes and

2611 edges.

4www.pathguide.org
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Table 5.1: Categories of interaction databases presented in Pathguide as of
12/2008.(modified from [124])

Category Content # resources Examples
Protein Protein pairwise interaction 93 BID BIND BioGRID
Interaction between proteins BRITE DIP
Metabolic Pathways biochemical reaction 50 KEGG, GO,

in metabolic pathway ExPASY , Reactome
Signaling Pathways molecular interactions 49 STKE, Reactome,

and chemical modifications in
regulatory pathways TRANSPATH

Transcription Factors\ transcription factor and 33 GeNet, SCPD, TFe,
Gene Regulatory genes they regulate YEASTRACT,
Networks RegulonDB
Pathway Diagrams hyperlink pathway images 27 KEGG, HPRD, SPAD
Protein Compound interactions between protein 19 DrugBank, PLD, TTD
Interactions and compounds
Genetic Interaction genetic interactions, 6 BIND, BioGRID
Networks such as epistasis
Protein Sequence diverse pathway information 12 TGDB MotifMap
Focused in relation with sequnce data

Because Bayesian network algorithms are not able to detect self edges(i.e. Is the gene reg-

ulate itself?), we have to remove all the self regulation edges, which make the Gold Stan-

dard Network (635 genes and 2194 edges).http://home.k-space.org/FADL/Downloads/PhD/RECOMB paper/comparsion methdology/gold G.txt

5.3 Network Generation

Now we applied our algorithm to these 635 Spellman genes. First, the genes were

partitioning using our biclustering toolbox (BicAT-plus) [16](section 5.3.1). Second the

biclusters were learned using GreedyHillClimbing learning algorithms to generate dif-

ferent subnetworks for each biclustering algorithms(section 5.3.2). These subnetworks

were integrated to produced the whole network per each biclustering algorithm.

The generation Matlab code with all the generated networks could be downloaded from:

http://home.k-space.org/FADL/Downloads/PhD/RECOMB paper/bolearn results/

http://home.k-space.org/FADL/Downloads/PhD/RECOMB_paper/comparsion_methdology/gold_G.txt
http://home.k-space.org/FADL/Downloads/PhD/RECOMB_paper/bolearn_results/
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Figure 5.1: Gene Regulatory Network Extracted From Interactome Databases using
Bionetbuilder Cytoscape Plug-in [51].

5.3.1 Biclustering Phase

We applied the biclutering algorithms implemented in our modified biclustering com-

parison toolbox(BicAT-plus) [16] to the Spellman experiments for these 635 genes. Ta-

ble 5.2 shows biclustering algorithm parameters setting as authors recommended in

their corresponding publications. The statistical comparison of the 683 produced bi-

clusters/clusters are shown in table 5.3.

It is important to focus on how ISA genes coverage percentile using Spellman dataset(91%)(See

Table 5.3) is larger than using Gasch dataset(25%)(See Table 3.11) for the same parameter

setting.

5.3.2 Learning Phase

In this phase, we first learn the produced biclusters/clusters from the biclustering phase

to get small overlapped networks or submodule networks. Then, we integrate these

submodule networks to get the whole network for each bicluster algorithm. We used
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Table 5.2: Parameters setting of biclustering algorithms implemented in BicAT-Plus
toolbox [16] applied to Spellman [28] cell cycle data set. for more details about these

parameters please see corresponding publication

Algorithm Parameters Parameter Description
ISA tg=2.0 Genes threshold level

tc = 2.0 condition threshold level
SN= 500 No of seeds

CC Delta=0.5 Maximum number of accepted score
Alpha=1.2 Scaling factor
M=100 Number of bicluster to be found

OPSM l = 100 Number of passed models for each iteration
BIMAX Minr=10 Minimum row size of resulting bicluster.

Minc=5 Minimum column size of resulting bicluster
M=100 Number of Bicluster to be found.
Dth= -0.0950 Discredited Threshold

K-means M=100 Number of Bicluster to be found
IN=100 Number of Iteration
RN=10 Number of replication
DM=ED Distance Metric is Euclidean Distance

HCL M=100 Number of Bicluster to be found
LM=AL Linkage Mode is Average Linkage
DM=ED Distance Metric is Euclidean Distance

Bivisu NT=0.5819 Data Noise threshold
% NR=1.57 Minimum % of rows
NC=5 Minimum number of columns
O%=25% Maximum overlap allowed

MSBE alpha = 0.4 similarity threshold
beta = 0.5 bonus similarity threshold
gamma=1.2 The threshold of the average similarity score

SAMBA MHS=100 Maximal memory allocated for hashing stage
KHS1=4 Maximal kernel size in the hashing stage
PC=100 Minimal number of responding probes per condition
KHS2=4 Minimal kernel size in the hashing stage
O%=25% Maximum overlap between two biclusters

Table 5.3: Statistical Comparison of Biclusters Produced by Applying Bicluster Al-
gorithms Implemented in BicAT-Plus [16] to Spellman [28] Cell Cycle Dataset with

Parameter Settings Shown in Table 5.2

Biclustering No of BiclustersClusters Size GeneCoverage% ConditionCoverage%
Algorithm Biclusters Min Max
ISA 9 50 x 35 155 x 37 25 97
CC 69 11 x 5 2259 x 134 100 100
OPSM 2 11 x 15 575 x 6 88.5 32.9
BiVisu 100 27 x 142 99 x 52 55 100
Kmeans 100 20 x 173 50 x 173 100 100
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GreedyHillClimbing search algorithm and BDe Scoring Function implemented in Bi-

olearn [127] at Department of Biological Sciences, Columbia University.

Table 5.4 shows the result of integration each sub-networks generated per each biclus-

ter algorithm. They differ significantly in the number of interaction edges. In the

next section we compare the performance of these network via the gold standard net-

work(section 5.2) and Friedman network(section 5.1).

The result in Table 5.4 looks unreasonable. From Table 5, Kmeans and CC covers 100%

Table 5.4: Edge Number of Networks Generated from Biclustering Algorithms Imple-
mented in BicAT-Plus [16] toolbox

Network source Number of Edges
Friedman network 947
K-means network 380
ISA network 2558
OPSM network 220
CC network 590
Bivisu network 1515
MSBE network 735
SAMBA network 1611

genes while ISA covers just 25% genes. However, Kmeans and CC networks have quite

less number of edges than ISA has 5. The explanation for this conflict that k-means and

CC produce biclusters with size equal all dataset genes. This cluster have no biological

meaning and even any existing learning algorithms ,restricted to learn with 100 genes

as maximum. So we have to neglect these large biclusters from the learning stage.

5.4 Evaluation Methodology

After we get all these networks, we need a methodology to fairly score each network

and conclude the performance of our algorithm via other algorithms and existing in-

creasing databases.

receiver operator characteristic (ROC) curve are commonly used to present results for

binary decision problems in machine learning, which show how the number of correctly

classified positive examples varies with the number of incorrectly classified negative

examples. However, when dealing with highly skewed datasets, precision-recall (PR)

curves give a more informative picture of an algorithm’s performance. PR curves have

been cited as an alternative to ROC curves for tasks with a large skew in the class

distribution [128].
5This is part of RECOMB revision on our paper
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We can consider Gold standard Network produced at section 5.2 as a space with T ele-

ments. These elements belong to one of two classes: the class of positive examples(there

is edges between two genes), with P elements, and the class of negative examples(there

is no edges between these two genes), with N elements. Clearly T=P+N. The fact that

we know the class to which each example belongs makes this space a gold-standard.

A prediction is made in the form of an ordered list of L samples taken from our gold

space. This list is ordered such that the examples at the top of the list are the ones which

we have the higher confidence that they belong to the positive class. We will assume

that the list contains TPL true positive predictions and FPL false positive predictions.

Clearly L = TPL + FPL. We now add in random order the remaining T-L samples (on

which no prediction was made) to the bottom of the original list with L examples. We

want to compute the precision and recall corresponding to the prediction that the k

(k¿L) first samples in the resulting list are positive [59].

we have to define important score terms here:

TPR(Sensitivity) = TP
TP+FN

FPR = FP
FP+TN

Recall = TP
TP+FN

Precision = TP
TP+FP

Speci f icity = TN
TN+FP

In ROC space, one plots the False Positive Rate (FPR) on the x-axis and the True Positive

Rate (TPR) on the y-axis. The FPR measures the fraction of negative examples that are

misclassified as positive (FPR = 1-specificity). The TPR or the sensitivity measures the

fraction of positive examples that are correctly labeled or (the fraction of correctly iden-

tified interactions in relation to the number of expected interactions). In PR space, one

plots Recall on the x-axis and Precision on the y-axis. Recall is the same as TPR, whereas

Precision measures that fraction of examples classified as positive that are truly positive

or (the fraction of correctly identified interactions out of all predicted interactions) [128].

Further commonly used scores is the false discovery rate (FDR = 1-precision) and the

specificity which measures the proportion of non-existing edges (number of potential

edges number of inferred edges) which are correctly identified.

Note that each of the above scores is calculated only from two numbers out of FN,

FP, TP, TN, i.e. each score is hardly informative when used alone. For instance, an

inferred fully connected network will result in a recall equal to 1, but is obviously

not biologically meaningful [87]. We used the evaluation script algorithm was used in

DREAM2 6(Figure 5.2) to compute the area under ROC curve (AUROC), and area under

6http://wiki.c2b2.columbia.edu/dream/index.php/DREAM2conf
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PR curve (AUPR). The evaluattion Matlab code were used here could be downloaded

from: http://home.k-space.org/FADL/Downloads/PhD/RECOMB paper/comparsion methdology/.

An AUROC close to 0.5 corresponds to a random forecast, AUROC ≤ 0.7 is considered

poor, AUROC) ≥ 0.8 good [87].

Figure 5.3 and Table 5.5 show the performance of the network generated from biclus-

tering algorithms via gold standard network and Friedman network.

Figure 5.2: Pseudocode of the process to Evaluate the Predictions of the Dialogue for
Reverse Engineering Assessments and Methods (DREAM2) challenges [59].

Inspection Figure 5.3 and Table 5.5 reveal that neither the generated networks from each

bicluster algorithms nor the generated network from the whole biclusters integration

perform well.

There is important note to be considered when interpreting the results of this compar-

ison. First the interactions documented are either physical or genetic, which implies

that they may not be direct interactions. The precision may be lower than the actual

http://home.k-space.org/FADL/Downloads/PhD/RECOMB_paper/comparsion_methdology/
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Figure 5.3: Performance of the Networks Generated from Corresponding Bicluster-
ing Algorithms(ALL: network produced from integrating all bicluster subnetworks
; Friedman: Friedman Network [4]; SAMBA:network generated from SAMBA [72]
biclusters; Kmeans:network generated from k-means clusters; ISA:network gener-
ated from ISA [21] biclusters; OPSM:network generated from OPSM [19] biclusters;
CC:network generated from CC [11] biclusters; Bivisu:network generated from Bivisu

biclusters [83]; CMSBE:network generated from MSBE biclusters [70]).

Table 5.5: Statistical Comparison of Networks Produced from Biclustering Algorithms
via Friedman Network and Gold Standard Network. EdgeCount: number of edges;
TP:number of true positive edges; TN: number of true negative edges; FP:number
of false negative edges; AUROC:area under ROC curve; AUPR:area under precision

recall curve

Methods EdgeCount TP FP TN FN AUROC AUPR
Gold 2194 2194 0 400396 0 1 1
ALL 5440 94 5346 395050 2100 0.5148 0.0073
SAMBA 1611 46 1565 398831 2148 0.5085 0.0072
ISA 2558 56 2502 397894 2138 0.5097 0.0067
OPSM 220 12 208 400188 2182 0.5025 0.0067
Friedman 947 22 925 399471 2172 0.5039 0.0065
CMSBE 735 20 715 399681 2174 0.5037 0.0063
K-means 380 13 367 400029 2181 0.5025 0.0061
Bivisu 1515 13 1502 398894 2181 0.5011 0.0055
CC 590 3 587 399809 2191 0.5000 0.0054
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precision since links may be missing in the interactome databases; and the recall may be

lower than the actual recall in part because some of the links reported in the interactome

databases may be indirect rather than the direct [129].

Second, some presently unsupported edges in the constructed network may find exper-

imental evidence in the future. Therefore, these unsupported edges are not necessarily

false ones [108].

For the above reasons the False Positive (FP) edges could be consider as True Positive

(TP) if it has strong evidence in the literature (gold network). for example if the in-

ference network include edge between gene1 and gene3 which does not exists in gold

network and if these two genes connected indirectly via another intermediate gene like

gene2 we can now consider the edge between gene1 and gene3 as true positive edge.

Table 5.6and figure 5.3 show the biclustering networks performance improvement after

taking in our consideration the above evaluation modification. Furthermore they show

how almost the false positive edges in these networks have an evidence in the gold

network.

Figure 5.4: ROC and PR curves of Networks Produced from Biclustering Algorithms
when False Positive Edges could be Consider as True Positive Edges if it has Strong

Evidence from the Gold Network(see the text).

Also it should be mentioned that as we expected the sparseness nature of gene regu-

latory network,make using biclustering techniques(ISA, SAMBA, Bivisu) outperform

the performance of the Friedman network. This will open the usage of biclustering

algorithms to overcome the dimensionality reduction of the GRN inference problem.

Table 5.6 column 8 shows the percentage of false positive edges per each algorithm

which could be consider as true positive (i.e have evidence in the gold standard net-

work). for example 85% of ISA false positive edges have an evidence from the gold

network.
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Table 5.6: Statistical Comparison of Networks Produced from Biclustering Algorithms
via Friedman Network and Gold Standard Network using new Evaluation Criteria

(see the text).

Methods #Edges TP FP TN FN FP to TP (FP to TP)% AUROC AUPRC
Gold 2194 2194 0 400396 0 0 XX 1.0000 1.0000
ALL 5440 94 5346 395050 2100 4623 86.48 0.9997 0.8926
ISA 2558 56 2502 397894 2138 2141 85.57 0.9996 0.8795
SAMBA 1611 46 1565 398831 2148 1340 85.62 0.8156 0.5709
Bivisu 1515 13 1502 398894 2181 1265 84.22 0.7910 0.5097
Friedman 947 22 925 399471 2172 794 85.84 0.6858 0.3316
CMSBE 735 20 715 399681 2174 653 91.33 0.6533 0.2969
CC 590 3 587 399809 2191 507 86.37 0.6161 0.2160
k-means 380 13 367 400029 2181 323 88.01 0.5765 0.1477
OPSM 220 12 208 400188 2182 190 91.35 0.5460 0.0965

It should be to note that even ISA network outperforms SAMBA network, number of

produced biclusters from SAMBA and the percentage of the genes recovered by SAMBA

are smaller than ISA(see table 5.3).

Figure 5.5 suggests the performance equality of the ISA network performance using

NormalGamma and BDe scoring function.

Figure 5.6 demonstrates the ISA network performance using SparseCandidate with

different size of the candidate sets and GreedyHillClimbing algorithms. Decreasing or

increasing the size of the candidate sets beyond 5 worse the network performance.

Figure 5.5: Performance of the ISA network using BDe (solid line) and Normal-
Gamma(dotted line) Scoring Function.



Chapter 5. Results 113

Figure 5.6: Performance of the ISA network using Greedy Hill Climbing and Sparse-
Candidate Learning Algorithm with Different Size of the Candidate Sets.

5.5 Network Analysis and Validation

There are many reasons to perform analyses on GRN, and many methods can be used.

One unique problem with transcriptomic datasets is that they are ”short and wide,”

meaning that many characteristics are measured on relatively few samples. For exam-

ple, current microarrays offer the quantitation of up to 60,000 expressed sequence tags

(ESTs) in any given sample, but current costs may limit a single experiment to 10 to 100

samples [52]. Because of this problem, these data sets are essentially underdetermined,

meaning that there are many correct ways to mathematically describe the clusters and

genetic regulatory networks contained within them. Thus, some computational valida-

tion is required so that computationally sound but biologically spurious or improbable

hypotheses are screened out.

One of the greatest methods to validate the generated network is to assess its accumu-

lated information using information published in the known biological literature.

From the discussion in the previous sections, we found that the network produced

from ISA subnetworks has significance performance comparable with Friedman net-

work(section 5.1) and biological literature(section 5.2).

Figure 5.7 shows circular layout of ISA network(570 nodes and 2324 edges) generated

by Cytoscape [130].

Figure 5.8 shows node color and size mapping using VizMapper Cytoscape plug-in [130]
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Figure 5.7: ISA Gene Regulatory Network, Generated from ISA Subnetworks.

5.5.1 Network Topology

The characterization of biological networks by means of graph-topological properties

has become very popular for gaining insight into the global network structure. In this

section we compare the topological parameters of ISA networks and gold network.

We used NetworkAnalyzer Cytocape [131] plug-in developed at Max Planck center.

There are many important topological parameters, like: number of nodes, edges, and

connected components, the network diameter, radius, density, centralization, hetero-

geneity, clustering coefficient, and the characteristic path length. The definition and

biologically importance of these parameters could be found in 7 and beyond this re-

search. Closeness centrality is a measure of how fast information spreads from a given

node to other reachable nodes in the network
7http://med.bioinf.mpi-inf.mpg.de/netanalyzer/help/2.6.1/index.html
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Figure 5.8: ISA network: Gene Degree(number of edges in and out)Mapped as Node
Size and Gene Expression Values Mapped as Node Color with Adjacent Color Bar.

we can divided these parameters on to:

• Parameters related to shortest paths The length of a path is the number of edges

forming it. There may be multiple paths connecting two given nodes. The

shortest path length, also called distance, between two nodes n and m is denoted

by L(n,m). The network diameter is the largest distance between two nodes. If

a network is disconnected, its diameter is the maximum of all diameters of its

connected components. The diameter can also be described as the maximum

node eccentricity (Node Eccentricity= maximum shortest path between node i

and other nodes in network ). The network radius, on the other hand, is the

minimum among the non-zero eccentricites of the nodes in the network. The

average shortest path length, also known as the characteristic path length, gives

the expected distance between two connected nodes. The closeness centrality

Cc(n) of a node n is defined as the reciprocal of the average shortest path length.
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Closeness centrality is a measure of how fast information spreads from a given

node to other reachable nodes in the network

• Parameters related to neighborhood The neighborhood of a given node n is the

set of its neighbors. The connectivity of n, denoted by kn, is the size of its neigh-

borhood. The average number of neighbors indicates the average connectivity of

a node in the network. A normalized version of this parameter is the network

density. The density is a value between 0 and 1. It shows how densely the network

is populated with edges (self-loops and duplicated edges are ignored). A network

which contains no edges and solely isolated nodes has a density of 0. In contrast,

the density of a clique is 1.

Table 5.7 shows the topological parameters of ISA network via gold network. It confirm

the credibility of our algorithm.

Table 5.7: Topological Parameters of ISA Network and Gold Network using Network-
Analyzer [131]

Parameters Gold Standard ISA Network
Network Diameter 8 9
Network Density 0.011 0.012
Avg no of neighbors 6.91 6.933

5.5.2 Finding Network Module

It was observed that highly interconnected, or dense, regions of the network may rep-

resent complexes [132]. One of the greatest methods to validate network is by assess its

accumulated information with the known biological literature. Clustering algorithm

was used to identify molecular complexes or modules in a large protein interaction net-

work through network connectivity [133]. A network module is a group of nodes in the

network that work together to execute some common function. We used in this section

the MCODE Cytoscape plug-in [133] ”Molecular Complex Detection” developed by

Gary Bader at the University of Toronto. MCODE is a novel graph theoretic clustering

algorithm, that detects densely connected regions in large protein-protein interaction

networks that may represent molecular complexes.it is based on vertex weighting by

local neighborhood density and outward traversal from a locally dense seed protein to

isolate the dense regions according to given parameters.

Running MCODE on ISA network recovered 39 modules. Figure 5.9 shows the highly

scores modules with the number of nodes, edges and the topology of each discovered
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modules.

A significance number of modules with high score and small number of nodes and

edges. To validate the significance of the recovered modules, the nodes of these mod-

ules are a portion of a complex, then there should be some process in which they all

operate. Thus, if we explore Gene Ontology (GO) term enrichment using any of func-

tional enrichment tools like BINGO [78], we should see some biological process with

significant enrichment for these nodes [130].

Figure 5.10 demonstrate module with rank 1 functional enrichment analysis using

BINGO[78], which indicates that four gene of this module share three related biological

process which are Chromatin assembly or disassembly,DNA Packaging and Establish-

ment and/or Maintenance of Chromatin Architecture (see Figure 5.10).

Figure 5.9: The Putative Complexes Through Network Connectivity from ISA Network
using MCODE [133]. Module Credibility is Increased as the Increasing of the Module

Score.

Lastly, our approach showed improvement of network accuracy. This is because of the

sparseness nature of real gene regulatory network and also the noise decrement of gene
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Figure 5.10: Biological Process Function Category of Highly Ranked Module Discov-
ered from ISA Network(See Figure 5.9) .

expression data within each bicluster. Also Bayesian network allows to deal with the

noises that are inherent in this data; and to model the hidden variable in the data.
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Conclusion and Future Work

Understanding gene interactions in complex living systems can be seen as the ultimate

goal of the systems biology revolution. Hence, to fully understand disease ontology

and to reduce the cost of drug development gene regulatory network (GRN) have to be

constructed. During the last decade, many GRN inference algorithms that are base on

genome-wide data have been developed to unravel the complexity of gene regulation.

Transcriptomic data measured by genome-wide DNA microarrays are traditionally

used for GRN modelling. This is because RNA molecules are easily accessible in com-

parison to proteins and metabolites. One of the major problems with microarrays is

that a dataset consists of relatively few time points with respect to a large number of

genes. The dimensionality and high degree of noise are interesting problems in GRN

modelling. The most common and important design rule for modelling gene networks

is that their topology should be sparse. This means that each gene is regulated by only

a small number of other genes.

In this thesis a new gene regulatory network (GRN) construction system from microar-

ray large dataset and prior biological information was proposed. As we expected the

sparseness nature of GRN make biclustering techniques to show significance results

compared to Friedman network. In this thesis we show the impact of using bicluster-

ing algorithms in GRN construction. A sophisticated filtration procedure(data filtra-

tion,missing values imputation, normilization, discretization) were used to reduce the

number of expression profiles to some subset that contains the most significant genes.

Also, we used a novel denoising method (Spectral Subtraction) which accurately may

account for the low SNR and able to suppresses random noise or removes some of

its components. It is clear from comparison SS with previous denoising methods like

Multi-Wavelet that the spectral subtraction denosing method outperforms the Multi-

Wavelet method and offering a substantial improvement of the SNR.

119
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Also, The Biclustering comparison toolbox (BicAT-Plus) implemented in this thesis con-

firms that the bicluster and cluster algorithms can be considered as integrated modules;

there is no certain algorithm that can recover all the interesting patterns, what algorithm

A success to recover in certain data sets, Algorithm B might fail, and vice verse. we can

identify the highly enriched bi/clusters of the whole compared algorithms, Integrating

them to solve the dimensionality reduction problem of the gene regulatory network

construction.

Moreover, the study in this thesis confirms the ability of the Bayesian Networks(BNs)

structure algorithms to capture the structure of the real gene regulatory network. BNs

allow to deal with the noises that are inherent in experimental measurements; and to

model the hidden variable in the data.

Surprisingly, the generated networks from this study shows sufficient accuracy when

comparing it via previous works and existing biological databases like BIOGRIDE.

Also, network validation of the generated network using popular vaildation algorithms

like MCODE and NetworkAnalyzer adds more credibility on our algorithm. The data

used in vaildation step not used for modelling. On other hand putative modules were

recovered from our method, which suggest more analysis to recover and test unknown

complex module.

As the consequence of development and emergence of new high throughput data tech-

nology, therefore it seems overly ambitious to imagine that within the next decade we

will be able to generate robust predictive models that are able to accurately predict

the interactions of thousands or millions of heterogeneous molecules and the ways in

which they modulate the transcription of RNA and the translation of messenger RNA

(mRNA) into protein and the subsequent functions of these proteins [52].

Several areas of work for future research are indicated:

1. Enriching the BicAT-Plus with more comparative methodologies beside GO. For

example, KEGG and promoter analysis by identifying the transcription factors of

the bi/clustered genes.

2. Extending the BicAT-plus to provide users with multiple export options for the

interested enriched bi/clusters.

3. Embeding the BicAT-plus as a plug-in in the cytoscape platform which is an open

source bioinformatics software for visualizing molecular interaction networks

and biological pathways and integrating these networks with annotations, gene

expression profiles and other state data. Thus, very promising challenge is to get

use of the highly enriched bi/clusters identified by the BicAT-Plus in solving these

integrated networks in the cytoscape.

4. incorporating the learning stage to the BicAT-Plus.
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5. Integration more Biological data such as ChIP-chip Genome localization data

and Protein similarity data. The need for large numbers of data points, and

many different conditions, implies that successful modeling efforts will proba-

bly have to use data from different sources like from different high-throughput

data sources, mainly microarray based gene expression analysis, promoter se-

quence information, Chromatin immunoprecipitation (ChIP) and protein-protein

interaction assays.

6. Using New emerging learning algorithms Like evolutionary algorithms.

7. Using signal processing techniques to Remove non informative misleading profile

genes. The tools to extract knowledge from data collected from all of these types

of experiments are still in their infancy, and novel tools are still needed to sift

through the enormous databases of simultaneous RNA expression to find the true

nuggets of related function.
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