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ABSTRACT 

 
 

Magnetic resonance imaging (MRI) has become the leading imaging in the past 

ten years. This is mainly due to its ability to provide high level of resolution at a variety of 

different contrasts that reveal even the slightest difference between tissues accurately. 

Moreover, its ability to image functions as well as anatomy adds a new dimension to its use 

that is unique among other modalities. The acquisition speed of magnetic resonance 

imaging (MRI) is an important issue.  

 

Increasing the acquisition speed shortens the total patient examination time; it 

reduces motion artifacts and increases the frame rate of dynamic MRI. Parallel MRI is a 

way to use multiple receiver coils with distinct spatial sensitivities to increase the MRI 

acquisition speed. The acquisition is speeded up by under sampling the k-space in the 

phase-encoding direction. The resulting data loss and consequent aliasing is compensated 

by the use of additional information obtained from several receiver coils.  

 

In this thesis we explore a new methods for improving the current Parallel MRI 

techniques are studied. Comparison between conventional rapid MRI and PMRI is 

reviewed. A new method that improves the phase of the reconstructed images as well as 

produce a more uniform sensitivity images. Studying the factors that affect Parallel MRI 

performance and introduce analysis to describe the theoretical base for the widely current 

used algorithm the Generalized Auto calibrating Partially Parallel Acquisition (GRAPPA). 

And finally we introduce an innovative method that use the Parallel MRI combined with 

the Neural Network for Gridding the non-Cartesian samples within the k-space to 

overcome the current limitations associated with the currently used methods.  

 

The proposed methodologies are implemented to reconstruct images from a 

Numerical phantom as well as real phantom data. 
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CHAPTER 1 

MR Introduction 

1.1 Introduction 

Magnetic resonance imaging (MRI) is considered to be the most important 

development in medical diagnosis since the discovery of x-ray 100 years ago. It has 

become one of the most powerful tools of radiology, now being applied to virtually every 

part of the body [1]. 

Nuclear magnetic resonance (NMR) is a chemical analytical technique that has been used 

for over 50 years. It is the basis for MRI. (The word nuclear had the false connotation of the 

use of nuclear material; thus, it was discarded from the MR lexicon and “NMR” was 

replaced by the phrase magnetic resonance imaging [MRI].) 

One of the pioneers of NMR theory was Felix Bloch of Stanford University, who won the 

Nobel Prize in 1946 for his theories. He theorized that any spinning charged particle (like 

hydrogen nucleus) creates an electromagnetic field. The magnetic component of this field 

causes certain nuclei to act like a bar magnet. Experimental verification for the Bloch 

equations did not come until the early 1950s. By 1960, several companies began producing 

analytical instruments called NMR spectrometers, During the 1960s and 1970s; NMR 

spectroscopy became widely used in academic and industrial researches. In the late 1960s, 
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engineer-physician Raymond Damadian worked with NMR spectroscopy. He showed that 

malignant tissue has a different NMR spectrum from that of normal tissue. 

The phenomenon of nuclear magnetic resonance was developed as an imaging technique in 

the early 1970’s. Its non-ionizing characteristic makes it ideal for detailed study of 

anatomical structures. Present techniques in MRI can display: 

 Chemical Differences between issues as change in gray scale image (Tumor 

pathology). 

 Coronaries & arteries and Vessels either in thin slices or 3D-images. 

 Axial, Coronal, Saggital and Oblique images from a complete 

3-Dimensional voxel data set (Head). 

 Long slices, particularly in saggital view (spine). 

1.1.1 Why MRI? 

MRI has a number of features that makes it superior to any other imaging 

modality in certain applications. These features include:  

 Spatial and Contrast Resolution: MRI has an optimum combination of both. 

Spatial resolution refers to the ability of a process to identify small, dense 

objects such as metal fragments and micro calcifications. Contrast 

resolution  allows  visualization  of  low-density  objects  with  similar  soft  

tissue characteristic. 
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 Multiplanar Imaging: MRI is able to obtain direct transverse, saggital, 

coronal, and oblique plane images. 

 Magnetic Resonance Spectroscopy & Functional MR.. 

1.1.2 Overview of MRI physics  

In MRI, low frequency radio waves (RF pulse) penetrate the tissue and reflect back 

off magnetized spins within the object. The patient first is placed in a magnetic field to 

establish a bulk magnetization; then a radio frequency pulse is applied to generate a 

detectable signal and the pulse is terminated allowing relaxation to occur and signal to be 

recorded [2]. 

Nuclear magnetic resonance can occur with many elements that have odd number of 

protons so there always existing one proton that is unpaired. These elements include 1H, 

14N, 31P, 13C, and 23Na. Hydrogen nucleus is used because it is the most abundant in the 

human body and it yields the strongest MR signal. That unpaired proton is pointing either 

north or south and gives a net magnetic field or a “magnetic dipole moment” MDM [1]. 

When that proton is placed in a large magnetic field B0, it begins to “wobble” or precess as 

shown in Fig. 1.1. 

 

                                        

B
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Figure 1-1. A proton rotates about it is own axis and also about the axis of B0. 

 

The precession rate ( 0) of the proton around the external magnetic field B0 is given by 

Larmor Equation: 

 *o o  

Where 0 = angular precessional frequency of proton,  = gyro magnetic ratio, B0 = 

strength of external magnetic field. 

Initially all spins are lined up along the axis of the external magnetic field B0 about which 

they are precessing. In a 3-dimensional (x, y, z) coordinate system, the direction of the 

external magnetic field always points to the z direction. Then an RF pulse (electromagnetic 

wave that results from brief application of an alternating electric current) is applied along 

the x-axis perpendicular to the magnetization vector M0,  i.e.  the axis of B0. The protons 

will begin to precess about the x-axis if the frequency of RF pulse matches 0 (i.e. satisfies 

Larmor Equation so resonance occurs). Which means that the vector M0 (the net 

magnetization vector at the direction of the protons aligned along the external magnetic 
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field) begins to precess about the x-axis in the z-y plane as shown in Fig. 1.2. Depending on 

the strength of the RF pulse B1, and its duration , the flip angle is determined.   

                                               * *1  

 

 

Figure.1-2. the magnetization vector is partially flipped towards the x-y plane 

 

Relaxation is the process that occurs after terminating the RF pulse, in which the physical 

changes  that  were  caused  by  the  RF  pulse  return  to  the  state  they  were  in  prior  to  the  

application of the pulse [1]. Re-growth of Mz along the z-axis is known as “T1 relaxation”, 

and decay of Mx in the x-y plane is known as “T2 relaxation”. 

After applying 90° pulse (or any pulse sequence), another 90° pulse (or any pulse 

sequence) will be applied. The time between applications is called TR (The Repetition 
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Time). After applying RF, short period of time is to be waited before taking the 

measurement. This period of time is known as TE (Echo Time).  

Three types of MR images can be produced depending on TR and TE: 

 T1 weighted image, short TE and short TR are used. 

 T2 weighted image, long TE and long TR are used. 

 Spin density image, short TE and long TR are used. 

 

1.1.3 Image Construction 

The signals received from a patient contain information about the entire part of the 

patient  being  imaged.  They  do  not  have  any  particular  spatial  information.  That  is,  the  

specific origin point of each component of the signal cannot be determined. This is the 

function of gradients.  One gradient is required in each of the x, y, and z directions to obtain 

spatial information in that direction. Depending on their function, these gradients are 

called: 

1. The slice-select gradient; 

2. The read-out or frequency-encoding gradient; and 

3. The phase-encoding gradient. 
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Depending on their orientation axis they are called Gx, Gy, and Gz. Depending on the slice 

orientation (axial, saggital, or coronal). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-3. Slice Selection 

A gradient is simply a magnetic field that changes from point-to-point usually in a linear 

fashion. The change in the magnetic field strength along the z-axis is called z gradient (Gz). 

For an axial slice in a super-conducting magnet, it is called slice select gradient as shown in 

 

I  

B  0  

B  1 

Position, z  

 Center  Frequency
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Fig.  1.3.  After  selecting  a  slice,  to  get  spatial  information  in  the  x-direction  of  the  slice  

another gradient is applied (Gx) during the time the echo is received i.e. during read-out. In 

addition another gradient is applied (Gy) in the y-direction. So the protons in each pixel will 

have a distinct frequency and a distinct phase, which are unique and encode for the x and y 

coordinates for that pixel. 

 

 

 

  

 Figure.1-4. Summary of a spin echo pulse sequence and Application of Gx, Gy, and Gz. 
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These Gx, Gy, and Gz are applied in a specific way depending on the pulse sequence 

used. One of the most frequently used is the spin echo (SE) pulse sequence as shown in fig. 

1.4. This sequence eliminates the effect of magnetic field inhomogeneity by an additional 

refocusing or rephrasing 180° RF pulse [1].  

Each received echo forms a line of the Data Space, “the analog version of k-space” 

as shown in fig. 1.5. After collecting the whole k-space, the MR image is formed by taking 

the Fourier transform of that k-space as shown in fig. 1.6. 

Figure 1-5. Data Space that is the analog version of k-space  
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Figure 1-6. K-Space, the Fourier Transform of Image 

 
1.1.4 Inversion Recovery sequences  

The spins are inverted by applying a 180° pulse. This means that they relax during 

inversion  time  TI.  If  the  90°  excitation  pulse  is  applied  at  the  exact  moment  when  the  

relaxation curve of a T1-value is at zero, the signal of this tissue is suppressed. This effect 

is of clinical relevance, in particular for fat suppression which requires a short TI 

(approximately 160 ms for 1.5 Tesla). The STIR method (Short TI Inversion Recovery) 

provides for effective fat suppression. Spin preparation not only eliminates the signal from 

fat, it also adds inverted T1 contrast to the image. Tissue with a long T1 appears brighter 

than tissue with a short T1. 

1.1.5 Fast imaging with Turbo FLASH  

Freezing physiological movement or performing dynamic perfusion series after 

injecting contrast agent, imaging in cine technique, and measurements of the abdomen and 

heart  with a single breath hold: Turbo FLASH can do all  that.  Measurement times have 

been reduced to between a few hundredths of milliseconds and a few seconds. Even 

T1-weighted 3-D data sets with high resolution can be created within a short period of 

time. Motion artifacts are significantly reduced.  

Turbo FLASH sequences comprise two phases; the preparation phase determines image 

contrast. Proton density contrast is produced through short repetition times and a small flip 

angle. A different type of image contrast is produced when other RF pulses are selected 
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prior to the acquisition phase. The entire raw data matrix is measured in a single step using 

an ultra fast gradient-echo sequence. The pulse interval in other gradient-echo sequences, 

the repetition time—is generally shorter than 10 ms. 128 lines are measured in 

approximately  1  second;  therefore  it  is  not  useful  to  change  this  time.  TR  is  therefore  

duration of a slice including the inversion pulse. 

 

1.1.6 Figure.1-7 Turbo flash pulse sequence Partial Fourier Acquisitions 

Partial Fourier imaging refers to MR acquisitions in which Fourier space is 

sampled asymmetrically around its origin. The missing data are either simply replaced by 

zeros, or they are calculated during the reconstruction process from the acquired data. The 

most commonly, data sampling in MR imaging uses a uniform sampling on to grid points 

Fourier. As the total imaging time is determined by the product of the number of 

phase-encoding steps and the repetition time, TR. The imaging time required to sample a 

2D image (a) fully can be reduced by reducing the number of acquired phase encoding, (b). 

Alternatively, the minimum TR can be reduced by the acquisition of a partial echo (c) also 
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referred to as an asymmetric or fractional echo, which also reduces flow-induced artifacts. 

It is possible to combine both partial phase encoding and partial echo acquisition to further 

minimize imaging time  

Some clinical applications require the preservation of the phase information throughout the 

reconstruction  process,  such  as  phase  contrast  imaging  for  velocity  encoding,  Dixon  

techniques  for  the  separation  of  fat  and  water,  and  MR  spectroscopy.  If  an  MR  image  

would consist of real components only, then it could be represented by half of its Fourier 

components  and,  thus,  the  acquisition  time could  be  cut  in  half.  In  this  case,  the  image  

would have no phase terms, and one half of the Fourier coefficients could be synthesized 

by the complex conjugate of the other half of Fourier space. This property is also called 

Hermitian symmetry. However, in practice, MR images do have phase terms induced by 

susceptibility effects at tissue boundaries, in homogeneities in the magnetic field, phase 

effects from flow and motion, eddy currents, data acquisition timing, and other sources as 

shown in Fig.1.8. Therefore, the acquisition of only half the k-space data with a 

reconstruction by conjugate symmetry or other means fails in practice. Instead, several 

algorithms have been developed to sample slightly more than half of k-space for a better 

phase estimate from these low spatial frequencies [3]. 
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Figure 1.8 Partial K-Space Acquisitions 
 

 In the simplest approach, the missing k-space data are substituted by zeros prior to a 

standard image reconstruction. This zero-filling reduces the spatial resolution compared to 

a full acquisition and causes Gibbs ringing at sharp edges. However, the phase information 

of the image is preserved within the limits of the spatial resolution defined by the portion of 

k-space  sampled  on  both  sides  of  the  origin.  More  advanced  algorithms,  synthesize  the  

missing  data  and  incorporate  phase  corrections  based  on  the  symmetrically  sampled  

low-resolution data strip around the origin. They also introduce merging filters for 

smoother transitions from un-sampled to sampled data; thereby reducing ringing 

artifacts[3].Within the limits of the accuracy of the phase estimate from the symmetrically 

sampled data portion, the Margosian and homodyne reconstructions[4] provide a spatial 
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resolution identical to the fully sampled data set. Compared to a full acquisition, the SNR is 

decreased because the total acquisition time has been reduced. This type of reconstruction 

leads to a loss of phase information and cannot be used for acquisitions that require a phase 

representation of the image data. 

 However, there are also residual errors in the homodyne reconstruction in the regions 

where the phase estimate from the symmetrically sampled data does not sufficiently 

describe the actual phase of the phantom. Alternatively, iterative methods [5] have been 

suggested, which potentially provide better phase estimates at regions with rapidly 

changing phase such as tissue boundaries with high susceptibilities. Additional imaging 

time savings can be accomplished with partial Fourier acquisitions in more than one 

dimension, e.g., in both phase-encoding directions in 3D imaging or with a combined 

fractional echo acquisition and partial Fourier sampling in the phase encoding direction. 

However, the missing data cannot be recreated with the 1D partial Fourier reconstruction 

methods discussed above, since only one quarter of k-space is properly sampled. Some 

imaging protocols offer double or even triple partial Fourier acquisitions combined with 

zero-filling of the missing data.  

While the large time savings of such acquisitions are tempting and the image quality is 

usually pleasing, important diagnostic information can be obscured when not properly 

acquiring or synthesizing k-space data[5] .recently proposed an iterative solution that can 

properly synthesize data for such acquisition strategies, though these iterative solutions are 

not used on clinical scanners. 
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1.1.7 Echo Planar Imaging (EPI) 

EPI was used for real-time cardiac imaging in 1987 [1] bringing down the image 

scan time to 40msec with a resolution of 4mm. TR as seen earlier,  is  time between two 

acquisitions. This pulse sequence aims at reducing the time elapsed between two 

simultaneous acquisitions. The pulse sequence and the k-space coverage for EPI are shown 

in Figure 2-1. Improvements such as segmented or interleaved EPI [3] have been 

developed to improve the resolution to 2.6mm for 110msec of scan time. However, an EPI 

sequence is extremely difficult to implement practically. It is limited by the current 

hardware and the gradient switching speed. Some of the disadvantages of EPI are   

1. Gradient systems: It is hard to get the correct gradient rise times for rapid switching. 

2. Eddy currents: The gradient switching generates eddy currents in the MR hardware 

system and show up as artifacts in the image in the form of bright spots.  

3. Field in homogeneity: Any spurious gradients generated due to the in homogeneities in 

the B0 cause artifacts in the resultant image. 

4. Chemical shift: This is the shift in the resonance frequency of the proton in two different 

chemical environments. For instance, the hydrogen protons in water and fat show a 
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difference of around 3ppm due to the different molecules they are surrounded by at 1Tesla. 

This effect becomes more pronounced with higher gradients. 

 

 

1.1.8 Fast Spin Echo (FSE) 

Fast Spin Echo is another pulse sequence used to facilitate rapid imaging. This 

sequence collects more lines per echo unlike the convention where only one line is 

collected for every RF excitation. Out of N k-space lines to be collected, if M lines are 

scanned per echo then the total acquisition time is reduced by N/M. The M lines collected 

per excitation are selected far away from one another so that their signals do not mix. The 

pulse sequence and the coverage are as shown in Fig.2-3. FSE has the following 

drawbacks: 

1. Excess RF power: For acquiring multiple lines, multiple 180o  pulses have to be applied 

causing a lot of RF power to be accumulated on the subject being imaged. The 

magnetization starts saturating and the signal strength decreases.  

2. Different TE problem: Since the M lines are acquired at different times, each line in 

reality corresponds to a line from an image acquired at a different TE. The reconstructed 

image therefore corresponds to an approximate TE and may cause blurring. 
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3. T2 decay: As the phase encoding gradient applied for collection of each of the M lines is 

after considerable time gap, the T2 decay effect becomes prominent resulting in a blurring. 

     

 

 

 

(a) 
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(b) 

Figure 1-9: (a)The FSE pulse sequence, and (b) :the FSE k-space coverage  (Figure modified from [4]). 

 

1.2. MRI Artifacts 

Artifacts refer to the appearance of something on the image, which does not 

represent or correlate with anything real in the volume of tissue being imaged. It is 

important to have the tools to eliminate or, at least, minimize them. These artifacts can be 

classified as follows [1, 2, 3]: 

1.2.1. Magnetic and RF Field Distortion Artifacts 

A. System Related 

1. Primary static magnetic field:  



 xxviii 
 

The primary static magnetic field can never maintain perfect stability and may vary 

regionally from day to day.  

2. Magnetic field gradient inhomogeneity. 

3. RF coil inhomogeneity. 

4. Gradient coil switching/timing accuracy. 

Each of the components used to transmit and receive RF signals and manipulate the 

magnetic field gradients can do so with limited consistency. The images produced by 

surface coils and magnetic gradient imaging techniques (GE) are especially sensitive to 

magnetic field in homogeneities.  

 

 

B. Patient Related 

1.  Ferromagnetic materials:  

 Small metallic objects such as buttons, snaps, zippers, or batteries produce 

distortion. The typical ferromagnetic material artifact has a partial or complete loss of 

signal at the site of the metal. Such metal can distort the local magnetic field sufficiently so 

that the Larmor frequency for local spins is outside the frequency range of the imager. 

Furthermore, metal contain no hydrogen; the result is signal void at that location.    
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2. Body shape and conductivity:  

 The patient’s shape, electrical conductivity, and filling of the radio frequency (RF) 

coil all become factors in creating inhomogeneity of the primary static field and the 

transmitted RF pulse.  

3. Extension of body outside magnetic field:  

Extension of a body part outside the area of maximum field homogeneity will 

frequently cause a metallic-like artifact at the edge of this area. This curvilinear artifact 

conforms to the shape of the magnetic field at the edges and may have a characteristic 

pattern for an individual magnet system. 

4. Chemical shifts:  

Chemical-shift artifacts are present wherever contiguous tissues have considerably 

different molecular    organization. The artifact is seen as a bright rim of signal at one 

interface and a dark rim at the opposite side of the particular organ, oriented in the 

frequency-encoding direction. The most prominent examples seen are at interfaces of fat 

and the other body tissues. 

1.2.2. Reconstruction Artifacts 

 A. System Related 

1. Truncation:  
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           The truncation or “ringing” artifact appears as multiple, well-defined curved lines 

regularly conforming to the anatomic boundary. The truncation artifact is more 

pronounced when the number of phase-encoding acquisitions is small and the 

reconstruction matrix is asymmetric. It occurs in areas where there is a great difference in 

signal intensity, such as interfaces of fat and air or fat and cortical bone. 

2. Quadrature detection:  

          A zero line or zipper artifact is caused by RF feed through from the RF transmitter 

along the frequency-encoding    direction at the central or reference frequency of the 

imaging sequence. The result is a segmented line extending across the middle of the field 

of view in the frequency-encoding direction and having a zipper-like appearance.  

B.  Patient Related 

1. Aliasing (wraparound): 

 The Aliasing artifact  is  one of the most commonly encountered of this group. It  

occurs when portion of the patient’s body are outside the field of view but within the area 

of RF excitation. When hydrogen nuclei outside the area of interest are excited, the signal 

they return is interpreted to have originated from within the imaging field of view. It is then 

projected over the real portion of the image on the opposite side of its actual location.     

 

 



 xxxi 
 

2. Partial volume averaging:  

Partial volume averaging results whenever the particular structure of interest is 

contained  within  two  contiguous  slices.  The  use  of  thin  slices  reduces  this  artifact.  

However, thin slices acquisition need more time. Furthermore the adequacy of the 

manufacturer’s magnetic gradient coils may not be equal to the task of precisely defining 

such thin slices.  
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1.3 Thesis Objective 

Magnetic Resonance Imaging (MRI) is a relatively new technique for medical 

imaging. MRI is a non-invasive technique, it offers various contrast methods and it 

produces no radiation. The disadvantage is the high utilization and acquisition cost. The 

device also needs to be situated in a radio-waves prove room. However, the most important 

weakness of MRI is acquisition time. The prolonged acquisition process is unpleasant for 

patients, it is source of motion artifacts and it simply limits the amount of data that can be 

measured. Applications such as real-time cardiac imaging, functional brain imaging, 

contrast enhanced MRI require fast scan. The reason why acquisition time is so long is that 

MRI is performed in a strictly sequential fashion using magnetic gradients to spatially 

encode the signal position. The bottleneck of the acquisition time is the time that takes to 

acquire one line in k-space in phase-encoding direction. There are several techniques 

currently in use that increase the speed of the acquisition in phase encoding direction. It is 

done by improving the magnitude and the switching rate of the magnetic gradient fields. 

However, there are physical limits that could not be exceeded. 

Besides the image contrast, imaging speed is probably the most important consideration in 

clinical magnetic resonance imaging (MRI). Unfortunately, current MRI scanners already 

operate at the limits of potential imaging speed because of the technical and physiologic 

problems associated with rapidly switched magnetic field gradients. With the appearance 

of Parallel MRI (PMRI), a decrease in acquisition time can be achieved without the need of 

further increased gradient performance. PMRI works by taking advantage of spatial 
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sensitivity information inherent in an array of multiple receiver surface coils to partially 

replace time-consuming spatial encoding, which is normally performed by switching 

magnetic field gradients. In this way, only a fraction of phase-encoding steps have to be 

acquired, directly resulting in an accelerated image acquisition while maintaining full 

spatial resolution and image contrast. Besides increased temporal resolution at a given 

spatial resolution, the time savings due to PMRI can also be used to improve the spatial 

resolution in a given imaging time. Furthermore, PMRI can diminish susceptibility-caused 

artifacts by reducing the echo train length of single- and multi-shot pulse sequences. Over 

the last 10 years, great progress in the development of PMRI methods has taken place, 

thereby producing a multitude of different and somewhat related parallel imaging 

reconstruction techniques and strategies. Currently, the most well known are SMASH, 

SENSE, and GRAPPA. However, various other techniques, such as AUTO-SMASH, VD 

AUTO-SMASH, Regularized SENSE, PILS, and SPACE RIP have also been proposed. 

All these techniques require additional coil sensitivity information to eliminate the effect 

of under sampling the k-space. This sensitivity information can be derived either once 

during the patient setup by means of a pre-scan or by means of a few additionally acquired 

k-space lines for every subsequent PMRI experiment (auto-calibration), or some 

combination of the two.  

In this thesis, we will explore new methods for the acquisition and econstruction of MRI 

data in order to improve the final reconstructed image. The first problem we will address is 

the shading artifact which results when combining images from different coils with 

different coil sensitivities. This will be related to the conventional sum of squares 
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reconstruction, wherein the phase information is also lost.  We will develop a method that 

will produce complex images and at the same time will show more uniform sensitivity (less 

shading) over the entire field of view.  

We also introduced an explanation that can describe the theoretical and basic principles for 

the most used parallel imaging algorithm into the k-space, GRAPPA. That will lead to a 

new coil-specific variable kernel that can be used for reconstruction based on coil to coil 

interaction within the field of view.  

Finally we show the potential of the parallel imaging in other applications like gridding, 

where we describe a new technique that combines parallel imaging with the neural network 

technique to grid non-Cartesian data acquired by an array of coils. We will compare the 

results to current techniques.  

All methods developed in this dissertation will be developed theoretically and tested on 

both numerical and real data phantoms. 
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CHAPTER 2 

Parallel Magnetic Resonance Imaging  

 

In  this  chapter  we  will  review  the  basic  principles  of  the  Parallel  magnetic  resonance  

imaging techniques, demonstrating the mathematical principles, different techniques, 

The requirements, advantage and the disadvantage   
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2.1. Basic Concept 

Unlike a conventional MRI scanner, parallel MRI requires an array of receivers to 

collect data simultaneously. Thus each coil is only locally sensitive as shown in Fig.2.1. In 

other words, with a receiver placed near a subject, the signal contributed by the subject to 

the receiver varies according to the relative position of the subject from the receiver. Thus, 

though every receiver collects the same k-space data, each one contains different 

information about the image. 

In parallel MRI, data collected by each receiver element in k-space is subsampled data. 

Therefore, individual aliased images are obtained for every coil. These images are either 

unfolded in the image domain to yield the final image or the missed k-space lines are 

reconstructed using a priori information in the form of the spatially varying coil sensitivity 

distribution. 
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Figure 2.1 A: Body coil for conventional MRI scan, B: Coverage of body coil, C: Array of receivers for 

parallel MRI, D: Coverage of the array, each acquired a fraction of the total image. [6] 

 

Consider for instance, two coils instead of the regular volume coil with sensitivities 

as shown in Fig 2-2. Then each coil acquires only half of the image since it receives strong 

signal from areas it is closest to and low or no signal from points away from it.  

This effectively reduces the coil field of view (FOV) to half that of the image. If the 

individual coil data now were subsampled in k-space by a factor of 2, two halves of the 

image  can  be  obtained  simultaneously  from  the  two  coils.  Once  the  two  images  are  

appropriately reconstructed after data acquisition, they can be combined to get the entire 

image. Various algorithms have been developed for correct image reconstruction and can 

be classified [7] as                                                                                                                                                                                                                                                                     

 Image domain based reconstruction: Reconstruction is done by unfolding every image 

using  the  coil  maps.  For  e.g.,  SENSitivity  Encoding  (SENSE)  [9],  partially  Parallel  

Imaging with Localized Sensitivities (PILS) [9]. 

 K-space based method: Reconstruction is done by regenerating the missed k-space 

lines either for the ideal image or for individual coil images. For e.g.  SiMultaneous 

Acquisition of Spatial Harmonics SMASH)[10] AUTOcalibrating SMASH 

(AUTO-SMASH) [11], Variable density AUTO-SMASH (VD-AUTOSMASH) [12], 

GeneRalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) [13]. 
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 Hybrid reconstruction: Reconstruction is done partly in the image domain and partly in 

k-space. For e.g., Sensitivity Profiles from an Array of Coils for Encoding  and 

Reconstruction In Parallel (SPACE RIP) [14]. 

          

Figure 2-2 Basic concept of parallel MRI [7]. 

 

2.2. Sensitivity Encoding (SENSE) 

To date, the most widespread used parallel MRI technique is SENSE, which is 

offered by many companies in slightly modified implementations: Philips (SENSE), 

Siemens (mSENSE) and GRAPPA, General Electric (ASSET), and Toshiba (SPEEDER). 

Because of the broad availability of SENSE, this technique has become the most used 

parallel imaging method in the clinical routine. Many clinical applications already benefit 

from the enhanced image acquisition capabilities of SENSE.  
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For example, in cardiac imaging, the scan time reduction due to SENSE relaxes the 

requirements for breath-hold studies. Optionally, the gain in scan time can be used to 

improve the spatial resolution. Furthermore, because of the reduced imaging time, 

real-time cardiac imaging without ECG triggering or breath-holding can be realized. 

Another example for the application of SENSE is contrast enhanced magnetic resonance 

angiography (CE-MRA).  The  most  critical  parameter  for  CE-MRA is  the  imaging  time 

because the total acquisition has to be completed during the first pass of the contrast agent 

and therefore the spatial resolution of CE-MRA is restricted. SENSE enables a higher 

spatial resolution at constant scan time or a time-resolved CE-MRA study, consisting of 

multiple 3D data sets acquired during the passage of the contrast agent. A particular 

example  of  a  clinical  application  that  can  benefit  from  the  increased  imaging  speed  

provided by parallel imaging is head MRI.  

Single-shot and turbo spin-echo sequences, such as TSE and HASTE, are commonly used 

for T2-weighted brain imaging. The application of parallel MRI can be used to effectively 

reduce blurring due to the T2 relaxation and therefore improves the image quality of these 

sequences. Besides T2-weighted imaging with TSE sequences, single-shot echo-planar 

imaging (EPI) has become the clinical standard in areas such as functional MRI, 

diffusion-tensor imaging for fiber tracking, and diffusion-weighted MRI, which is an 

important diagnostic tool for the examination of patients with acute stroke. Combining 

single-shot EPI with SENSE has been shown to reduce the disadvantages of EPI, namely, 

the blurring and signal losses due to the T2*-based signal decay during read-out and 

distortions in the reconstructed image caused by off-resonance spins . 
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For breast imaging, magnetic resonance in combination with parallel imaging is a powerful 

diagnostic tool, which also yields functional information about a breast cancer’s biologic 

behavior and might become a standard, frequently used, clinical study in the near future. In 

particular, dynamic contrast enhanced breast MRI benefits from a higher spatial resolution 

at a given scan time provided by SENSE. The increased spatial resolution allows the 

visualization of high anatomic detail and therefore delivers an increased diagnostic 

specificity [7]. 

2.2.1. Sensitivity Encoding With Cartesian Sampling of k-Space. 

In two-dimensional (2D) Fourier imaging with common Cartesian sampling of 

k-space , sensitivity encoding by means of  a receiver array permits reduction of the 

number of  Fourier encoding steps. This is achieved by increasing the distance of sampling 

positions in k-space while maintaining the maximum k-values. Thus scan time is reduced 

at preserved spatial resolution. The factor by which the number of k-space samples is 

reduced is referred to as the reduction factor R. In standard Fourier imaging, reducing the 

sampling  density  results  in  the  reduction  of  the  FOV,  causing  aliasing.  In  fact,  SENSE  

reconstruction in the Cartesian case is efficiently performed by first creating one such 

aliased image for each array element using discrete Fourier transform (DFT). 

The second step then is to create a full-FOV image from the set of intermediate images. To 

achieve this one must undo the signal superposition underlying the fold-over effect. That 

is, for each pixel in the reduced FOV the signal contributions from a number of positions in 

the full FOV need to be separated.  
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A pMRI accelerated acquisition (reduction factor R) results in a reduced FOV in every 

component coil image. Each pixel in the individual reduced FOV coil image will contain 

information from multiple (R), equidistantly distributed pixels in the desired full FOV 

image.  Additionally,  these  pixels  will  be  weighted  with  the  coil  sensitivity  C at the 

corresponding location in the full FOV. Thus, the signal in one pixel at a certain location 

( , )x y  received in the k th component coil image kI  can be written as               

1 1( , ) ( , ) ( , ) ... ( , ) ( , ).k k k R RI x y C x y p x y C x y p x y                                    (2.1) 

With index k counting from 1 to cN  and index l counting from 1 to R, specifying the 

locations of the pixels involved, Equation 1 can be rewritten to 

.
1

Np

k kl l
l

I C P  .                                                             (2.2) 

Including all cN  coils, a set of ( cN ) linear equations with (R) unknowns can be established 

and transformed in matrix notation: 

ˆI C p .                                                                    (2.3) 

As shown in Fig.2.3, the vector I   represents the complex coil image values at the chosen 

pixel and has length cN . The matrix Ĉ denotes the sensitivities for each coil at the R 

superimposed positions and therefore has the dimension cN  × R. The vector p  lists, the 

R pixels in the full FOV image. Using proper knowledge of the complex sensitivities at the 
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corresponding positions, this can be accomplished using a generalized inverse of the 

sensitivity matrixĈ . 

1ˆ ˆ ˆ( )H Hp C C C I .                                                   (2.4) 

To simplify matters, the issue of noise correlation is not addressed in Eq.2.4. However, to 

account for levels and correlations of stochastic noise in the received data, terms may be 

included to deal with this correlation. This can be especially important when the receiver 

coils are not completely decoupled. A detailed description is given by [8]. 

 

   

Figure 2.3 Illustration of the basic SENSE relation using an accelerated (R= 4) pMRI acquisition with 

Nc = 4 receiver coils. I  Contains the aliased pixels at certain positioning the reduced FOV coil 

images. The sensitivity matrix Ĉ  assembles the corresponding sensitivity values of the component 

coils at the locations of the involved (R=4) pixels in the full FOV image p . 
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The “unfolding” process in Eq. 2.4 is possible as long as the matrix inversion in Eq.2.4 can 

be performed. Therefore, the number of pixels to be separated R must not exceed the 

number of coils cN  in the receiver array. The SENSE algorithm (Equation 3.4) has to be 

repeated for every pixel location in the reduced FOV image to finally reconstruct the full 

FOV  image.  SENSE  provides  pMRI  with  arbitrary  coil  configurations,  however,  at  the  

expense of some additional SNR loss, which depends on the underlying geometry of the 

coil array. The encoding efficiency at any position in the FOV with a given coil 

configuration can be analytically described by the so-called geometry factor ( g factor ), 

which is a measure of how easily the matrix inversion in Eq.2.4 can be performed. Thus, 

the SNR in the final SENSE image is additionally reduced by the g-factor. 

.
full

SENSE

SNR
SNR

R g
.                                                         (2.5) 

                                      

2.3. Regularized SENSE 

Reconstruction using SENSE gives a poor image due to inaccurate estimation of 

the coil geometry causing the reconstruction matrix to be ill-conditioned [15]. SNR is 

further reduced in SENSE due to this condition. Tikhnov regularization [16] is done to 

make use of the low resolution coil maps as a priori information. Error due to noise and ill 
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conditioning is appropriately weighted using the regularization parameter . Selection of 

correct  is important for noise suppression in Regularized SENSE. 

1((( ) ) ) ( ),H H
reg rec prior recI I S S S I S I                    (2.6) 

Where 
regI  is the regularized image, recI is the reconstructed image, S  is the coil 

sensitivity matrix and  is the regularization parameter. 

2.4. Partially Parallel Imaging with Localized Sensitivities (PILS)  

2.4.1. Review of some basics of the phase encoding process. 

Before discussing the details of the PILS technique, we first review some basics of 

the phase encoding process used in traditional imaging methods. In conventional 

Fourier transform (FT) imaging, k-space is sampled at a spacing of yk  so that 

the Nyquist Criterion is satisfied for the width of the object, Y Fig. 2.4a. We can 

define an imaging FOV iY  which corresponds to the FOV sampled along the phase 

encoding  direction.  If,  for  example,  the  FOV iY  is chosen to be a factor of two 

smaller than Y, image aliasing is typically observed along the phase encoding 

direction Fig. 2.4b. 
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Figure 2.4 Single coil imaging. a: Definition of the object width Y and the imaging FOV iY . b: If a 

FOV of Y/2 is used in the acquisition, image aliasing results. Information is lost in this case due to the 

overlapping of spatial information. c: Imaging with a surface coil restricts the bandwidth of the signal 

to a range cY  centered around 0y . d: When a surface coil is used for imaging, the FOV in the phase 

encoding direction can be reduced to cY  instead of Y  without aliasing problems. 

 

The statements given above assume that an RF coil with uniform sensitivity is used for 

reception. Image aliasing can be prevented if a coil with local sensitivity is used, such as a 

surface  coil.  In  this  situation,  we  can  treat  the  RF  coil  as  an  analog  filter  along  phase  

encoding direction that limits the signal to the local imaging FOV cY  along the phase 

encoding direction Fig.2.4c. Therefore in the case of this single surface coil, yk  can be 

chosen to sample the FOV cY  instead of Y  Fig.2.4d. Since this image has a smaller FOV, 
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it requires fewer samples compared to the full FOV and can therefore be acquired in a 

reduced time.  

Here we define the acceleration factor as the ratio of the sampling spacing in k-space 

needed to sample the full FOV image divided by the sampling spacing used in the small 

FOV  acquisition.  This  parameter  gives  the  ratio  of  speed  improvement  that  is  obtained  

using the smaller FOV acquisition instead of the larger FOV acquisition.  

The basic idea in PILS is to take this concept of reduced FOV acquisitions in a single coil, 

and apply it to acquisitions in which smaller FOV images are acquired in parallel in each 

element of the array. In PILS we view an array of surface coils as a bank of filters, each 

with a FOV of cY , but with a different offset 0y  which span Y  Fig.2-5a. The primary idea 

of PILS is to simultaneously collect images in each coil with an FOV of iY  (less thanY ), 

each corresponding to a different sub region of the full FOV image. We then use the PILS 

reconstruction process to combine these local image acquisitions into an image with a 

composite widthY . 

To see how the PILS reconstruction process works, we begin with the assumption that each 

coil has a completely localized sensitivity, such that each coil has sensitivity over cY , and is 

zero everywhere else. The process begins with the acquisition of an image with FOV iY  

simultaneously in each coil of the array, where cY  , iY , Y . As can be seen from Fig 2.5b, 

as long as iY  is chosen to be larger than cY , the periodically repeating sub-images are 
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completely separated, although the position of the correct sub-image is lost. The primary 

goal of the PILS reconstruction process is to reconstruct only the sub-image which is in the 

correct position in each coil of the array [9]. This process is described in the next section. 

 

 

Figure 2-5  Imaging with an array. a: Definition of cY , 0y  and iY  for an array which spans a length Y. 

b: If an image is acquired with a FOV of Yi, which is bigger than cY , but less than Y , several 

repeating subimages appear in the full FOV reconstruction, however no overlapping of spatial 

information occurs, due to the inherent filtering of the surface coil. c: In PILS, information about the 

center position of the signal is incorporated into the reconstruction, and all signal from outside the 

correct region is suppressed. This results in the correct full FOV image in each component coil. 

 

 

 

 

2.4.2. PILS Reconstruction Algorithm 
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We begin with the simple 1D Fourier transform representation of the MR signal:                          

( ) ( ) yik y
yS k p y e dy ,                                                              (2.7) 

Where ( )p y  is  the  spin  density  of  the  sample  along  the  phase  encoding  direction  and  

( )yS k  is the received signal. However, if we assume that a coil with localized sensitivity 

limits the signal to an FOV of cY  centered around 0y , this integration reduces to:                                 

                    
0

0

/2

/2

( ) ( )
c

y

c

y Y
ik y

y
y Y

S k p y e dy .                                                              (2.8) 

In the PILS reconstruction, it  is  assumed that we already have knowledge of the correct 

location of the center of the coil’s sensitive region 0y  and the acceleration factor used in 

the data acquisition. Using this prior knowledge of the range of y values that actually 

contributed signal in Eq.2.8, we can restrict the reconstruction to only have signal  

in the predefined range of y where the signal originated, such that over the range 

0 0/ 2 / 2i iy Y y y Y , 

( ) ( ) { ( ) ( )}y

y

ik y
y y y

k
p y S k e FFT k S k .                                                     (2.9) 

And is zero everywhere else Fig.2.5c. The term ( )yk is a simple linear phase term needed 

to correctly shift the center of the reconstructed data to the center of the reconstruction 

window and is given by:                                         
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0( ) yik y
yk e .                                                                     (2.10) 

Repeating this process for each coil results in unaliased full FOV images for each coil with 

signal only in the predefined regions. A composite image can then be reconstructed using 

any conventional method, such as a sum of squares reconstruction. Many issues need to be 

considered before this technique can be implemented in practice. Foremost among these 

issues is the validity of our assumption that the surface coils in the array provide localized 

sensitivities and that their spatial location can be determined accurately [9]. 

 

2.5. SMASH  

Like SENSE, pure SMASH (Simultaneous Acquisition of Spatial Harmonics) at its 

basic level requires a prior estimation of the individual coil sensitivities of the receiver 

array. The basic concept of SMASH is that a linear combination of these estimated coil 

sensitivities can directly generate missing phase-encoding steps, which would normally be 

performed by using phase-encoding magnetic field gradients. In this case, the sensitivity 

values ( , )kC x y are combined with appropriate linear weights ( )m
kn  to generate composite 

sensitivity profiles comp
mC  with sinusoidal spatial sensitivity variations of the order m Fig 

2.6 :                            
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( )( , ) ( , )
1

N im k yccomp m yC x y n c x y em k kk
.                                      (2.11) 

Here, 2 / FOVyk  and index k counts from 1 to cN for an cN -element array coil, while  

m is an integer, specifying the order of the generated spatial harmonic. With this, the only 

unknowns  in  the  linear  equation  are  the  linear  weights ( )m
kn ,  which  can  be  estimated  by  

fitting (e.g. least square fit) the coil sensitivity profiles kC  to the spatial harmonic yim k ye  

of order m. The component coil signal ( )k yS k  in one dimension (phase encoding 

direction), which is received in coil k, is the Fourier transformation of the spin density 

( )y weighted with the corresponding coil sensitivity profile ( )kC y  : 

( ) ( ) ( ) yik y
k y kS k dy y C y e .                                                              (2.12) 

Using Eq.2.11 and 2.12, we may derive an expression to generate shifted k-space lines 

( )y yS k m k  from weighted combinations of measured component coil signals ( )k yS k .                           

( ) ( )

1 1

,

( ) ( ) ( )

               ( ) ( ) .

c c
y

y

N N
ikm m

k k y k k
k k

im k y ik y comp
y y

n S k dyp y n C y e

dyp y e e S k m k

         (2.13) 
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Eq. 2.13 represents the basic SMASH relation and indicates that linear combinations of 

component coils can actually be used to generate k-space shifts in almost the same manner 

as magnetic field gradients in conventional phase-encoding. In general, though, SMASH is 

strongly restricted to coil configurations that are able to generate the desired spatial 

harmonics in phase-encoding direction with adequate accuracy Fig.2.6 [7, 10]. 

 

    

Figure 2-6 Illustration of the basic SMASH relation. The complex sensitivity profiles 

( )kC y  from a 4-element ideal array (left) are fit to spatial harmonics (solid lines) of order 

m = 0 (right top) and m = 1 (right bottom). The dotted lines represent the best possible 

approximation of the spatial harmonics with the underlying coil array. 
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2.6. Auto-SMASH and VD-AUTO-SMASH 

In contrast  to a prior estimation of component coil  sensitivities,  AUTO-SMASH 

uses a small number of additionally acquired AutoCalibration Signal (ACS) lines during 

the actual scan to estimate the sensitivities. An AUTO-SMASH type acquisition scheme is 

shown in Fig.3.7c for a reduction factor R  =3. In general, R  1 extra ACS lines are 

required, which are normally placed in the center of k-space at positions ym k , where m 

counts from 1 to R 1. In contrast to normal SMASH, these additionally acquired ACS 

lines ACS
kS  are used to automatically derive the set of linear weights ( )m

kn . 

 In the absence of noise, the combination of the weighted profiles at ( )yk  of the component 

coil images that represents a k-space shift of ym k  must yield the weighted (by the 0th 

harmonic factor) combined autocalibration profile obtained at y yk m k                           

( )( ) ( ) ( )
1 1

N Nc ccomp mACSS k m k S k m k n S ky y k y y k k yk k
.                     (2.14) 
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By fitting the component coil signals ( )kS y  to the composite signal ( )comp
y yS k m k , 

which are composed of ACSs  ( )ACS
k y yS k m k , a set of linear weights ( )m

kn may again be 

derived, which can shift measured lines by ym k in k-space. In this way, missing k-space 

data can be calculated from measured k-space data to form a complete dense k-space, 

resulting in a full FOV image after Fourier transformation. 

 

Figure 2-7  (a) Fully Fourier encoded k-space (R = 1), (b) undersampled (R = 3) k-space without ACS 

lines, (c) AUTO-SMASH-type undersampled (R = 3) k-space with two additional ACS lines to derive 

the coil weights  for a k-space shift of ( 1)k m  and ( 1)k m , and (d) 

VD-AUTO-SMASH-type undersampled (R = 3) k-space with multiple additional ACS lines to derive 

the coil weights for a k-space shift of ( 1)k m  and ( 1)k m more accurately. 

 

The concept of variable-density (VD)-AUTO-SMASH was introduced as a way to further 

improve the reconstruction procedure of the AUTO-SMASH approach. In this method, 

multiple ACS lines are acquired in the center of k-space. Figure 3-7d schematically depicts 

a VD-AUTO-SMASH type acquisition with a threefold undersampled (outer) k-space. 

This simple examples demonstrates that the number of available fits with which one can 
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derive the weights for the desired k-space shifts (m = +1, 1) is significantly increased just 

by adding a few extra ACS lines to the acquisition. Furthermore, these reference data can 

be integrated in a final reconstruction step to further improve image quality. It has been 

shown [12] that the VDAUTO-SMASH approach provides the best suppression of residual 

artifact power at a given total acceleration factor R, using the maximum possible 

undersampling in the outer k-space in combination with the highest possible number of 

ACS lines in the center of k-space.  

 

This strategy results in a more accurate determination of the reconstruction coefficients, 

especially in the presence of noise and a more robust image reconstruction in the presence 

of imperfect coil performance. 

 

                    

 Figure 2-8 a : Use of ACS lines in VD-AUTO-SMASH  b: Use of  ACS lines in GRAPPA 

 

2.7. GeneRalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) 

a b 
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The only regenerative k-space technique commercially available at the moment is 

GRAPPA. The reason for offering two different parallel MRI methods is that there are a 

number of clinical applications in which the use of GRAPPA is advantageous. Examples 

include lung and abdominal MRI, real-time imaging, and the application for single-shot 

techniques. Parallel imaging with GRAPPA is particularly beneficial in areas where 

accurate coil sensitivity maps may be difficult to obtain. In inhomogeneous regions with 

low spin density such as the lung and the abdomen, it can be difficult to determine precise 

spatial coil sensitivity information. In these regions, the image quality of SENSE 

reconstructions might therefore suffer from inaccurate sensitivity maps.  

In contrast, the GRAPPA algorithm provides good quality image reconstructions, since the 

sensitivity information is extracted from the k-space. In GRAPPA, central k-space lines are 

fit to calculate the reconstruction parameters.  

This fitting procedure involves global information and is therefore not affected by 

localized inhomogeneities. The use of lines near the center of k-space also ensures that 

there is sufficient information to achieve a good reconstruction quality.  

 

GRAPPA represents a more generalized implementation of the VD-AUTO-SMASH 

approach. Although both techniques share the same acquisition scheme, they differ 

significantly in the way reconstruction of missing k-space lines is performed. One basic 

difference is that the component coil signals ( )kS y  are fit to just a single component coil 



 lvi 
 

ACS signal ( )ACS
l y yS k m k , not a composite signal, thereby deriving the linear weights 

to reconstruct missing k-space lines of each component coil:                                    

               ( )( ) ( )
1

Nc mACSS k m k n S kl y y k k yk
.                                   (2.15) 

This procedure needs to be repeated for every component coil, and since the coil 

sensitivities change also along read direction, the weights for the GRAPPA reconstruction 

are normally determined at multiple positions along read direction. After Fourier 

transformation, uncombined images for each single coil in the receiver array are obtained. 

Furthermore, unlike VD-AUTO-SMASH, GRAPPA uses multiple k-space lines from all 

coils to fit one single coil ACS line, resulting in a further increased accuracy of the fit 

procedure (i.e. over determined system) and therefore in better artifact suppression. A 

schematic description of an R = 2 VD-AUTO-SMASH and GRAPPA reconstruction 

procedure is given in Fig. 2.9. 

The GRAPPA reconstruction formalism can also be written in matrix form. The vector 

S represents the collected signal in each element coil at some position k and therefore has 

length cN . Using GRAPPA in its simplest form, a set of weights ( )ˆ mn can be derived by 

fitting the signal S  to the ACS at the position k m k  in each coil. Therefore, the coil 

weighting matrix ( )ˆ mn  has the dimension c cN N  and may shift the k-space data in each 

coil by m k . 
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    ( ) ( )ˆm mS n S .                                                      (2.16)                                               

 

Figure 2.9 Schematic description of an accelerated (R = 2). a: AUTOSMASH and VD-AUTO-SMASH 

reconstruction process. Each dot represents a line in k-space in a single coil of the receiver array. A 

single line from all coils is fit to a single ACS line in a sum-like composite k-space.  b: GRAPPA uses 

multiple lines from all coils to fit one line in one coil (here coil 4). This procedure needs to be repeated 

for every coil, resulting in uncombined coil images, which can be finally combined using a sum of 

squares reconstruction. 

 

In contrast to a SMASH or VD-AUTO-SMASH complex sum image reconstruction, the 

GRAPPA algorithm results in uncombined single coil images, which can be combined 

using a magnitude reconstruction procedure (e.g. sum of squares). This provides a 

significantly improved SNR performance, especially at low reduction factors. 

Furthermore,  signal  losses  due  to  phase  cancellations  are  essentially  eliminated  using  a  

magnitude reconstruction procedure.  
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Thus, previous drawbacks on k-space-based techniques, namely, phase cancellation 

problems, low SNR, and poor reconstruction quality due to a suboptimal fit procedure, are 

essentially eliminated .Furthermore, similar to SENSE, the GRAPPA algorithm works 

with essentially arbitrary coil configurations. Finally, as an additional benefit, ACS lines 

used to derive the reconstruction coefficients can in many cases be integrated into the final 

image reconstruction, in the same manner as intended in VD AUTO-SMASH [7].  

The block wise reconstruction given above has been implemented using a sliding block 

approach. This uses the fact that each un-acquired line can be reconstructed in several 

different ways in a block wise reconstruction, instead of the only one combination possible 

in a strictly VD-AUTO-SMASH acquisition. For example, when using four blocks for the 

reconstruction (i.e., four acquired lines used to reconstruct each missing line), there are 

four possible reconstructions for each un-acquired line, two of which are shown in Figure 

2-10. In GRAPPA, each possible reconstruction is performed for each un-acquired line, 

resulting in multiple possible reconstructions for each line. These lines are then combined 

in a weighted average to form the final reconstructed line, providing a robust 

reconstruction of each missing line. For perspective, it should be noted that this sliding 

block reconstruction is essentially reduced to the VD-AUTO-SMASH approach whenever 

the number of blocks is reduced to one [13].  
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Figure 2.10 in a sliding block reconstruction, more than one reconstruction is possible     for each 

missing line. Two of the four possible reconstructions for this missing line are shown. 

 

                                

Figure 2.11 Sliding blocks in GRAPPA 

 

GRAPPA in its basic form is VD-AUTO-SMASH. It can be extended to reconstruct the 

image in different ways by using different acquired lines to generate the same ACS lines. 

In this case, SNR is calculated for every image and the weighting coefficients are weighted 

according to the SNR obtained. This approach is called the sliding block approach 

Fig.2.11. 
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2.8 . SPACE RIP 

SPACE RIP is a hybrid reconstruction method that first takes an inverse FFT along 

the frequency encoding making the rows/columns along the phase encoding direction, 

independent of each other. For every column, the k-space data is a FFT weighted by the 

coil sensitivity matrix. The data obtained for every coil can be written as (modified form 

[14]):  

( )

1
( , ) ( , ) ( , ) ,

g
y

N
i G ng

k y k
n

S G x p x n W x n e                                            (2.17) 

Where ( , )kW x n is  the complex sensitivity profile of the kth receiver array element. This 

expression is converted into matrix from combining the k-space data of all coils and then 

solved to obtain the required image.  

If there are M coils and N lines are acquired per coil then, to generate one column of the 

image, a size (M ×N) ×P matrix has to be inverted, making the reconstruction 

cumbersome. P is the number of total phase encodings in case of a full FOV scan. But this 

method is not restricted by the coil configuration of the k-space sampling. Matrix size 

reduces as reduction factor increases and reconstruction becomes faster unlike other 

methods where reconstruction time increases according to the acceleration. 

The above expression can be converted to matrix form for each position x along the 

horizontal direction of the image, as follows: 
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Where F is the number of phase encodes used in the experiment, and K is the number of 

coils. Eq.2.18 is a matrix equation where the term on the left side of the equality is a K x F 

element vector containing the F phase encoded values for all K coils. The term on the far 

right is an N-element vector representing the “image” for one column. The middle term in 

Eq 2.18 is a matrix with K x F rows and N columns which are constructed based on the 

sensitivity profiles and phase encodes used. Hence, this approach is not restricted to the 

case where K x F x N.  Solving Eq.3.18 for each position along the x axis yields a column 

by column reconstruction of the image. 

Fig. 2.12 shows a schematic representation of the reconstruction process. As described 

above, each column in the image is reconstructed separately. In the case where the image 
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matrix has N rows and M columns, a block of M matrices must be inverted to reconstruct 

the M columns of the image. The matrices are not necessarily square, so that a pseudo 

inverse must be computed for each column. The choice of the number of phase encodes F 

affects the quality of the reconstruction. Increasing F results in an increase of the rank of 

the matrices, yielding pseudo inverses that are better conditioned. There is a large 

computation load associated with this reconstruction; however, the potential for 

parallelization is obvious, since each column can be reconstructed separately. For each 

slice, the pseudo inverses have to be computed only once. Subsequent updates of the same 

slice can be reconstructed by simple matrix vector multiplication, reducing reconstruction 

times to real-time rates [14]. 
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Figure 2.12 Schematic representation of the parallel reconstruction scheme. The matrix to the left 

represents the 1DFT of the chosen k-space data, the block of matrices in the center is the 3D sensitivity 

array formed by stacking M 2D matrices such as the one expressed in Equation (3.18). The matrix on 

the right represents the image, which is reconstructed column by column by inverting each matrix in 

the sensitivity array [14]. 
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CHAPTER 3 

Improved image reconstruction in parallel imaging using a 

uniform sensitivity coil 

 

In this chapter we introduce a novel method for data acquisition and image reconstruction 

method for parallel magnetic resonance imaging (MRI). The proposed method improves 

the GRAPPA (Generalized Auto-calibrating Partially Parallel Acquisitions) method by 

simultaneously collecting data using the body coil in addition to localized surface coils. 

The body coil data is included in the GRAPPA reconstruction as an additional coil. The 

reconstructed  body coil  image  shows greater  uniformity  over  the  field  of  view than  the  

conventional sum-of-squares reconstruction that is conventionally used with GRAPPA. 

The  body  coil  image  can  also  be  used  to  correct  for  spatial  in  homogeneity  in  the  

sum-of-squares image. The proposed method is tested using numerical and real MRI 

phantom data.  
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3.1 Introduction 

 

  Parallel magnetic resonance imaging (MRI) increases image acquisition speed by 

taking advantage of multiple surface radio-frequency (RF) coils [6, 7]. In conventional 

MRI, the full k-space data required for a certain field of view (FOV) and resolution are 

collected, whereas in parallel imaging the k-space is subsampled by a certain factor R. 

Consequently, individual aliased images are obtained for every coil. These images are 

either unfolded in the image domain to yield the final image or the missed k-space lines are 

reconstructed using a priori information from the spatially varying coil sensitivities.  

The quality of the image reconstructed is an essential criterion for the success of parallel 

imaging. Many parallel imaging reconstruction techniques have been proposed. Examples 

include SENSE, SMASH, GRAPPA and their derivations [8, 10, 13, 14]. These methods 

can be divided into image domain and k-space methods. The k-space methods when used 

with the additional acquired auto-calibration data are very powerful in cases where 

determination  of  the  coil  sensitivity  is  difficult  or  is  time  varying.  Among  all  these  

reconstruction methods, GRAPPA (Generalized Auto calibrating Partially Parallel. 

Acquisitions) has been of most interest due to the improved performance in reconstructing 

high resolution images and overcoming the limitations in previous techniques like SMASH 

and VD-Auto-SMASH [5-8]. GRAPPA represents a more generalized implementation of 
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the VD-AUTO-SMASH approach [12]. Although both techniques share the same 

acquisition scheme, they differ significantly in the way reconstruction of missing k-space 

lines is performed. One basic difference is that the component coil signals are fit to just a 

single  component  coil  auto-calibration  signal  (ACS),  not  a  composite  signal,  thereby  

deriving the linear weights to reconstruct missing k-space lines of each component coil. 

This process is shown in Fig. 3.1 Data acquired in each coil of the array (black circles) are 

fit to the ACS line (gray circles). However, as can be seen, data from multiple lines from all 

coils are used to fit an ACS line in a single coil, in this case an ACS line from coil 4. The fit 

gives the weights which can then be used to generate the missing lines from that coil. Once 

all of the lines are reconstructed for all coils, a Fourier transform can be used to generate 

individual coil images. The full set of images can then be combined using a normal sum of 

squares (SoS) reconstruction. 

 

 

Figure 3.1 Schematic description of GRAPPA with an acceleration factor R = 2. 

 

Reconstructing data in coil j at a line (ky-m ky) offset from the normally acquired data 

using a block-wise reconstruction can be represented by: 
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                                (3.1) 

Where (j yS k ) is the signal in coil j at line yk ky. In this case, Nb b  lines  which  are  

separated by yR k  are combined using the weights ( , , , )n j b l m  to form each line, 

corresponding to a reduction factor R. The coefficients ( , , , )n j b l m  represent the weights 

used in this linear combination, the index l counts through the Individual coils, while the 

index b counts through the individual reconstruction blocks. This process is repeated for 

each coil in the array, resulting in L uncombined coil images which can then be combined 

using  a  conventional  sum  of  squares  reconstruction  or  any  other  optimum  array  

combination [13].In spite the success of the GRAPPA technique, the sum of squares step 

carried on as the final step of reconstruction can not guarantee uniformity over the field of 

view. In general, accurate knowledge of the coil sensitivity is required in order to produce 

uniform-intensity images. In this chapter we present an acquisition and reconstruction 

scheme that substantially improves the current GRAPPA reconstruction technique by 

utilizing the additional data collected from the uniform body coil. 

 

3.2 Method 

Simultaneous acquisition of reduced k-space data sets from both the body coil and 

the surface coil array is proposed so that a uniformly-weighted image reconstruction can be 

achieved. The additional body coil is included in the GRAPPA reconstruction process as a 
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regular surface coil, except that this special coil has the special property of uniform 

sensitivity over the FOV. This approach is illustrated in Fig. 3.2B. The process of 

individual coil estimation is carried on using GRAPPA according to [13]. After the 

reconstruction  of  every  coil  image,  the  body  coil  image  among  all  images  has  uniform  

sensitivity and can be regarded as the final reconstruction R1 in Fig. 3.3. Unfortunately, 

this  body coil  image  may suffer  from lower  SNR because  the  coil  is  far  away from the  

imaging volume. It may also suffer from reconstruction artifacts during GRAPPA 

reconstruction for the same reason. Therefore, the sum-of-squares reconstruction of all 

images generated from GRAPPA could be more interesting since the resulting image will 

have better SNR, lower artifact level and better uniformity R2 in Fig. 3.3. Alternatively, a 

sum-of-squares reconstruction of only the surface coils can be compensated for 

non-uniformity by a pixel by pixel comparison to the body coil image to assure a uniform 

sensitivities distribution in the final image R3 in Fig. 3.3. A procedure for intensity 

correction is shown in Fig. 3.4 where the ratio of smoothed versions of the body coil image 

and the GRAPPA image are fitted to a low-order polynomial to get the intensity correction 

function. 

Simulation is performed using the numerical Shepp-Logan (SL) phantom [16] and 6 

surface  coils  profiles  calculated  using  the  Biot-Savart  law  for  circular  loop  coils.  A  

128x128 SL image is multiplied with the sensitivity of the 6 coils; Fourier transformed 

(FT) to obtain a set of six full k-space data sets. A seventh data set is obtained by taking the 

FT of the SL image directly to simulate a body coil acquisition. The seven data sets are then 

subsampled with a factor of R = 2. A set of 32 lines at the center of k-space is also retained 
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for GRAPPA training to determine the filter coefficients. Image reconstruction is 

performed as described above. For comparison, conventional GRAPPA reconstruction is 

applied to the six surface coils and sum-of-squares is used in the final reconstruction. 

The described reconstruction steps are applied to a real MR phantom acquired with a 

gradient echo sequence on a Philips 3T Achieva system. Because the system does not allow 

simultaneous  receive  of  signals  from  the  surface  coil  array  and  the  body  coil,  two  

experiments are performed sequentially using the cardiac coil array with six elements and 

the body coil. The scan parameters are TR/TE = 11/2.7 ms, FOV = 40x40 cm, slice 

thickness = 5 mm, matrix size = 448x448.        

 

 

Figure 3. 2. GRAPPA reconstruction with the additional body coil. 
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Figure 3. 3 The modified reconstruction method with the body coil. Possible reconstruction options 

are marked with R1, R2, and R3. 

 
 
 
 
 
 
3.3 Results 

Fig. 3.5 shows the results of applying the new method to the simulated SL data. The 

conventional GRAPPA image Fig. 3.5A shows noticeable intensity no uniformity, 

especially when compared to the body coil image reconstructed using the proposed method 

Fig. 3.5 B. The intensity correction obtained by dividing smoothed version of both images 

is shown in Fig 3.5C. The corrected image obtained by multiplying the images in (A) and 

(C) is shown in Fig 3.5D where better uniformity is evident, although some blurring of 

edges is noticed. The results of applying the proposed method to the real MR phantom are 

shown in Fig. 3.6.  The GRAPPA-reconstructed body coil image Fig.3.6B shows excellent 
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uniformity but lower SNR than the GRAPPA sum-of-squares image Fig. 3.6A. The body 

coil image shows some residual artifact from GRAPPA that could be due to the lower SNR 

and the higher g-factor [14] in the middle of the image. The intensity-corrected image is 

shown in Fig. 3.6D using the correction in Fig. 3.6C.  

U niform -intensity 
im age

N on u nifo rm -inten sity  
im age

LP-filte r LP-filter

Co rrectio n factor

÷

Corrected im age

X

Polyn om ial f it

 

Figure 3.4 A procedure for intensity correction using the uniform intensity image. LP-filter is low-pass 

filter. 
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Figure 3.5(A) the sum-of-squares reconstruction of GRAPPA. (B) The body coil image using 

GRAPPA reconstruction. (C) The correction function obtained by dividing smoothed versions of (A) 

and (B). (D) The intensity-corrected sum-of-squares image. 
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Figure 3.6 (A) The sum-of-squares reconstruction of GRAPPA. (B) The body coil image using 

GRAPPA reconstruction. (C) The correction function obtained by dividing smoothed versions of (A) 

and (B). (D) The intensity-corrected image. 

 

Figure 3.7 (A) the sum-of-squares reconstruction of GRAPPA using only surface coils. (B) The 

sum-of-squares reconstruction of GRAPPA using both the surface coils and the body coil. 
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3.4 Discussion 

The SL results in Fig. 3.5 shows that uniform intensity in the final image is possible if a 

body coil is incorporated in the acquisition and reconstruction phases of a parallel imaging 

pipeline. In spite the high SNR of the reconstructed images using the local surface coils 

compared to the SNR of the body coil, the reconstructed image of the body coil show some 

areas that are not seen before using the local coil alone as shown by arrow in fig.3.6B, 

moreover the reconstructed image of the body coil show uniform sensitivity over the entire 

field of view, compared to the individual reconstructed images of the local array coils 

which  is  sensitive  according  to  its  geometry  and  it  is  location  to  the  field  of  view.  

Nevertheless, the uniformity of the body coil image may be in specific situations very 

important like in phase contrast [17] or strain encoded MRI [18].  

The acquired data by the body coil is considered an additional data set added to the local 

surface coils. The benefits of these data of the boy coil not restricted to improve the final 

reconstructed image phase only but it can be extended to improve in the final image details 

compared to the convential GRAPPA. As by applying other reconstruction criteria can 

with the body coil data as shown in fig .3.3.  

 

In reconstruction criteria of R2 where the body coil used with the local coil to get sum of 

square image as convential GRAPPA, so in spite the final image will suffer form the lack 
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of phase information but, it show improvement over the final image of the convential 

GRAPPA  with  the  local  surface  coils  only  as  shown  by  arrow  in  fig  3.7B  with  real  

phantom data. Where some area in fig 3.7A using only the local surface coils are not clear 

or even shoed at all specially in the edges of the image compared to the same areas using 

both body coil data and local surface coil. 

So, the intensity correction is also possible using the body coil image. Similar results are 

obtained for real  MR scan of a physical  phantom in spite the current limitations of MR 

hardware where no Simultaneous acquisition between the main body coil and the local 

surface coil array can be implemented. A small residual artifact is noticed in the 

GRAPPA-reconstructed body coil image. This artifact may be due to the high g-factor in 

the middle of the image that manifest the lower SNR of the body coil signal where is the 

filling factor of the main body if low due to the far distance between main body coil and the 

object to be imaged. 

The benefit of the uniformity of the body coil and the high SNR of localized surface coils 

can be traded off in a sum-of-squares reconstruction of the whole coil data as shown in Fig. 

3.7.  However, may be an image processing techniques can be used to overcome the 

residual artifact in the final reconstructed image. Also, a new methodology of the final 

reconstruction or the intensity correction can be used in a pixel level by trying to keep the 

level of high SNR of the local array and use the phase information from the main body coil 

in away that decrease the noise contribution from the body coil data. 
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Also, the benefits of the body coil can be extended to another parallel imaging methods like 

Auto-SENSE [17], where the parallel imaging reconstruction applied onto the image 

domain compared to the application we used here with GRAPPA into the k-space domain.  

Here with Auto-SENSE the central band lines to estimate the sensitivity of each coil 

without need for a separate scan.  

So, by using the body coil uniform sensitivity it may improve the phase of the final 

reconstructed image, a preliminary tested results can show an improvement of the final 

image phase over the ordinary Auto-SENSE. 

 

3.5 Conclusion 

We proposed a new method for parallel imaging acquisition and reconstruction that 

improves the current GRAPPA technique in terms of image uniformity over the entire 

FOV. By overcoming the current hardware limitation in MRI systems for simultaneous 

acquisition, the proposed method will enable improved image quality in MRI parallel 

imaging. The new method can provide a way to improve the final reconstructed image 

phase, where it is essential point in different MR applications. Overcoming the noise 

attributed by the body coil, may reduce the current apparent artifacts into the final 

reconstructed image and considered. 
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CHAPTER 4 

Optimizing kernel size in generalized auto-calibrating partially 

parallel acquisition in parallel magnetic resonance imaging 

In this chapter we will show that a variable kernel with a size dependent on the coil 

sensitivity used in GRAPPA algorithm can lead to better image quality instead of using 

fixed in size for all coils. The kernel size is estimated from the ratio of the coil sensitivities 

obtained from a reference scan or from the same dataset. Conventional GRAPPA kernel 

estimation and image reconstruction is modified to employ the variable-size kernel for 

improved reconstruction.  
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4.1. Introduction 

 Parallel magnetic resonance imaging (MRI) is a family of acquisition and 

reconstruction techniques that increase image acquisition speed by taking advantage of the 

localized sensitivity of multiple surface radio-frequency (RF) coils [17]. In MRI, the image 

is reconstructed from a set of samples collected in the spatial frequency domain, also 

known as k-space. In conventional (un-accelerated) MRI, the full data in k-space are 

collected corresponding to a certain field of view (FOV) and resolution in the image, 

whereas in parallel imaging the k-space is subsampled by a factor R. Consequently, 

individual aliased images are obtained for every coil. These images are either unfolded in 

the image domain, or the missed k-space lines are estimated from the acquired data and 

prior information about the coil sensitivities. Many parallel imaging reconstruction 

techniques have been proposed like sensitivity encoding (SENSE), simultaneous 

acquisition of spatial harmonics (SMASH), generalized auto-calibrating partially parallel 

acquisition (GRAPPA) and their derivatives [13]. These methods can be generally divided 

into k-space methods and image domain methods. The k-space methods when used with 

the additional acquired auto-calibration data are very powerful in cases where 

determination of the coil sensitivity is difficult or is time varying. 

In GRAPPA, reconstruction of data in coil j at a line (ky-m ky) offset from the acquired  
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data is given by: 

   
1

( ) ) ( , , , ) ( )
1 0

NN b
S k m k n j b l m S k bR kj y y l y yl b

                                 (4.1) 

Where ( )S kj y  is the signal in coil j at line ky . In this case, Nb  lines which are separated 

by R ky  are combined using the weights ( , , , )n j b l m  to form each line, corresponding to 

an under-sampling (or reduction) factor R. The coefficients ( , , , )n j b l m  represent the 

weights used in this linear combination. The index l counts through the individual coils, 

while the index b counts through the individual reconstruction blocks. This process as 

shown in Fig.4.1 is repeated for each coil in the array, resulting in L un-combined coil 

images which can then be combined using a conventional sum of squares reconstruction or 

any other optimum array combination [9]. 

 

 
 

Figure 4.1. Schematic description of GRAPPA with an acceleration factor R = 2 and a single 

auto-calibrating line. 
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The interpolation kernel is usually small but fixed in size for all coils. In this work, a 

general variable-size kernel approach is introduced that derives from the theory introduced 

by Bao and Maudsley [19]. The variable kernel used in this work is two-dimensional (2D) 

with coil-dependent size. The kernel size is estimated from the coil sensitivities obtained 

from a reference scan or from the same dataset. Conventional GRAPPA kernel estimation 

and image reconstruction is modified to employ the variable-size kernel for improving the 

reconstruction. 

 

4.2. METHODE 

The MR signal generated in the lth coil is given by  

11
( , ) ( , ) ( , ) exp( 2 ( ))

0 0

NyNx
d k k r x y C x y j xk ykl x y l x yx y

                (4.2) 

Where r is the weighted spin density of the imaged object and is the coil sensitivity of coil 

l. Following the work in [10], Eq. 4.2 can be re-written as  

 

1 ( , )1
( , ) ( , ) '( , )) exp( 2 ( ))

'( , )0 0

Ny C x yNx ld k k r x y C x y j xk ykl x y l x yC x yx y l
              (4.3) 

  Where   is the sensitivity map of coil. Following the convolution theorem 
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Where  

( , )
( , ), ' ( , )'

C x ylC k k FTl l x y C x yl
                                               (4.5) 

and FT{.} denotes the Fourier transformation. Eq. 4.5 shows that the relation between the 

signals in any two coils is a convolution operation wherein the convolution kernel is the 

Fourier transform of the ratio between the sensitivity maps of these two coils. The optimal 

convolution kernel is thus specific to each coil pair and will be different in size and shape 

depending on the relative coil sensitivities and the geometry of the coil array. The 

estimation of the missing lines of each of the coils in conventional GRAPPA is given by, 

 
1
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               (4.6) 

Although the theoretical kernel n is of infinite extent, its energy is concentrated at the 

origin. This is because the individual coil sensitivity profiles are inherently smooth and the 

Fourier transform of this smooth sensitivity ratio is concentrated in the center of k-space as 

shown in Fig. 4.3. This provides a justification for the small size of the convolution kernel 

used in GRAPPA reconstruction.  
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Here, we extend the GRAPPA method to include the concept of coil-specific convolution 

kernel by allowing the size of the kernel n to vary as a function of the two coils l and l’. 

Fig.4.2 shows the size of the function   when truncated at 90% of its total energy (white  

rectangles). The conventional GRAPPA method is modified to use this truncation window 

size as the kernel size for each pair of coils.  
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Figure 4.2. The magnitudes of the Fourier transform of the ratio between the sensitivity of 

coils pairs in a four-coil array using the Shepp-Logan phantom. Brightness is in logarithmic 

scale for better visualization. The rectangular boxes overlaid correspond to truncation 
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The proposed technique is validated using simulated data of the Shepp-Logan (SL) 

phantom [16] with a matrix size 128x128. The phase encoding direction is left-right. Eight 

loop coils are used in the simulation with coil sensitivity derived from the Biot-Savart law 

for circular loop coils. Complex Gaussian noise is added to the simulated data of all coils 

with zero mean and standard deviation that is 0.001 times the root-mean square value of all 

signals  in  the  eight  coils.  Different  reduction  factor  (R=2,  3,  4)  were  tested  as  well  as  

different number of ACS lines (8, 12, 16 and 20 lines).  

To determine the kernel size for each coil pair   was truncated at 60% of its total energy. 

The size of the truncation window in the direction of phase encoding is divided by the 

reduction factor R to get the number of blocks or the kernel size to be used in GRAPPA 

reconstruction.  

The kernel size in the frequency encoding direction is the same as the size of the truncation 

window in that direction. The kernel coefficient estimation is performed by stacking the 

 
 

Figure 4.3. Profiles through the center of the Fourier transform of the coil sensitivity ratios 

between the four coils and the first coil. Note the narrow width of these profiles. 
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ACS data from all coils and then using regularized inversion of the resulting linear system 

to get the different kernels.  

 

These kernels are then used in the reconstruction as in GRAPPA except that each kernel 

corresponding to a coil-pair has its own size. The reconstruction quality is quantified by the 

SNR measured in the large grey ellipse to assess the noise amplification. The SNR also 

serves as a measure of the intensity of reconstruction artifacts. 
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4.3. RESULTS 

The images reconstructed using the proposed variable-size kernel GRAPPA are 

shown in Fig. 4.4, along with the conventional GRAPPA reconstruction using a kernel size 

of four. Less artifacts and better SNR is noticed when the variable-size kernel is used than 

with the conventional fixed-size kernel when the number of ACS lines is sufficiently high. 

 
 

Figure 4.4 The reconstructed sum-of-squares images using GRAPPA and variable-size kernel GRAPPA 

for different number of ACS lines and different reduction factors R. The number overlaid on each image 

is the SNR calculated in a region of interest in the large grey ellipse. 
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The better performance of the proposed method is evident for different acceleration factors 

and for ACS lines greater than eight.  

The performance with the variable-size kernel approach is less successful than GRAPPA 

when the number of ACS line is small. This is due to the ill-conditioning of the  

System of equations used to estimate the kernel when the number of ACS lines is relatively 

small. However, for moderate or large number of ACS lines the performance of 

variable-size kernel is remarkable in suppressing noise that is otherwise amplified with the 

fixed-size kernel.  

4.4. Discussion 

The variable size convolution kernel is much more than an extension of the 

fixed-size kernel initially employed in GRAPPA. The variable size kernel follows directly 

from the mutual coil sensitivity of each coil pair. The kernel is defined by the ratio of the 

coil sensitivities which depends on the inherent sensitivity of each coil in addition to the 

geometry of the coil array and the locations of coils into the field of the view. The kernel is 

a 2D function and is concentrated in a direction that depends on the location of the two 

coils under consideration relative to each other.  

In spite the success of the convential GRAPPA kernel, where a fixed size kernel is 

employed [13], the theoretical base of the GRAPPA was not clear upon it the criteria of 

choosing and optimizing the fixed size kernel can be clarified. This can be shown clearly 

when choosing the number of blocks needed for the reconstruction [13], where this number 
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was recommended to be in a range vary from two up to four, but without sold criteria for 

optimizing this number on theoretical base.   

However in fig.4.2 the representation of the paired coil profiles show a different in size of 

the kernel, represented by the white rectangles, based on coil to coil profiles. As mainly the 

coils are sensitive to it is nearest areas within the field of the view , but this sensitivity are 

different form coil to coil based on the orientation of the sensitivity per each coils, some 

coils are sensitive to diagonal directions other horizontal. So, the paired correlation 

between coils profiles will vary accordingly. Mainly the GRAPPA technique build on 

using the own coil data and other coils data to reconstruct the missing and un-acquired lines 

with coil,  the relation between the coil and other coils will clarify the contribution form 

other coils to this coils which basically will vary form coil to another.  

In this work the kernel size was directly computed from a full-resolution coil sensitivity 

map, but it can be directly estimated from the auto-calibrating signal acquired in the same 

dataset. This approach is preferred to acquiring a full scan reference acquisition since it can 

avoid registration problems when patient motion occurs. Estimation of a low-resolution 

coil sensitivity ratio can then obtained in the same manner as in auto-calibrating SENSE 

methods. 

The proposed approach of using variable-size kernel can improve our understanding of 

how GRAPPA works and can help in optimizing the reconstruction as well as the selection 

of various scan parameters like the number and locations of the ACS lines. Where mainly 

the ACS lines are located at the center of the k-space where the low frequency component 
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located with a high SNR. However, the outer lines at the edges of the k-space represent the 

high frequency components, so we can employ some ACS lines at both edges of the 

k-space to be used to reconstruct the outer lines of the k-space using the same concept of 

variable kernel size, and using the centralized ACS to reconstruct with the variable kernel 

size to reconstruct the main portion of the k-space with low frequency component and high 

signal to noise ratio.   

Also  the  number  of  the  ACS  lines  to  be  acquired  to  get  the  GRAPPA  coefficients  to  

reconstruct the missing data, as the ACS lines considered an additional amount of time to 

the scan time specially into the auto-calibration method, where the sensitivity of each coil 

estimated from a fully sampled central band within the k-space as in GRAPPA, we 

represent here by using the variable size kernel the result of combining different number of 

ACS at  different  reduction  factor,  where  with  high  reduction  factor   and  with  the  same 

number of ACS lines as fixed kernel , the variable size kernel represent high SNR into the 

final reconstructed image as shown in fig 4.4. 

However the performance of the variable size kernel is get lower than fixed kernel where 

the number of the ACS decreased, so adapting and improving the performance of the 

variable size kernel to overcome the less performance than the fixed within small number 

of ACS considered potential point for more investigation, which will improve the 

acquisition time and final reconstructed image. 
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4.5. Conclusion 

GRAPPA reconstruction with the proposed variable-size kernel provides better image 

quality with a reduction in the power of artifacts and enhanced SNR at high reduction 

factor. The variable-size reconstruction does not require the acquisition of additional data 

and can be implemented with little modification to the existing GRAPPA technique. The 

variable size kernel considered a base to understand the theoretical base of the GRAPPA 

technique used in the parallel imaging.  
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CHAPTER 5 

 

Neural Network Based Gridding of non-Cartesian samples in 

multi-channel array acquisition 

 

In this chapter will  examine how Parallel  Imaging can be used as tool to solve a classic 

imaging problem , the convolution Gridding , we introduce a new method that combine the 

benefits of parallel Imaging and Neural Network techniques in order to grid the 

non-Cartesian points into grid one and over come the current limitations of the current 

techniques.  
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5.1. Introduction 

 In spite the non Cartesian sampling showing a several advantage over the Cartesian 

from the efficiency of K-space coverage, reducing the inhomogenity of the magnetic field 

and decreasing the acquisition time, which considered a major factor in different MRI 

applications where speed is concerned as in Cardiac Imaging and Breath-hold 

applications[17,20], it show some difficulty in the image reconstruction phase as many of 

the acquired data points didn’t fall generally on a grid points where a direct Fourier 

transform will not be useful to get the final image. So, a step of re-gridding the acquired 

data to be fall into grid points is a must. Gridding is considered an old problem which 

initiated from different field of applications i.e. radar, Computed tomography and 

Magnetic Resonance. 

The convolution gridding [21] which considered the golden standard method to transfer the 

non Cartesian point to Cartesian one before taking the direct Fourier transform. However, 

this method needs a DCF, Density Compensation Function, to assure a uniform sampling 

density all over the K-space.  

This happened due to the nature of non uniform sampling where mainly a non-uniform 

density trajectory is employed. The computing of DCF for many trajectories such as rosette 

[23], or different trajectories [24, 25, 26] is not considered a trivial one like the radial 

trajectory or even like the spiral trajectory. Recently the parallel imaging can show an 
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additional method to be used in the convolution gridding (GROG). The parallel imaging 

trying to shift the acquired non-Cartesian points to the nearest missed Cartesian one using 

the spatial information from the array of coils and reconstruction algorithm like GRAPPA 

[13]. To perform this shift from one point in k-space to another one a weight set has to be 

computed either from a pre-scan or from the acquired data itself [27]. 

 

5.2. Method 

The GRAPPA operator formalism can reformulate the GRAPPA reconstruction as 

a matrix operator, similar to ladder or propagator operators, that shifts data in K-space with 

a small amount. 

s(k , k  + n k ) G . s(k ,k ),x y y n x y                                             (5.1) 

Where s(k  + nk )x y  is the acquired point, G  n are the appropriate coil weighting factors 

(weights) for the desired shift, and s(k , k  + n k )x y y  is the vector containing the signal 

from each receiver coil at the desired location. It is important to note that this formulation 

is equivalent to GRAPPA with a single source point and a single target point. The weight 

set is simply a square matrix of size NC x NC, where NC is the number of coil elements 

used for the acquisition. Because this weight set is similar to a ladder or propagator 

operator in quantum mechanics, the term “GRAPPA operator” is used to describe it. The 

GRAPPA operator can be derived in the same fashion as standard GRAPPA weights. 
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Namely, a fit of points with the appropriate relationship is performed with the use of the 

pseudo inverse: 

S (k ,k +n k ). pinv (S (k ,k ))  GACS x y y ACS x Y n                             (5.2) 

In these equations, the signal matrices SACS  are made up of a collection of signal vectors 

from an auto calibration dataset with adjacent distance relation-ship. eq 5.2 can show 

another important property of the GRAPPA operator that is a small shift operator Gn  can 

be derived from an operator for a larger shift Gn  by taking the nth root of the  

Larger operator [27] as follows: 

1/
.

nG Gn                                                                    (5.3) 

Where G  represents the base weight matrix which used to determine the weighs needed 

to shift the non-Cartesian points to Cartesian one with arbitrary shifts along the orthogonal 

directions. This arbitrary shift needed to shift the non-Cartesian points to the nearest 

Cartesian one is calculated using the K-space trajectory as shown in fig .5.1. As the 

calibration set of weights in orthogonal direction can be performed once then any smaller 

shifts can be derived from a smaller one as follows: 

                          s ( k + , k + ) = G . s(k ,k ,k )x x y z x x y z  
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  =G .G .G .s(k ,k ,k )x y z x y z                         (5.4) 

 

From Eq 5.4 we can see that many non-Cartesian points can be mapped to the same 

Cartesian point so, a simple averaging will be needed to get the final value of the Cartesian 

point and the arbitrary shift does not imply to be restricted for an integer value. 

 

Figure 5.1.  GROG gridding of non-Cartesian points. Cartesian destinations are at the intersections of 

the straight, finely dotted lines, and consecutive samples of an arbitrary trajectory are represented by 

solid circles. GROG grids a non-Cartesian data point by shifting it to its nearest Cartesian location via 

an appropriate weight set [27]. 
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So, in order to employ GROG to grid the non-Cartesian points, a calibration signal must be 

used to determine the base matrices weights for steps in the Gx  and G y directions (for 2D 

imaging). For arbitrary k-space trajectories, this calibration signal can be a low- 

resolution Cartesian dataset with Nyquist sampled where steps of k=1  are performed 

(i.e.,  Gx  is calculated from the points in the read direction, and G y  from the points along 

the phase encoding direction by fitting each point to the point adjacent to it in the 

appropriate direction Eq. 5.4 so the GROG base weight matrix can be calculated, then it 

can be used to calculate the weighted set for a smaller shifts. 

 

The main advantage  of  GROG  is  that  no pre-calculated  DCFs  or  other  parameters  are  

required  for gridding, whereas convolution gridding requires a DCF in addition to other 

parameters. While this is not a difficulty for the radial or spiral trajectory, the ability to grid 

BLADE,  rosette,  or  stochastic  data  without  having  to  calculate  a  DCF  is  highly  

advantageous. It is important to note that the effective DCF used in GROG, i.e., the 

averaging of shifted points that map to the same Cartesian location, cannot be used for 

other gridding techniques, because GROG explicitly calculates the values of the Cartesian 

points.  Thus, after applying the appropriate GROG weights to each non- Cartesian point, 

the resulting dataset is made up of purely Cartesian points, which can simply be averaged.  

It would also be possible to weight the shifted points with scaling factors that depend on the 

distances of their GROG shifts, although this method of calculating the DCF has not been 
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examined.  In  addition,  for  under sampled  datasets,  GROG automatically performs an 

approximation of the high SNR, low  artifact  energy  DCF  proposed  by  Pipe.[22] for  

under- sampled  datasets.  Thus,  under sampled  data  are  also  correctly  

density-compensated  without  the  need  for  considerations about the degree of under 

sampling present in the dataset. 

5.3. GROG considerations  

 Data oversampling. 

However, the stability of the GROG technique may be affected by the presences of 

the noise especially with the dataset with low SNR [27] as it will affect the reconstructed 

image compared with the convential convolution gridding, thus to improve the 

performance of the GROG we need to oversampling the data along the read out directions , 

where the advantage of oversampling is to increase the number of non-Cartesian points 

which shifted and contributed  to the same Cartesian point from the multi-channel array of 

coils, thus increasing the stability of the algorithm generally and specially in the noisy data 

sets. So, oversampling the data along the read out direction is considered an essential point 

in the GROG algorithm.  

 The measurement of the calibration data set. 

In order to use the GROG a calibration data set is needed to determine the base 

weight matrix, and hereby to estimate the values of Gx, Gy, with a constant distance 

between adjacent points. The calibration data ser takes the form of Cartesian data set with a 
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unity  shift  i.e.  k=1,  so  the  GROG  weight  can  be  estimated  as  GRAPPA  coefficient.  

However, most of the non-Cartesian data sets don’t imply to have enough and sufficient 

Cartesian  data  points  to  allow  a  direct  estimation  of  the  GROG  weight  s  using  the  

GRAPPA operator. So, either a separate Cartesian data set has to be acquired prior the scan 

as in routine GROG, which may be affected by other factors as patient motion or changing 

the field of view, or using a self –calibration GROG [28] which is restricted to Cartesian 

trajectories with a predefined relation ship between many pairs of values along the 

trajectory , as in radial or spiral trajectory, this also may be degraded by either the lack of 

instability of GROG weights estimation and reconstruction due to using of fewer data 

points for calibration   or a more sophisticated algorithms [28]. 

The self-calibration algorithm used for GROG is built on the assumption that a matrices 

with a unity shifts in the logical directions are commute, as shifts in one orthogonal 

direction followed by shift in another orthogonal direction can be done n opposite order 

(self- grog ref) this assumption can not be always hold in practical (self-grog ref), so we 

can conclude that a trajectories with no Cartesian portion or radial symmetry the 

self-calibration GROG will not be beneficial and need for additional scan will be a must in 

order to use GROG in gridding reconstruction. 

5.4. Using Neural Network for GROG base weight estimation 

The Neural Network showed a great potential in different applications in different 

clinical fields. However, in this section we showed another potential for neural network in 

MRI applications. As previously illustrated the usage of GROG in gridding in spite the 
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current limitations in this techniques from the need of oversampling the data in the read out 

direction to assure stability of the algorithm or need for calibration data set. However, the 

neural network can be used as novel approach in gridding without the current limitations of 

GROG. 

The idea is to use directly the acquired non uniform sampling data form the multi-channel 

array of coils directly, these data will be used as learning data set for a supervised neural 

network, where the input data is the acquired data form all coils and output data is the data 

per each coil,  as shown in fig 5.2, where the NN will learn the proper weights to shift the 

non-uniform sample within the k-space to the nearest randomly set of acquired 

non-uniform samples using the spatial information from the coil itself and other coils in the 

array ,then the process will  be repeated for each coil , so the weight set per each coil will be 

estimated.  

Here the algorithm will be independent form the trajectories whatever it will be with 

Cartesian data set or non Cartesian one , also the algorithm so the algorithm will not need 

any calibration data set it considered as self-calibration method . After training the NN with 

the proper weights, then we can apply the acquired data form multi-channel array to the 

trained neural network to reconstruct the Cartesian points directly with tow different 

strategies in wither we can use single source to single target approach, Where the source 

point will be the non-Cartesian point and the target one will be the nearest Cartesian point 

or we can use multi-source point. 
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This will be the non Cartesian point form the acquired data to single target point which will 

be nearest Cartesian point. As the idea here is that any non-Cartesian point will be 

surrounded by four Cartesian points. In this way we can revere the relation to estimate the 

Cartesian point directly. 

 

 

Figure 5.2. The architecture of supervised back propagated Neural Network 

 

The algorithm can be summarized as follows  

 Acquired  the  data  of  multi-channel  array  of  coils  with  non  Cartesian  

sampling scheme. 

 Apply ALL acquired data to a supervised NN for training  
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 Every non Cartesian point will be used as input and the output will be the 

nearest surrounding non-uniform samples with a distance =< 1 this will be repeated per 

each coil within the array  

 Reconstruct the Cartesian data per each coil used trained NN and weights  

 

 

 

 

 

 

 

 

 

 

 

5.5. Experiment 

Apply Non-Uniform s ampling 
Data from all coils for training 

Training phas e through NN, 

T o get  the required Weights per each coil 

Using T rained NN   

G et S O S image of coil array 

Apply weights per each coil

Apply the data for reconstruction

 
 

Figure 5.3. The proposed Neural Network algorithm for estimating the Cartesian data 

points from non Cartesian data 
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The proposed technique is validated using simulated data and real data, the 

simulated data of the Shepp-Logan (SL) phantom [16] with a matrix width of 128 for a 

radial trajectory and Spiral trajectory. The phase encoding direction is left-right. Eight loop 

coils are used in the simulation with coil sensitivity derived from the Biot-Savart law for 

circular loop coils. Complex Gaussian noise is added to the simulated data of all coils with 

zero mean and standard deviation that is 0.001 times the root-mean square value of all 

signals in the eight coils.  

We used a simple a supervised neural network with 32 hidden layers. By applying above 

mentioned algorithm, in the training phase, the input data are the acquired data form the  

array of coils, where every non Cartesian point, per coil, will be paired separately by the 

nearest surrounding 5 non Cartesian points within the same coil and other coils in the array 

of coils according to the minimum Euclidian distance between points, and the output will 

be it is pair point, so the NN will be trained to optimize the weights needed for this shift, we 

use 1000 iteration for optimizing the weights and NN performance.  

After the training phase reach optimum performance the trained NN will be used for the 

reconstruction phase, the Cartesian point will be estimated using the non Cartesian 

acquired data per each coil and relevant data within the other coils. 
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Here  there  are  tow  strategy  for  reconstruction  can  be  used  either  using  the  nearest  non  

–Cartesian data point to be shifted to the Cartesian point or the 4 surrounding non Cartesian 

point will be used to estimate the Cartesian one. 

The described reconstruction is applied to a real MR phantom acquired with a gradient 

echo sequence on a SIEMENS Trio system. With an array coil of eight channels using of 

spiral trajectory with 16 interleaves and 256 samples per leaf  

 

5.6. Results 

Fig.5.4 shows the results of applying the new method to the simulated SL data, 

where every coil has been reconstructed separately with a spiral trajectory.  Fig. 5.5 shows 

the difference between the final SOS image for the coil array using the Neural network 

with the nearest non-Cartesian point strategy and the final SOS image for reconstructed 

SOS images the GROG algorithm. The Neural Network show more homogenous image 

quality with fewer artifacts in the main FOV. The results of applying the proposed method 

to the real MR phantom are shown in Fig. 5.6. The separated coil reconstruction. While 

fig.5.7 show the SOS final image constructed using Neural Network for the real phantom 

data with the spiral trajectory using two different strategy for reconstruction and estimation 

of Cartesian point , one with the nearest non Cartesian point and the other using the 

surrounding 4 non Cartesian point. 
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 In spite expectations to have more image quality using the 4 non Cartesian points as the 

Cartesian point will be estimated from more than one non Cartesian one , the nearest non 

Cartesian point show more image quality on the final image reconstruction with less  

 

 

 

 

Figure 5.4. Show the reconstructed images for the eight coils of SL phantom with as spiral trajectory 

of width 128 using the Neural Network 

 

 
Figure 5.5 the reconstructed SOS images of GROG and Neural Network for Spiral 

Trajectory  
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Figure 5.7. The reconstructed images for the real phantom data of eight coils with a spiral trajectory 

 
 

Figure 5.6 the reconstructed SOS images of GROG and Neural Network for radial 

Trajectory  
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5.7. Discussion  

The usage of NN in gridding the non Cartesian data has been demonstrated for 

radial, spiral trajectories. One advantage of NN, as well as GROG technique for gridding, 

is that no pre-calculated DCFs or other parameters are required for gridding, whereas 

convolution gridding requires a DCF in addition to other parameters. While this is not a 

difficulty for the radial or spiral trajectory, the ability to grid BLADE, rosette, or stochastic 

data without having to calculate a DCF is highly advantageous[21,22,23,24]. 

 
Figure 5.8.  The reconstructed images of real phantom data using the nearest non       

Cartesian point strategy Fig .8.B, and using the surrounding 4 non Cartesian points to 

estimate the Cartesian point Fig 5.8.A 

A     B 
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There are other methods besides NN and GROG techniques that perform data gridding 

without the need for a DCF. For instance, Uniform Resampling/Block Uniform 

Re-sampling (BURS) [24] is a method that performs data re-sampling by transforming the 

gridding problem into a linear equation which can be solved using singular value 

decomposition  (SVD).  As  in  NN  and  GROG,  no  sub-sampling  is  employed  for  the  

gridding process and no DCF is required. However, this family of methods has several 

drawbacks. In the URS method, the large number of data samples leads to an 

inconveniently large linear equation. The BURS method is somewhat more practical, 

although it is highly sensitive to noise due to the need for a matrix inversion in the SVD.  

The extension to these approaches, regularized block uniform resampling (rBURS) [24] , 

addresses this noise sensitivity problem, although the results are strongly dependent on the 

parameterization of the matrix inversion problem, i.e., the regularization and the size of the 

region of support. 

However, the main advantages for the NN technique over other techniques like GROG is 

the no need for oversampling the acquired data per each coil over the read out direction, 

which was an essential step specially for the datasets with the low SNR. As the SNR loss 

can be attributed to the application of weight sets to the individual noisy pints, which 

amplifies the noise into the shifted point. The application of NN to simulated data and real 

phantom data as on fig 5.5, fig5.5 and fig 5.8 respectively show a good image quality for 

the final SOS image as well as coil images without need for oversampling the data. 
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The other difference between the application of NN and GROG technique is the no need 

for a pre-calibration data set, to get the base weight, or pre-requisite need for special 

trajectory with Cartesian sampling to be inherited. As shown in fig.5.5 the usage of NN can 

be applied to simulated phantom with a spiral trajectory, without any pre-calibration  

Data  the  final  SOS  image  show  an  improvement  image  quality  over  the  GROG  with  a  

pre-calibration data. Fig 5.8 show also a good image quality with using of NN for real 

phantom data with a spiral trajectory without need for a pre-calibration data and with two 

different reconstruction criteria. 

However, instead of above mentioned advantages for the NN technique the final SOS 

image show a some artifact, an expected source of the artefact is due to using a real-valued 

NN instead of complex-valued NN. Treating real and imaginary parts separately may be 

the trained weights for each part vary independently causing the ghosting artifact as we see 

in NN-images. This is known as quadrature-ghost, and it may be expected, these artifact 

can be reduced by using a complex-valued NN. 

In spite the great performance of the NN in gridding, the NN architecture itself may be 

need  a  more  focus  in  order  to  optimize  the  NN  components  like  the  number  of  hidden  

layers, Activation function, this optimization may either increase the performance of the 

NN  lead to good performance in the reconstructed image or decrease the training and 

reconstruction time for the NN.  
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5.8. Conclusion 

The NN proposed technique here is an alternative and improvement step over the 

current methods for the gridding of non-Cartesian datasets. Instead of employing a 

convolution window as in the gold-standard gridding, the NN is instead used to be trained 

to shift the non-Cartesian data points to their nearest Cartesian locations without need for 

oversampling the acquired data as well as the need for a pre-calibration data sets which 

enable the N technique to be used with many non uniform trajectories.  

The NN show a good potential to be used as pre step with the parallel imaging for non 

Cartesian data set as it can the  under sampled non-Cartesian datasets to yield Cartesian 

data points near the sampled locations and zeros in all other locations could even be 

advantageous for other types of non-Cartesian parallel imaging reconstructions.  

The need for using a complex valued NN with optimised architecture is considered a 

potential point for future work,  with the those way of modifications we can decrease the 

presence artefacts in the final reconstructed image in spite the good and diagnostic image 

quality of the reconstructed image, however the scope of using NN in this work was as a 

tool to overcome current limitations in the current technique. 
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Chapter 6 

 

Conclusions and Future Work 

 In this chapter the contributions made by this dissertation are summarized, and 

possible future extensions and applications are discussed. 

 

6.1 Uniform Sensitivity  

The new method for parallel imaging acquisition and reconstruction that improves 

the current GRAPPA technique in terms of image uniformity over the entire FOV by using 

simultaneous acquisition between body coil and local surface coil proposed in this 

dissertation is a promising method to improve the final reconstructed image, as this image 

is sum of square image from the array of surface coils so,  no phase information will  be 

presented in the image. So, the new method can add a uniform sensitivity by using the 

phase information form the body coil which is uniform over the field of view. Moreover, 

this new technique can be extended to be combined with other parallel imaging, as 

Auto-sense, by overcoming the current hardware limitations for this technique to acquire 

the data simultaneously between the body coil and local array coil this technique can 

improve  the  phase  information  for  the  final  image  reconstruction.  The  reduction  of  the  
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noise accompanied with the body coil data considered a potential point for more work as it 

will improve and decrease the apparent artefacts into the final reconstructed image. 

 

6.2 Variable Block GRAPPA 

 We proposed a variable-size convolution kernel instead of the fixed-size kernel 

initially employed in GRAPPA. The variable-size kernel follows directly from the mutual 

coil sensitivity of each coil pair. The kernel is defined though the ratio of the sensitivities of 

each pair of coils which depends on the inherent sensitivity of each coil and the geometry 

of the coil array. The kernel is a 2D function and is concentrated in a direction  

That depends on the location of the two coils under consideration relative to each other. 

The proposed approach of using variable-size kernel can improve our understanding of 

how GRAPPA works and can help in optimizing the reconstruction as well as the selection 

of various scan parameters like the number and locations of the ACS lines.  

 

6.3 Using the Neural Network to solve the gridding problem  

We proposed a new technique to solve the gridding problem associated with the 

non uniform sampling by employing The Neural Network as an alternative and 

improvement step over the current methods for solving the gridding. Instead of employing 

a convolution window as in the gold-standard gridding, the NN is instead used to be trained 
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to shift the non-Cartesian data points to their nearest Cartesian locations without need for 

oversampling the acquired data as well as the need for a pre-calibration data sets which 

enable the N technique to be used with many non uniform trajectories.  

Some potential points can be expected as future work i.e., the Neural Network architecture 

itself may be need a more focus in order to optimize the Neural Network components like 

number of hidden layers, Activation function and the usage of complex Neural Network, 

this optimization may increase the performance of the Neural Network or decrease the 

training and reconstruction time for the Neural Network.  
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