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ABSTRACT 
 

 

Protein function prediction is one of the most important and hot tasks in the field of 

proteomics, since it leads to understanding cell activities. Protein functions may be 

predicted from protein sequences, gene expression, protein domains, protein 

localizations, protein structure, and protein-protein interactions (PPI) as recent 

computational techniques. 

Although protein function prediction through PPI networks is a powerful modality, it 

lacks the following points: 1) the reliability of the protein interactions to be 

considered in the prediction process where each interaction can be identified by one 

or more experimental method. And each experimental method has its score of stability 

and reliability. 2) The relations between the known protein functions and correlation 

which affect the prediction process. and 3) the features that identify these functions. 

Most of the previous computational techniques do not consider these points; that is 

why it decreases the confidence of the prediction process. 

 

In this thesis, some algorithms are provided with new ideas to overcome the above-

mentioned drawbacks. Regarding the reliability, an integrated algorithm is proposed. 

It includes the experimental identification method; that includes the number of 

experimental methods furthermore their reliabilities, local topology which indicates 

the number of surroundings for the studied proteins, and global topology which 

illustrates the most common graphs for the proteins through the network. In addition, 

a new weighting algorithm has been calculated using all the previous data. This new 

technique explores the collected data to create reliable interactions and enhance the 

prediction process. 

Moreover, a novel technique is introduced to express the relations between protein 

functions, including number of interactions between the protein clusters and 

overlapping number of proteins that have the same functions. This technique indicates 

the correlation, anti-correlation, and independency between some protein functions 

which affects the protein function prediction. 
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Motif extraction is also performed using different techniques as multiple sequence 

alignment (MSA) in order to take advantage of the features that identify protein 

functions. This consensus (the most common positions of amino acids for proteins in 

multiple sequences alignment) is considered as the signature of that function and is 

used to identify it. 

The proposed techniques are applied to Yeast data “Saccharomyces Cerevisiae” the 

simple eukaryote species which has complete genome and sequences. Yeast has a 

round 6500 proteins which can be classified into three main function categories. Each 

one of those function categories (biochemical – cell location – cellular role) contains 

many sub-functions.  

The obtained results are validated via valuable methods and the results revealed great 

enhancement in protein function prediction process. The sensitivity and specificity of 

the results are more reliable than the previous techniques. 
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Chapter 1 

 

 

 

Introduction 
 

 

1.1  Thesis Overview  

 

One of the most important challenges of the post-genomic era is determining 

protein functions. Due to this reason, Automated Function Prediction is currently one 

of the most active research fields. Furthermore, the availability of entire genome 

sequences and high-throughput capabilities that helps determining gene co-expression 

patterns has shifted the research focus from studying single proteins or small 

complexes to the entire proteome. Since, discovering the new functions of un-

annotated proteins has led to understanding the cell function; a lot of methods have 

been implemented to satisfy this object.  

Here, integrated techniques that can be applied to the protein interaction networks are 

presented to predict more reliable protein functions. These techniques use a new 

weighting method for determining protein reliability; moreover use a novel algorithm 

to discover the correlation between protein functions. Feature selection techniques are 

applied to focus on the subset of relevant variables. Several computational approaches 

will be used for finding specific genetic signatures characteristic of each function. We 

subsequently validated the robustness of those signatures with a set of test sequences. 

The results obtained from the proposed algorithms will be analyzed, validated and 

compared with the previous work.  
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1.2 Problem Definition and Motivation 

 

In the past, Biologists tried to determine protein functions from the structure of the 

protein and similar proteins. Possible roles of similarity between the protein and its 

homologies - from other organisms - were suggested and investigated to predict 

protein functions.  

Due to the different groups of homologous, these methods were found to be 

exhaustive and uncertain. That is why other techniques have been used to predict the 

protein functions by analyzing gene expression patterns [1, 2], phylogenetic profiles 

[3, 4, 5], protein sequences [6, 7], protein domains [8, 9]. These technologies suffered 

from high error rates because of their inherent limitations. Another technique which 

depends on integrated multi sources was used [10, 11].  

The computational approach, which has been adopted to solve these problems, uses 

information gained from physical and genetic interaction maps to predict protein 

functions.  

Recently, researchers introduced different techniques to determine the probability of 

protein function prediction using the information extracted from Protein-Protein 

Interactions (PPI). Although these trials are promising, they lack the solving major 

problems such as network topology and strength of interaction.  

Network topology represents the interaction between proteins and how they are 

connected. This means that, a lot of information can be extracted from these networks 

regarding the strength of interaction and its contribution to new function prediction 

i.e. weighted contribution. A PPI network can be described as a complex system of 

proteins linked by interactions. The computational analysis of PPI networks begins 

with the representation of the PPI network structure. On the other hand, the simplest 

representation takes the form of a network graph consisting of nodes and edges [12]. 

Proteins are represented as nodes in the graph and two proteins that interact physically 

are represented as adjacent nodes connected by an edge [13]. Based on this graphical 

representation, various computational approaches, such as data mining, machine 

learning, and statistical approaches can be performed to reveal the PPI networks at 

different levels. 

In general, the computational analysis of PPI networks faces some major problems. 

First, the unreliability of protein interactions, which comes from large-scale 
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experiments, that yields numerous false positions as Yeast two hybrids (Y2H).  

Second, protein may have more than one function and may be considered in one or 

more functional groups which lead to overlapped function clusters. Third, proteins 

with different functions may interact this means that PPI has connections between 

proteins in different functional groups which expand the topological complexity of the 

PPI networks. 

 Neighbor counting is a method proposed by Schwikowski et al. in [14] to infer the 

functions of an un-annotated protein from the PPI. This method finds the neighbor 

proteins and gets their assigned functions and the frequencies of occurrence of these 

functions. Then, these functions are arranged in descending order according to their 

frequencies. The first k functions are considered and assigned to the un-annotated 

protein. The authors in [15] used this technique with k equals to 3. Although this 

method exploits the information from the neighbors, it has some drawbacks: 1) it 

considers the interactions to be of equal weights which is not logic, 2) it does not take 

into consideration the nature of the function and whether it is dominant or not and 3) 

it does not provide a confidence level for assigning a function to the protein. The 

problem of confidence level was addressed in [16] where the authors used Chi-square 

statistics to calculate significant value based on the probability of the presence of 

different functions. Although chi-square
 
method provides more deep analysis, it 

produces lower sensitivity and specification compared to the neighbor counting 

method. Deng et al., in [17] considered different situations of the presence of certain 

function for a protein of interest and described them as: 1) number of all proteins 

sharing this function, 2) number of protein pairs (interacted) and having the function, 

3) number of protein pairs with one of them has the function and the other does not 

and 4) number of protein pairs does not have this function. A weighted sum of these 

numbers is calculated according to random Markov field algorithm at a time and 

assigned different weights, so Markov random field method [17, 18] introduces the 

overcome of all the above problems by considering the entire interaction network.  

For it considers the frequency of proteins having the function of interest, as well as all 

the neighbors with less weight placed on, far away neighbors close ones, it can 

calculate the probability that an un-annotated protein has a function of interest. This 

method presents good results compared to the previous two methods.  
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1.3  Thesis Objective 

 

Since the protein function prediction is one of the most important tasks in 

proteomics, the target of the thesis is to predict the un-annotated functions for 

proteins. 

In this thesis, new integrated methods are provided to overcome the drawbacks of 

PPIs and to improve the accuracy of prediction. These drawbacks are: 1) - the 

reliability of the protein interactions which is considered in the prediction process, 2) - 

the relations between protein functions and 3) - the features that identify these 

functions. 

 For the reliability, an advanced integrated algorithm will be proposed. It includes the 

experimental identification method; the methods that identify the interactions in lab, 

local topology; the topology that indicates the position of the protein and its direct 

neighbors, and global topology, the topology that identify the position of the protein 

through the network. Moreover, new weighted algorithms have been calculated 

including Average weighted summer, Principal Component Analysis (PCA) and 

exploring the similarity between the proteins interactions and the connected routers in 

certain autonomous number of network explored. By applying the same idea of 

network linked list protocols as OSPF (Open Shortest Path First) information of 

surrounding routers will be clear according to the principals of the cost and level (hop 

count) [19, 20]. On the contrary, in the relation between proteins, a novel technique 

will be introduced to express these relations including number of interactions between 

the protein clusters, overlapping number of proteins that have the same functions, and 

integrated algorithm to collect the previous two techniques. Several computational 

approaches will be used for finding specific genetic signatures characteristic of each 

function. We subsequently validated the robustness of those signatures with a set of 

test sequences.  

The techniques applied to Yeast data “Saccharomyces Cerevisiae” and the generated 

results were validated via valuable methods to reveal great enhancement in protein 

function prediction process. 
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1.4 Thesis Organization 

 

The remainder of this thesis is divided into 7 chapters. 

Chapter 2 presents the basic biological concepts to understand the rest of the thesis 

and presents a description of the data source as Yeast protein interactions used in this 

thesis.  

Chapter 3 describes the definition of PPI, challenges, methods of identification, 

mathematical and graphical models of protein interactions, PPI prediction methods, 

and PPI databases. 

Chapter 4 reviews the current literature pertaining to protein function prediction 

methods through PPI. 

Chapter 5 presents the contribution procedure; weighting the protein interactions and 

predicting their functions using the neighbor counting method. This chapter 

introduces the interaction weights by number and reliability of experimental methods 

furthermore the network topology either local or global then using neighbor counting 

method to get the functions. 

Chapter 6 describes an approach of estimating the correlations between the protein 

functions through the cluster interactions and overlapping number of proteins.  

Chapter 7 explains the genomic signatures and motif extraction methods for 

identifying protein functions.  

Chapter 8 discusses the results and the possible improvements in research as well as 

identifying the future work related to research areas. 
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Chapter 2 

  

Biological background 

 

This chapter is written as a suitable starting point for the readers who lack 

necessary biological background to read the rest of the thesis. In this chapter, we will 

discuss in brief, an introduction about Proteomics, the need for proteomics, and its 

impact on health life with current hot research areas (section 2.1). The second section 

is about the typical structure of a cell down to molecular level including major 

biological terminologies and genome organization in Eukaryotic and Prokaryotic cells 

(section 2.2). Later on, section 2.3 introduces a short description of the molecules of 

life as DNA, RNA, and protein as well as, its construction, functions, and structures. 

In the end of this chapter (section 2.4), the most important biological data sources 

used in this study is introduced. 

 

 

2.1 Introduction to Proteomics 

 

  It is noticed that there is no absolute definition for proteomics. The most 

common definition is:”Proteomics is a modern science that is collected from 

Mathematics, Statistics, Biology and other fields to introduce the secrets of life” [21] 

as shown in Fig.2.1. The term Proteomics more properly refers to the identification of 

the cell functions. Another definition for proteomics is the theory to solve formal and 

practical problems imposed by or inspired from the management and analysis of 

biological data. Proteomics is concerned with developing new tools for analyzing of 

proteomic and molecular biological data including sequence analysis, proteomic 

algorithms, phylogenetic inference, and biological inspired computational models 

[22]. 
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Fig.2.1 Different fields affect on proteomics 
 

 

2.1.1 Historical development 

 

Proteomics was coined in the early 1990s by Macquarie University PhD 

candidate, Marc Wilkins.  “The protein complement of the genome”. New 

technologies that allow researchers to visualize thousands of proteins at the same time 

revealing patterns that may have important clinical implications. Proteomics is the 

field of studying the proteome (Protein complement to a genome) [23]. Proteomics 

can be divided into three parts [24]: Functional proteomics (The identification of 

protein functions, activities or interactions at organism-wide scale). Expressional 

proteomics (The analysis of organism-wide changes in protein expression). Structural 

proteomics (The determination of protein structure by X-ray, NMR or computer-

based methods). Proteomics uses the mathematical models algorithms to discover the 

functions of the cells and try to visualize the proteins response for the treatment. The 

concepts of the proteome and the field of proteomics are rapidly developing as new 

technology, and high-throughput techniques making the mapping of the entire human 

proteome seem like a dream – as the complete sequencing of genomes once was that 

has come true.  

 

2.1.2 The need for Proteomics 

  

In general, proteomics aims are in three directions; Proteomics tries to 

discover the functions of all the cells (the functions of all proteins inside the cell and 

determine each protein function). Second, proteomics tries to analyze organisms and 
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explain the protein expression and its processes. Third, proteomics attempts to 

determine the structure of the proteins of the cell (3D structure) because the structure 

is responsible for the interactions and the functions. Proteomics researchers try to 

explore the data stored in databases as PIR, DIP, SCOP and PDB for 3D 

macromolecular structures and use mathematical models and machine learning 

algorithms to reach the explanation of the protein function. The information stored in 

these databases is essentially useless until being analyzed. Thus, the purpose of 

proteomics extends much further to develop tools and resources that aid in the 

analysis of the data.  

In this study, the estimation of protein functions through the protein interaction 

networks is performed. The used data is collected from different databases (database 

of protein interactions), and variable techniques have been applied. 

 

2.1.3 Proteomics Impact on heath life 

 

Proteomics is considered an empowering technology that helps the researchers 

in biotechnology taking a proactive role in defining and shaping the future of their 

fields and the world. A new technology of proteomics where researchers are to detect 

how cancer drugs work into the cells is created [25]. That can be performed by 

detecting proteins response for cancer and how proteins interact with. On the contrary, 

pharmaceutical industry has operated without bringing together the disciplines of 

biology, chemistry, and information technology [26]. That is why pharmaceutical 

industry appears to have been retarded, so other industries are implementing 

information technology to improve their operations. According to the genome project 

and the resultant data explosion, it is important to join these fields of science together 

to exploit the available data and thus expedite the drug discovery process. In the past, 

the drug discovery process used to take an average of 15 years to develop each new 

medicine before offering it to the market. Nearly 75% of drug candidates currently 

being tested by pharmaceutical companies fall short and never reach the market [27]. 

In an attempt to improve and reduce the cost of drug discovery, the pharmaceutical 

industry has recently turned to bioinformatics and proteomics which may reduce the 

cost to half. 
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2.1.4 Proteomics Research Areas 

 

 The main research areas for proteomics are: functional proteomics; that 

discovers the functions of all the cells. It determines the functions for each protein and 

the integration between the interacted ones. Then structural proteomics; it visualizes 

the folding shape structure of each protein (3D) to put it into relation with the 

function. Finally, the expressional proteomics; it explains the protein expression. 

From the previous research areas, many techniques have been created to enhance 

specific actions.  

 

2.2 Organisms and cells 

 

All organisms consists of small cells, typically too small to be seen by naked 

eye, but big enough for an optical micro scope [28]. They are estimated about 6 *10
13

 

cells in human body of about 320 different types. For instance there are several types 

of skin cells, brain cells (neurons), and many others. The world of organisms could be 

divided into two types: prokaryotic and eukaryotic cells. The main differences 

between the prokaryotic and eukaryotic cells are introduced in Table 2.1 as follows: 

 

Table 2.1 Comparison between Prokaryote and Eukaryote 

 

Feature Prokaryote Eukaryote 

Size Small about 0.5µm Up to 40µm 

Feature Prokaryote Eukaryote 

Organelles No organelles Organelles 

Genetic material Circular DNA Linear DNA and chromosome 

 

2.2.1 Prokaryotic Cells 

 

Prokaryotic Cells which have a typical size of about 1 micron in diameter are 

smaller than eukaryotic cells as shown in Fig.2.2
[1]

 and have simpler structure (e.g., 



Chapter 2 
 

 12 

they do not have any inner cellular membranes that are always present in eukaryotic 

cells) [29]. 

 

Fig.2.2 Eukaryote versus Prokaryote [Prokaryotic and Eukaryotic Cells] 

 
 

 

Prokaryotic cells are single cellular organisms, but take into consideration that being a 

single cell does not mean that an organism is a prokaryote. Being smaller than 

eukaryotes does not mean that prokaryotes are of less important. For instance, it is 

quite likely that the number of bacteria living in the mouth and digestive tract of 

human are being larger than the number of eukaryotic cells in the same individual, 

and many of these bacteria are necessary for a human being to live a normal life 

(these numbers are rather difficult to estimate, rather a hypothesis). Some times 

prokaryotes are known as microbes. 

 

2.2.2 Eukaryotic Cells 

 

Eukaryotic cell has a nucleus; which is separated from the rest of the cell by a 

membrane. The nucleus contains chromosomes, which are the carrier of the genetic 

materials. There is internal membrane enclosed compartment within eukaryotic cells. 

Other organelles are found as: centiroles, lysosomes, golgi complexes, mitochondria 

which are specialized for particular biological processes.  

The mitochondria are found in all eukaryotes and are specialized for energy 

production (respiration) chloroplasts are organelles found in plant cells which produce 

sugar using light. Light is the ultimate source of energy for all life on earth. The area 

of the cell outside the nucleus and the organelles is called the cytoplasm. Membranes 
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are complex structure and an effective barrier to the environment that regulates the 

flow of food, energy and information in and out the cell. 

An essential feature of most (prokaryote and eukaryote) living cells is their ability to 

grow in an appropriate environment and to undergo cell division. The growth of a 

single cell and its subsequent division is called cell cycle. However, not all cells 

continually grow and divide, for example neurons only undergo an initial growth 

phase. Prokaryotes, particularly bacteria, are extremely successful in multiplying. It is 

likely that natural selection has favored single called organisms able to grow and 

divide quickly. Multi-cellular organisms typically begin life as a single cell, as a result 

of fusion of a male and female sex cell (gametes). The single cell has to grow; divide 

and differentiation need to be controlled. Cancerous cells grow without control and 

can go to form tumors. Such development of single cells into complex organisms is in 

itself an area of study called biology development. 

 

2.3 Molecules of life  

 

There are four basic types of molecules involved in life:  

1) Small molecules. 

2) DNA. 

3) RNA. 

4) Proteins. 

DNA, RNA, Proteins are known collectively as biological macromolecules. 

 

2.3.1 Small molecules  

 

Small molecules are the building blocks of the macromolecules or they play 

independent roles, such as single transmission, or being a source of energy, or 

material for a cell. Some important examples besides water are sugars, fatty acid, 

amino acids and nucleotides. For instance, biological membrane is constructed from 

fatty acids, into which macromolecules are embedded. There are 20 different amino 

acids molecules, which are building blocks for proteins. They differ by R side chains 

which determine their properties. The order of these different amino acids within the 
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protein determines the three dimensional structure of the protein. There is a 

convention that each amino-acid is denoted by a letter in Latin alphabet, for instance 

Arginine is denoted by R, Histidine by H, Lysine by L and there are 20 such letters. 

 

2.3.2 DNA  

 

Deoxyribonucleic (DNA) is the main information carrier molecule in the cell. 

Also it is the basis for the building blocks encoding the information of life in a single 

or double stranded.  A single stranded called a polynucleotide (as shown in Fig.2.3) is 

a chain of small molecules, called nucleotides. There are four different nucleotides 

grouped into two types, purines: adenosine (A) and guanine (G) and pyrimidines: 

cytosine (C) and thymine (T). They are usually referred to as bases (in fact bases are 

the only distinguishing element between different nucleotides), and denoted by their 

initial letters, A, C, G and T. However, the ends of the polynucleotide are different, 

meaning that each polynucleotide sequence will have directionality, the ends of the 

polynucleotide are marked either 3’ or 5’. The general convention is to label the 

coding strand from 5’ to 3’ (left to right) [30]. 

 

5’ GTAAAGTCCCGTTAGC 3’ 

 

Fig.2.3 a single stranded DNA “polynucleotide 

 

DNA can be double stranded. When DNA is double-stranded, the second strand is 

referred to as the reverse complement strand. This name is derived from the fact that 

the directionality of this second strand runs in the opposite direction of the first, and 

the bases in the second strand are complementary to the bases in the first. 

Complementary bases are determined by which pairs of nucleotides can form bonds 

between them. In the case of DNA, A binds to T and C binds to G. For the 

polynucleotide given above, the double-stranded polynucleotide is as shown in 

Fig.2.4. Hydrogen bonding between functional groups on the bases is the cause of 

forming the double strands.   

 

 

5’ GTAAAGTCCC-GTTAGC 3’ 
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          | | | | | | | | | | | | | | | 

3’ CATTTCAGGGCAATCG 5’ 

Fig.2.4 double stranded DNA and its nucleotides 

 

 

 

 

 

 

 

 

 

 

Fig.2.5 Double helix DNA and its hydrogen bonds [DNA structure] 

 

 

The orientation of the bases is stacked allowing the rotation of the DNA helix [31]. 

Due to base stacking, DNA completes a turn every 10.5 bp forming a major and 

minor grove as shown in Fig.2.5
[2]

.   

 

2.3.3 RNA 

 

Ribonucleic Acid (RNA) is similar to DNA in the fact that it is constructed 

from nucleotides. However, instead of thymine (T), an alternative base uracil (U) is 

found in RNA. It can also be a part of a hybrid helix where one strand is an RNA 

strand and the other is a DNA strand. RNA is generally found as a single stranded 

molecule that may form a secondary structure (Fig.2.6)
[3]

 or tertiary structures due to 

the complementary bases between parts of the same strand. One of the most important 

roles of RNA is the protein synthesis. It is divided into three types: messenger RNA, 

transfer RNA, and ribosome RNA. Two of the major RNA molecules involved in 

protein synthesis are messenger RNA (mRNA), and transfer RNA (tRNA) [32]. 
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Fig.2.6 Secondary structure for E. coli RNA [Wiki/RNA] 

 

a) mRNA 

 

mRNA encodes the genetic information copied from the DNA molecules. The 

transcription is the process in which DNA is copied into RNA molecule. The 

resulting linear molecule is mRNA transcript as shown in Fig.2.7
[3]

. In eukaryotic 

cells, before mRNA is translated into a protein, it needs to be modified. The nature of 

most eukaryotic genes is that the genes are created in pieces, where coding regions, 

called exons, are interspersed with non-coding regions, called introns. 

 

 

Fig.2.7 mRNA processing [Wiki/RNA] 

 

 

b) tRNA 

 

tRNA molecules develop a well-defined three-dimensional structure (Fig.2.8
[3]

) 

which is critical in the creation of proteins. Attached to each tRNA molecule is an 

amino acid (which will be discussed momentarily). The amino acid is determined by a 

three base sequence called an anti-codon sequence, which is complementary to the 
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sequence in the mRNA. Translation is the process of converting the ribosomes and 

tRNA into protein.  

 

Fig.2.8 tRNA secondary structure [Wiki/RNA] 

 

c) rRNA 

 

Finally, Ribosomal RNA is a part of the ribosome which is involved in 

translation. 

 

2.3.4 Genes and Protein synthesis 

 

a) Genetic Code 

 

Since, there are 4 possible bases (A, C, G, U) and 3 bases in the codon, there are 4 

* 4 * 4 = (4
3
) = 64 possible codon sequences (as shown in Fig.2.9)

[4]
. The codon AUG 

is used as a signal to initiate the translation process, while the codons UAA, UAG, 

and UGA are terminal codons signaling the end of translation. The amino acids are 

coded by the 61 codon sequences. 

 

 

Fig.2.9 64 amino acids codons [tutorials/AAs] 

 

http://www.biomed.curtin.edu.au/biochem/tutorials/AAs/AA.html
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b) Amino Acid 

 

Amino acid is a molecule that consists of amino group (NH2), carboxyl group 

(COOH), and R group (side chain) which determine the type of amino acid (Fig. 

2.10). It is considered as the building block from which protein is made. There are 20 

different amino acids that vary relating to their side chain groups (Fig.2.11)
[5]

. Amino 

acids are classified into different groups based on their solubility in water; 

Hydrophilic amino acids are water soluble, while hydrophobic are not.  

 

Fig.2.10 basic structure of Amino Acid 

 

This property becomes important when a protein sequence is made. Amino acids are 

linked to one another via a single chemical bond called a peptide bond [33, 34]. 

As shown in the following Figure, there are 20 different amino acids. They are 

divided into: neutral non-polar (9 a.a), neutral polar (6 a.a), acidic (2 a.a), and basic (3 

a.a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.11 the different types of AAs [biochemistry/AA]  

 

http://www.biology.arizona.edu/biochemistry/problem_sets/aa/aa.html
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Fig.2.12 central dogma of molecular biology [articles/protein] 

 

c) Protein 

 

Protein is a Greek word “Pro Teios” which means holding first place. Proteins are 

the fundamental components of all living cells. They perform variety of biological 

tasks as controlling physioco-chemical conditions inside the cell, and transmitting 

biological signals. They have high molecular weights reach to millions and they 

consist of sequences of amino acids. Although DNA is kept in nucleus, protein 

synthesis happens in cytoplasm. The central dogma of molecular biology is shown in 

Fig.2.12
[6]

 which indicate the transcription and translation processes [35]. 

Since protein consists of groups of amino acids which are responsible for its function. 

Any mutation or exchange in this sequence will change the shape and cause the 

dieses. Each part of sequence has its shape which combines with other sequences 

leading to the folding shape (final structure of protein). Each protein has its own 

folding shape which may change by time or for making another function. Two or 

more proteins can be combined to specify certain function. The folding is an 

identification vector or signature for each protein. Proteins fold into one or more 

specific spatial conformations driven by a number of non covalent interactions such 

as:  

http://www.getbig.com/articles/protein.htm
http://en.wikipedia.org/wiki/Covalent
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 Hydrogen bonds 

 Ionic interactions   

 Van der Waals' forces 

 Hydrophobic packing  

 

To identify the protein function, 3D structure of protein should be determined which 

can be collected by using such techniques as X-ray crystallography, and NMR 

spectroscopy. There are four types of protein structures as shown in Fig.2.13
[6]

: 

Primary structure; sequence of the amino acids which is cross linked, secondary 

structure; highly regular sub-structures (alpha helix & strands of beta sheet), Tertiary  

 

 

 

Fig.2.13 the different structure of proteins [articles/protein] 

 

 

structure; the three-dimensional structure of a single protein molecule which is spatial 

arrangement of the secondary structures, and Quaternary structure; complex of 

several protein molecules or polypeptide chains, usually called protein subunits which 

function is a part of the larger assembly or protein complex. 

 

2.4  Biological databases 

 

Biological databases are libraries of life science information collected from 

scientific experiments, published literature, high throughput experiment technology, 

and computational analyses. They contain information from research areas including 

genomics, proteomics, metabolomics, microarray gene expression, and phylogenetics. 

http://en.wikipedia.org/wiki/Hydrogen_bonding
http://en.wikipedia.org/wiki/Ionic_interaction
http://en.wikipedia.org/wiki/Van_der_Waals'_forces
http://en.wikipedia.org/wiki/Hydrophobic
http://en.wikipedia.org/wiki/X-ray_crystallography
http://en.wikipedia.org/wiki/Protein_NMR
http://en.wikipedia.org/wiki/Protein_NMR
http://www.getbig.com/articles/protein.htm
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Information contained in biological databases includes gene function, structure, 

localization (both cellular and chromosomal), clinical effects of mutations as well as 

similarities of biological sequences and structures [36]. Fig.2.14 introduces different 

formats for DNA and proteins. 

 

 Primary sequences databases 

All public DNA sequences are stored in the EMBL database (also known as 

EMBL –Bank), which is in fact a collaboration of three databases EMBL in 

Europe, Gen Bank in the USA and DDBJ in Japan (each database mirrors the 

others and they exchange data every 24 hours). 

 

Fig.2.14 Different formats DNA and protein sequences 

 Protein sequence databases  

1. UniProt: Universal Protein Resource (UniProt Consortium: EBI, Expasy, 

PIR) 

2. PIR Protein information Resource (Georgetown University Medical Center 

(GUMC).  

3. Swiss-Prot: Protein knowledgebase (Swiss Institute of Bioinformatics). Its 

format is very similar to EMBL format, except considerably more 

information about the physical and biochemical properties of the protein is 

provided. 
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 Protein Structure Databases: 

1. Protein Data Bank (PDB) (Research Collaborator for Structure 

Bioinformatics (RCSB)) 

2. CATH Protein Structure Classification. 

3. SCOP Structural Classification of Proteins 

4. Swiss-MODEL Server and Repository for Protein Structure Models. 

5. Mod Base Database of Comparative Protein Structure Models (Sali Lab, 

UCSF). 

 Protein-Protein Interactions 

1. Bio-GRID A General Repository for Interaction Database (Samuel 

Lunenfeld Research Institute). 

2. STRING: STRING is a database of known and predicted protein –protein 

interactions. (EMBL). 

3. DIP Database of Interacting Proteins. 

2.5 Summary 

 

In this chapter, an introduction to the proteomics was presented including 

Historical development, the need for Proteomics, proteomics impact on heath life, and 

proteomics research areas. Further more, a comparison between the different 

organisms (single and multi cell) was introduced. Also the different types of 

molecules of life were discussed especially the protein which was presented in details 

having its different types of structure. Finally the most common databases of proteins 

were described. 
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Chapter 3 

 

 

Protein-Protein Interaction Networks 

 

 

There is no doubt that the analysis of protein–protein interactions is one of the 

most important principals of proteomics that enable understanding the cellular 

organization, processes, and functions. Proteins seldom act as single isolated species; 

they often interact with each other in the same cellular processes, while functions of 

uncharacterized proteins (un-known) is predicted through comparison with the 

interactions of similar known proteins.  

In this chapter, the details of protein-protein interactions are discussed. Section 1 

introduces the definition of PPI followed by their challenges (section 2). In addition, 

large-scale experimental methods of protein–protein interactions (section 3) that use 

techniques as two-hybrid systems, mass spectrometry, and protein microarrays, have 

enriched the available protein interaction data and facilitated the construction of 

integrated protein–protein interaction networks . In section 4, graphical and 

mathematical models are introduced to illustrate the proteins and their connections. 

Prediction methods are proposed in section 5. Finally, description for the available 

databases and repositories of protein–protein interactions has introduced in section 6. 

               

 

3.1   Protein-Protein Interaction Network 

 

A Protein-Protein interaction network can be described as a complex system of 

proteins linked by interactions [13] as shown in Fig.3.1. Protein-protein interactions 

play an important role in the field of proteomics. They regulate a wide array of 

biological processes, including transcriptional activation/ repression immune, 

endocrine, pharmacological signaling, cell-to-cell interactions, and metabolic and 

developmental control [37-40]. 
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Fig.3.1 Example of protein-protein interaction network [cytoscape] 

 

Most proteins within cells do not exist in isolation, but interact with other proteins 

either directly or indirectly, via mechanisms that ultimately involve some forms of 

binding. Most proteins in a cell function cooperatively in highly ordered networks, in 

order to let cellular metabolism run smoothly. They may interact with a cell’s nucleic 

acids, in which the function may regulate gene transcription or control DNA 

replication. Another example is the binding of small non protein (ligand) as seen in 

the case of enzyme binding to prevent catalytic activity.  

An enzyme’s catalytic function may also be modified by binding a highly reactive 

metal ion to the active site, such as electron transfer reactions. Finally, proteins may 

interact with other proteins; these interactions may provide a variety of functions such 

as catalytic, structural, localization, cleavage, transferring, or inhibitory functions. 

Protein localization occurs to position of protein in a specific cellular location, this 

allows the cellular contents to remain in their highly ordered compartments, and 

prevents any mixing that may produce undesirable potentials [41]. PPIs play different 

roles in biology based on the composition, affinity, and lifetime of the complex 

association. The basics of protein folding, protein assembly and PPI are the non-

covalent contacts between residue side chains [42]. These contacts facilitate a variety 

of interactions and associations within and between proteins. Based on their diverse 

structural and functional characteristics, PPIs are categorized in three categorical 

ways [43]. Regarding their interaction surface, they are homo - or hetero [44] 

oligomeric, while judged by their stability, they are obligate or non-obligate [45] and 

for as their persistence, they are transient or permanent [46]. A given PPI can fall into 

any combination of these categorical pairs. An interaction also requires 



Chapter 3 
 

25 

 

reclassification under certain conditions; for example, transient in vivo or become 

permanent under certain cellular conditions. 

It is observed that in the same cellular processes, proteins often interact with each 

other regarding the analysis of annotated proteins [47]. Recently, PPI is one of the 

most reliable methods used to predict the protein functions through the known 

proteins. PPI is not used to predict the protein functions only but also to facilitate the 

modeling of pathways to indicate the molecular mechanisms of cellular processes. For 

understanding the biochemistry of the cell, the interactions inside its proteome should 

be characterized. 

 

PPIs are much more wide spread than once suspected, and the degree of regulation in 

the cell that they confer is large. It is important to identify the different interactions, 

understand the extent to which they take place in the cell, and determine the 

consequences of the interactions to understand the degree of significance in the cell. 

 

3.2   Challenges of PPI 

 

In general, PPI networks building is challenging and it has some major difficulties: 

 

1. The reliability of protein interactions 

 Large-scale experiments have yielded numerous false positives [48], high 

throughput yeast two-hybrid (Y2H) assays are ~50% reliable. 

 It is also likely that there are many false negatives in the PPI networks and 

are currently under study. 

 

2.  A protein has several different functions up to eight functions in Yeast. A 

protein is imbedded in more than one functional group. This means that overlapping 

clusters should be identified in the PPI networks. Also it is recommended not apply 

the conventional clustering method for their pair-wise disjoint clusters. 

 

3. It is known that two proteins with different functions can interact with each other.   

Such observations, random connections between the proteins in different 
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functional groups expand the topological complexity of the PPI networks, 

showing difficulties when detecting unambiguous partitions. 

 

4. Many biological data do not provide complete information because the nature and 

limitations of the experiments used to derive them.  

 

5. Many useful biological databases contain overlapping or complementary information 

on the same proteins. The mapping between genes and names is many-to-many. 

Multiple names may refer to the same genes and multiple genes may also be referred 

to by the same name. Each of these databases may refer to the same protein using 

different names. For example, the yeast gene product GIP4, is identified by an EMBL 

accession number (U12980) in EMBL-Bank, a RefSeq accession number 

(NP_009371) in GenBank, an UniProt ID is (P39732) in UniProt, a systematic name 

is (YAL031C) in CYGD, and an SGD ID is (S000000029) in SGD.  

 

For the above mentioned difficulties of PPIs, many studies attempt to characterize and 

understand the behaviors of network interactions [49, 50]. This study takes the 

features of PPIs as small-world properties [51], while others take the scale-free degree 

[52, 53] or hierarchical modularity [51]. 

 

3.3   PPI experimental methods  

 

Consequently, an examination of protein–protein interactions (PPIs) is 

essential to understand the molecular mechanisms of underlying biological processes 

[54]. This section intends to provide an overview of the more common experimental 

methods currently used to generate PPI data. Although experimental methods are 

rather expensive and find out a small number of interactions which are specifically 

targeted, they are very important to determine the protein interactions. Recently, high-

throughput approaches involve genome-wide detection of protein interactions. Other 

studies that use the yeast two-hybrid (Y2H), which is the most widely used method to 

study protein–protein interactions system [55- 57], mass spectrometry (MS) [58-63], 

and protein microarrays [64, 65] generates large amounts of interaction data.  
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3.3.1 Yeast two hybrid system 

 

Y2H system is one of the most common approaches that detects the pairs of 

interacting proteins in vivo [66,67] which takes (a bottom up) genomic approach for 

detecting possible binary interactions between any two proteins encoded in the 

genome of interest. 

It has been introduced in 1989 [68]. It is a molecular–genetic tool that facilitates the 

study of PPI. Since the interaction of the two proteins activates a reporter gene; a 

color reaction is seen on specific media. This indication tracks the interaction between 

two proteins, revealing “prey” proteins that interact with a known “bait” protein.  

Two-hybrid procedures are typically carried out by screening a protein of interest 

against a random library of potential protein partners. Fig.3.2 depicts the Y2H process 

[57, 69].  

In Fig.3.2(a), the fusion of the “bait” protein and the DNA-binding domain of the 

transcriptional activator does not turn on the reporter gene; no color change occurs; 

and the interaction cannot be tracked. Fig.3.2(b), the fusion of the “prey” protein and 

the activating region of the transcriptional activator is sufficient to switch on the 

reporter gene. In Fig.3.2(c), the “bait” and the “prey” associate, bringing the DNA-

binding domain and activator region into sufficiently close proximity to switch on the 

reporter gene. 

Although in vivo, the Y2H system enables both highly sensitive detection of PPIs and 

screening, indicates physical interactions, and good for pair wise and transient 

interactions [66], it has several limitations. The most common limitations are: 1) it 

cannot, by definition, detect interactions involving three or more proteins and those 

depending on posttranslational modifications (PTMs) except those applied to the 

budding yeast itself [66].  2) since some proteins (e.g., membrane proteins) cannot be 

reconstructed in the nucleus, the Y2H system is not suitable for the detection of 

interactions involving these proteins [70, 71]. 3) The method does not guarantee that 

interaction. 
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3.3.2 Mass Spectrometry 

 

 

 

 

Fig.3.2 example of Y2H interaction [cmbi.bjmu.cn] 

 

Quantitative MS is a method used to analyze the composition of a partially purified 

protein complex together with a control purification in which the complex of interest 

is not enriched. Mass spectrometry analysis has been performed in three steps:  

 

1. Bait presentation 

2. Affinity purification of the complex, 

3. Analysis of the bound proteins [70].  

 

MS analysis is applied on the PPI network in yeast [72, 73]. Mass-spectrometry-based 

proteomics which adopts a top-down proteomic approach by analyzing the 

composition of protein complexes, is applied not only to identify and quantify 

individual proteins [72-75] but also to identify and quantify protein analysis, 

including protein profiling [76], PTMs [77, 78], and in particular, identification of 

PPIs. 
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In general, mass spectrometric analysis is more physiological than the Y2H system. 

Actual molecular assemblies composed of all combinations of direct and cooperative 

interactions are analyzed in vivo, as opposed to the examination of reconstituted 

bimolecular interactions vivo or in vitro. MS detects more complex interactions and is 

not limited to binary interactions, permitting the isolation of large protein complexes 

and the detection of networks of interactions.  

However, the technique is best applied on interactions of high abundance and 

stability, while two-hybrid approaches are able to reliably detect transient and weak 

interactions. 

 

3.3.3 Microarray 

 

Microarray-based analysis is a relatively high-throughput technology that 

allows the simultaneous analysis of thousands of parameters within a single 

experiment. The key advantage of the microarray format is the use of a nonporous 

solid surface, such as glass, that permits precise deposition of capturing molecules 

(probes) in a highly dense and ordered fashion. The early applications of microarrays 

and detection technologies were largely centered on DNA-based applications. Today, 

DNA microarray technology is a robust and reliable method for the analysis of gene 

function [79]. However, gene expression arrays provide no information on protein. 

PTMs (such as phosphorylation or glycosylation) that affect cell function. Toexamine 

expression at the protein level and acquire quantitative and qualitative information 

about proteins of interest, the protein microarray was developed. A protein microarray 

is a piece of glass on which various molecules of protein have been affixed at separate 

locations in an ordered manner, forming a microscopic array [80]. These are used to 

identify PPIs, the substrates of protein kinases, or the targets of biologically active 

small molecules. The experimental procedure for protein microarray analysis involves 

choosing solid supports, arraying proteins on the solid supports, and screening for 

PPIs. Experiments with the yeast proteome microarray reveal a number of PPIs that 

are not previously identified through Y2H or MS-based approaches. Global protein 

interaction studies are performed with a yeast proteome chip. Ge et al [66] describes a 

universal protein array that permits quantitative detection of protein interactions with 

a range of proteins, nucleic acids, and small molecules. Zhu et al [65] generate a yeast 
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proteome chip from recombinant protein probes of 5,800 open-reading frames, in 

contrast, mass spectrometric Protein-protein interactions network. As shown in 

Fig.3.3, example of micro array plate. 

 

 

 

Fig.3.3 example of microarray [dnassequencing] 

 

3.3.4 TAP method of complex purification 

 

A TAP tag consists of two IgG binding domains of Staphylococcus protein A 

and a calmodulin binding peptide separated by the tobacco etch virus protease 

cleavage site [81, 82] as shown in Fig.3.4. 

 

Fig.3.4 example of Tap-Affinity experimental method [embl.ed] 

 

A target protein open reading frame (ORF) is fused with the DNA sequences 

encoding the TAP tag and is expressed in yeast, where it forms native complexes with 

other proteins. At the first step of the TAP purification, protein A binds tightly to an 

IgG matrix; and after washing out the contaminants, the protease cleaves the link 

between protein A and IgG matrix. The eluate of this first step is then incubated with 

calmodulin-coated beads in the presence of calcium. After washing, the target protein 
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complex is released. The components of each complex are screened by poly-

crylamide gel electrophoresis, cleaved by proteases, and the fragments are identified 

by MS. Comparing Y2H and TAP–MS, it is noted that both methods generate a lot of 

false positives and miss a lot of known interactions. TAP–MS reports on higher order 

interactions beyond binary and, therefore, provides direct information on protein 

complexes. 

Several large-scale studies of protein complexes are performed using TAP–MS and 

Y2H methods [60, 83-85]. For example, Krogan et al. showed that 7,123 protein 

interactions identified with high confidence in yeast can be clustered into 547 protein 

complexes [86].  

 

3.3.5 Gene co-expression  

 

Since the function of a protein complex depends on the functionality of all 

subunits, subunits present in stoichiometric amounts and gene expression levels of 

subunits in a complex are related. 

Gene expression profiles are provided, for example, from cell cycle experiments and 

expression levels of a gene under different conditions.  

Expression profile similarity  is calculated as a correlation coefficient between 

relative expression levels of two genes/proteins or the normalized difference between 

their absolute expression levels or calculated using other methods [87-91] (Fig.3.5). 

The distribution of these quantities for target proteins then is compared with the 

distributions for random non interacting protein pairs. It is shown that the most 

obvious co-expression comes from permanent complexes such as ribosome and 

proteasome [87]. Several studies tackle the problem of gene co-expression and 

demonstrate that interacting proteins in yeast are more likely to have their genes co-

expressed compared with non interacting proteins [87, 92–99].  

Moreover, it is shown that expression levels of physically interacting proteins 

coevolve, and coevolution of gene expression is a better predictor of protein 

interactions than coevolution of amino acid sequences [100].  
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Fig.3.5 Example of gene co-expression [journal.ppat] 

 

3.3.6 Synthetic lethality method  

 

The synthetic lethality method is successfully used with the DNA microarray 

methodology. The synthetic lethality method produces mutations or deletions of two 

separate genes which are viable alone but cause lethality when combined together in a 

cell under certain conditions [100–109]. Since these mutations are lethal, they are not 

isolated directly and should be synthetically constructed. Synthetic interaction can 

point to the possible physical interaction between two gene products, their 

participation in a single pathway, or a similar function. 

Synthetic lethality experiments are used in predicting the unknown function of the 

proteins (monitoring specific protein interactions). The most detailed information 

about protein interaction interfaces at the atomic level is provided by X-ray 

crystallography and NMR spectroscopy, but the number of solved protein complexes 

remains low [96]. At the same time, the real-time characterization of interacting 

proteins in vivo is achieved with various spectroscopic techniques requiring the 

attachment of a spectroscopic label to a target protein [98, 99]. As shown in Fig.3.9, 

different cases for the identification of the interaction are introduced. 

 

Fig.3.6 example of synthetic lethality experiment [journal.ppat] 
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3.4   Mathematical and graphical models for PPIs 

 

This section introduces the concept of mathematical model relating to the PPI 

and basic properties and metrics applied to PPI networks. It also indicates the basic 

concepts and measurements in graphic representation employed to characterize 

various properties of PPI networks. 

 

3.4.1 Presentation of PPI network 

 

The computational methods of PPI network mechanisms begin with a 

representation of the interactions network structure. As mentioned earlier, the simplest 

representation takes the form of a mathematical graph consisting of nodes and edges 

[12, 13]. Proteins are represented as nodes as shown in Fig.3.7 and two proteins that 

interact physically are represented as adjacent nodes connected by an edge. 

                             

 

 

                                      

    

 

Fig.3.7 proteins as nodes and the interactions as edges 

 

Proteins interact with each other to perform a specific cellular function or process. 

These interacting patterns form a PPI network that is represented by a graph G = (V, 

E) with a set of nodes V and a set of edges E. 

 

V  x V = {(vi, vj) | vi ϵ V, vj ϵ V, i≠j}.                                (3.1) 

 

An edge (vi, vj) ϵ E connects two nodes vi and vj. The vertex set and edge set of a 

graph are denoted by V(G) and E(G), respectively. Graphs can be directed in path 

ways or in enzymes network or undirected as in the functions relations. In directed 

graphs, each directed edge has its source and a destination vertex (target). However, 

Node 

Edge 

Node A 
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undirected graphs, the order of the incident vertices of an edge is immaterial. Also 

graphs can be weighted or un-weighted. 

 

3.4.2 PPI network concepts 

 

A number of fundamental concepts of these graphical representations are 

introduced to understand the used techniques. 

 

a) Degree 

 

The degree (or connectivity) of a node is the number of surrounding nodes which 

have direct connections in an undirected graph [110]. For example, in the undirected 

network graphed in Fig.3.8, node A has degree k = 6.  

 

 

 

Fig.3.8 the number of red nodes is the degree of node A 

 

Let N(vi) denote the neighbors of node vi; that is the set of nodes connected to vi. The 

degree d(vi)of vi is then equivalent to the number of neighbors of vi, or |N(vi)|. In 

directed graphs, the edges will be denoted by d+ or d- relating out or in respectively. 

The summation of corresponding edge weights is used in the weighted graphs. 

 

b) Paths and walk 

 

In this sub-section the difference between the path and walk is discussed 

indicating the different types of paths. Many relationships within a graph is showed 

by means of conceptual “walks” and “paths.” A walk is defined as a sequence of 
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nodes in which each node is linked to its sequencing node. While a path is a walk in 

which each node in the walk is distinct.  

In the path that starts from vi (source), passes through vk, and ends with vj(target) , 

path (vi, vk, vj). All paths starting with source node vi and end by target node vj are 

denoted by P(vi, vj). The number of edges in the sequence of the path acts the length 

of the path. The minimal-length path connecting two nodes is the shortest path 

between them.  SP(vi, vj) denotes the set of the distinct shortest paths between vi and 

vj . The distance between these nodes is the length of the shortest path between them 

and is denoted by dist(vi, vj). A graph G’ = (V’, E’) is a sub-graph of the graph G = 

(V, E) if V’ ⊆ V and E’ ⊆ E.  A vertex-induced sub-graph is a vertex subset V’ of a 

graph G together with any edges in edge subset E’ whose end points are both in V’.  

 

c) PPI networks properties 

 

The most famous characteristics of PPI networks are Small-world and scale free 

distribution. 

 

 Small-World Property 

 

 PPI networks are highly dynamic and structurally complex. They are 

characterized by the inherent properties of complex systems [49,111,112]. PPI 

networks indicate the property of small-world networks which means that the average 

shortest-path length between any two nodes in a network is relatively small. 

In small-word networks, all nodes can be reached quickly from any node via a few 

hops to its adjacent neighbors. It has found that the sub-networks in the middle of 

either a regular network or a random network are highly clustered and have short 

average path lengths between nodes [113]. 

The procedure for random reconnection of a regular graph is illustrated in Fig.3.9. 

The procedure starts with a regular ring graph with 20 nodes and four directly 

connected neighbors for each node. After selecting node and its connected edge, 

reconnection of that edge random with probability p to another node. By repeating 

this process, a disordered random graph is obtained for p = 1. For the value of p 
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between 0 and 1, the graph becomes a small-world network. Like a regular graph, it is 

highly clustered, but it has short path lengths like a random graph. 

 

 

Fig.3.9 random reconnection procedure of a regular ring graph [Reprinted by permission from 

Macmillan Publishers Ltd:[113]] 

 

 

The small-world network with high clustering coefficients and short path lengths is 

detected when p is around 0.01. One of the most famous networks for this 

phenomenon is Yeast PPI networks. The average shortest path length and average 

clustering coefficient for these networks extract from the DIP [114] and MIPS [115] 

databases. Although both networks are large and very sparse, with more than 5,500 

nodes, the average value of the shortest path lengths between all possible node pairs is 

very small, at ~4. 

 

 Scale-Free distribution 

 

As another special property of PPI networks is their scale free distribution 

[110]. The degree distribution refers to the probability that a given node is of degree 

k, is approximated by a power law P(k) ~ k
-Ɣ

. A scale free network has a few high-

degree hub nodes, while most nodes have only a few connections. The structure and 

dynamics of these networks are independent of the network size as measured by the 

number of nodes in the network. Growth and preferential attachment are the two 

important features of scale-free networks [52]. The growth property means that 

networks are continuously expanded by the addition of new nodes connecting to the 

presented nodes. As a preferential attachment, the new nodes are likely linked to high-
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degree nodes. Since the topological structure is characterized by a few ultrahigh-

degree nodes and abundant low-degree nodes, scale-free networks are robust to 

random attacks [116].  Scale-free networks do not possess an inherent modularity, so 

the average clustering coefficient is somewhat independent [110]. As shown in 

Fig.3.10 representation of a scale-free network. Relating to the study [117], the scale-

free distributions in yeast PPI networks is examined and got γ values in the power-law 

degree distributions as 1.77 and 1.64 in DIP and MIP respectively. 

 

 

 

 

Fig.3.10 A scale free distribution [Reprinted by permission from Macmillan Publishers Ltd:[110]] 

 

  

 Modular network 

 

  The discussed properties suggest two important topological issues in the 

analysis of PPI networks: modularity and the presence of hubs. A module in a PPI 

network is a region with dense internal connections and sparse external 

interconnections to other regions. Assuming that a PPI network is composed of a 

collection of modules, it categorizes nodes in the network as modular nodes, 

peripheral nodes, and interconnecting nodes.  Modular nodes are the core of a 

module. They have a relatively high connectivity to members of the same module. 

Peripheral nodes are trivial nodes with a low degree of connectivity. They are linked 

to modular nodes or to the other peripheral nodes in the same module. The connected 

nodes between two modules are interconnecting nodes. The edge that connects two 

nodes in different modules is defined as a bridge. As shown in Fig.3.11, example of 

modular networks. (a) Five dark gray nodes represent interconnecting nodes. Light 
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gray and white nodes are modular nodes and peripheral nodes, respectively. Three 

thick edges are bridges connecting two modules. (b) A black node represents bridging 

nodes. Three dark gray nodes are interconnecting nodes, and three thick edges are 

bridges connecting from the bridging node to each module. 

 

 

Fig.3.11 Examples of modular networks composed of two modules [Reprinted by permission 

from Macmillan Publishers Ltd:[110]] 

 

 

The architecture of the hierarchical network model is characterized by scale-free 

topology with embedded modularity [118] as shown in Fig.3.12. In this model, a few 

hub nodes are emphasized as the determinants of survival during network perturbation 

and as the backbone of the hierarchical structure. This model suggests that low-degree 

nodes are connected to form a small module. A core node within the module 

interconnects not only with the cores of other small modules but also with a higher-

degree node, which, in turn, becomes the core of a larger module consisting of a 

group of the small modules. By repeating these steps, a hierarchy of modules is 

structured through the hubs. The degree distribution of hierarchical networks is 

similar to that of scale-free networks, showing locally disordered effects within 

modules. However, unlike scale-free networks, the pattern of clustering coefficients in 

hierarchical networks has an inverse relationship to degree [110]. Therefore, low-

degree nodes are clustered better than high-degree nodes, since low-degree nodes are 

interconnected within a module, whereas high-degree nodes are typically 

interconnected between modules. A schematic view of a hierarchical network, degree 

distribution, and the average clustering coefficients with respect to degree are 

illustrated in Fig.3.12. The modular and hierarchical network models can reasonably 

be applied to PPI networks because cellular functionality is typically envisioned as 

having a hierarchical structure. Extracting these structures from PPI networks may 

provide valuable information regarding cellular function. 
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Based on this graphic representation, various computational approaches, such as data 

mining, machine learning, and statistical approaches, can be designed to reveal the 

organization of PPI networks at different levels. An examination of the graphic form 

of the network can yield a variety of insights. For example, neighboring proteins in 

the graph are generally considered to share functions.  

 

Fig.3.12 The architecture of the hierarchical network model [Reprinted by permission from Macmillan 

Publishers Ltd:[110]] 

 

 

Thus, the functions of a protein may be predicted by looking at the proteins with 

which it interacts and the protein complexes to which it belongs. In addition, densely 

connected sub-graphs in the network are likely to form protein complexes that 

function as a unit in a certain biological process. An investigation of the topological 

features of the network (e.g., whether it is scale-free, a small network, or governed by 

the power law) can also enhance our understanding of the biological system [54]. 

 

3.5  PPI prediction  

 

This section presents different ways for predicting the protein-protein 

interactions relating to the knowledge of the structure. 
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3.5.1 Protein–Protein Interaction Prediction Using Known Structures 

 

The crystallization structure of proteins is the cause of using some prominent methods 

of protein interaction prediction. A protein’s structure can be solved from the 

synthesized crystals using X-ray diffraction or neutron diffraction analysis using x-ray 

crystallography. Also the nuclear magnetic resonance (NMR spectra are generated by 

placing a sample in a magnetic field and applying radiofrequency pulses) is a 

technique that is generally used for proteins in solution and cannot be crystallized. 

Fig.3.13 shows the x-ray crystallography device. 

 

 

 

 

Fig.3.13 X-ray crystallography device [wiki/ protein structure] 

 

3.5.2 Prediction of PPI in the Absence of Protein Structures  

 

There are numerous methods also designed to predict interactions without 

structural data. These methods can be divided into computational methods and others 

non computational methods [119]. The final forms of the protein interfaces affects on 

the interaction process. It is possible however, that in some cases most of the protein 

surface contributes to a protein–protein interaction with one or multiple interaction 

partners (binding with distinct interfaces on the surface of the same protein. Thus, the 

problem with defining the rest of the protein surface is this surface may form part of 

other interfaces, which would invalidate a proper statistical comparison. There are six 

types of protein interfaces [120]. From an evolutionary perspective, protein–protein 
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interfaces have evolved over time to optimize the interface to suit their individual 

biological functions. This function may have required the evolution of specific 

binding strength. It is also important to distinguish between the different types of 

complexes, in terms of their type of physical interaction, when analyzing the 

intermolecular interfaces. 

 

 

3.6  Protein–Protein Interactions Databases 

 

Protein interaction databases are especially useful for generating a collection of 

known interactions. With the help of computational inference methods, accurate 

interaction predictions can be made. But computational prediction methods still need 

a lot of improvement. The Database of Interacting Proteins (DIP) has combined data 

from a variety of sources to create a single, consistent set of PPI. It contains 

experimentally determined protein interactions and includes a core subset of 

interactions that have passed a quality assessment [121].  

Interaction data are obtained from the literature; PDB; and high-throughput methods 

such as Y2H, DNA and protein microarrays; and TAP–MS analysis of protein 

complexes. DIP has links to a couple of related databases including Live DIP which 

records information about the state of a biological interaction, such as covalently 

modified, conformational, or cellular location states [122].  

For the yeast PPI data, the core PPIs have been selected from full data by a 

computational curative process based on the correlation of protein sequence and RNA 

expression profiles [88]. Another database related to DIP is Prolinks, which brings 

together four methods of linking proteins: phylogenetic profiles, Rosetta Stone, gene 

neighbors, and gene clusters [123].  

Also there are number of open databases that provide comprehensive PPI data for 

several different organisms. There is little standardization among these databases, 

with each having a unique data structure, format, and mode of description. The data 

have been curated using various computational methods. The major open PPI 

databases will be briefly described as follows: 
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 MIPS: The Munich Information Center for Protein Sequences (MIPS) [124] is 

the repository of a significant body of protein information including sequence, 

structure, expression, and functional annotations. This database also includes 

PPI data for selected organisms, including Homo sapiens. The human PPI data 

have been manually created on the basis of literature review and include the 

experimental approach, a description, and the binding regions of interacting 

partners [125]. MIPS is often used as a standard of truth database for 

evaluating the quality of data and the accuracy of interaction prediction 

methods. 

 

 BIND: The Biomolecular Interaction Network Database (BIND) [126], a 

component of BOND (the Biomolecular Object Network Databank), includes 

interactions, molecular complexes as a collection of two or more molecules 

that together form a functional unit, and pathways as a collection of two or 

more molecules that interact in a sequence. 

 

 BioGRID: The General Repository for Interaction Database (BioGRID) [127] 

is a unified and continuously updated source of physical and generic 

interactions. It comprises more than 55,000 non redundant interactions for 

yeast, making it the largest database for this organism, and more than 130,000 

non redundant interactions across a total of 22 different organisms. 

 

 MINT: The Molecular Interaction Database (MINT) [128] uses expert curators 

to extract various experimental details from published literature; these are then 

stored in a structured format. Homo-MINT [129] is a separate database of 

human protein interactions that have been inferred from orthologs in model 

organisms. 

 

 IntAct: IntAct [130] is a database and toolkit for modeling, storing, and 

analyzing molecular interaction data. In addition to PPI data, it also includes 

extensive information on DNA, RNA, and small-molecule interactions. 
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 HPRD: The Human Protein Reference Database (HPRD) [131] provides a 

comprehensive collection of human PPI with protein features such as protein 

functions, PTMs, enzyme–substrate relationships, and sub-cellular 

localization. The human PPI data have been obtained from various 

experimental methods including the Y2H systems. 

 

 

3.7 Summary  

 

 
In this chapter, the basic structure of protein-protein interactions was 

introduced that it consisted of nodes and edges. Later on the challenges of these data 

were introduced and how we could overcome these problems. The most common 

experimental methods used in determining the protein interactions were discussed as 

(Y2H, mass spectrometry, microarray). An introduction for the most common 

mathematical and graphical models was discussed. Finally the different databases and 

data sources were introduced. 
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Review of Literature 

 

 

With the completion of the Human Genome Project (HGP), new challenges lie 

ahead in deciphering the complex functional and interactive processes between 

proteins and multi component molecular machines that contribute to the majority of 

operations in cells, as well as the transcriptional regulatory mechanisms and pathways 

that control these cellular processes [132]. 

Getting large amount of biological data from high-throughput processes such as 

genomic and proteomic sequencing, gene expression profiling, immuno-precipitation, 

mass spectrometry and more recently, flow cytometry, it is now possible to study the 

characteristics and interactions of cellular components from a global perspective. 

Meanwhile, the maturation of high-throughput techniques for various genome 

analysis makes available a large quantity and variety of genomic information. These 

information offer possible avenues to shed light on the functions of proteins which 

cannot be easily characterized by sequence homology alone by providing 

complementary information related to the functionality and behavior of proteins. The 

computational approach, which has been adopted to solve the problems, is to use 

information gained from physical and genetic interaction maps to predict protein 

functions. Recently, the researchers introduced different techniques to determine the 

probability of protein function prediction using the information extracted from PPI. 

 

In this chapter, most of the conventional methods that use protein-protein interactions to 

predict protein functions relying on the basis that interacting proteins share functions are 

introduced. These methods are: neighbor counting, Chi-square, Markov random field, 

Prodistin, Samanta, Support vector machine, and functional flow. 
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4.1 Overview  

 

A PPI network is described as a complex system of proteins linked by 

interactions. The computational analysis of PPI networks begins with the 

representation of the PPI network structure. The simplest representation takes the 

form of a network graph consisting of nodes and edges [12]. Proteins are represented 

as nodes in the graph and two proteins that interact physically are represented as 

adjacent nodes connected by an edge [13]. Based on this graphical representation, 

various computational approaches, such as data mining, machine learning, and 

statistical approaches are performed to reveal the PPI networks at different levels. In 

general, the computational analysis of PPI networks is challenge with some major 

problems. 

 

4.2 Neighbor Counting Method 

 

Neighbor counting is a method proposed by Schwikowski et al. in [14] to infer 

the functions of an un-annotated protein from the PPI. This method finds the neighbor 

proteins and gets their assigned functions and the frequencies of occurrence of these 

functions. Then, these functions are arranged in descending order according to their 

frequencies. The first k functions are considered and assigned to the un-annotated 

protein. The authors in [15] used this technique with k equals to 3. Although this 

method exploits the information from the neighbors, it has some drawbacks: 1) it 

considers the interactions to be of equal weights which is not logic, 2) it does not 

consider the nature of the function and whether it is dominant or not and 3) it does not 

provide a confidence level for assigning a function to the protein. Also the method 

couldn’t predict functions of protein found in un-annotated proteins group. As shown 

in Fig.4.1, four annotated proteins (p1, p2, p3, p5) and their functions ((f8, f9), (f1, 

f7), (f1, f3), and (f1-f6)) respectively. 
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Fig.4.1 annotated and un-annotated proteins and their physical interactions 

 

According to the procedure of the mentioned method (neighbor counting method): 

 

 m1 (un-annotated protein) may have the most frequent functions as:  

o f1 has been found two times from (p2, p5).   

o the rest of functions have been seen only one. 

 m2 (un-annotated protein) may have the most frequent functions as: 

o f1 has been found three times from (p2, p3, p5). 

o f5 has been found two times from (p3, p5). 

o The rest of functions have been seen only one. 

 

It is noticed that, the method does not take the strength of the interactions into 

consideration where the interaction between p2 and m2 may be more reliable than 

interaction between p3 and m2, it leads to:                  

m2 may have function f7 instead of f5,  

So the reliability of interactions should be considered in the proteome study. As well 

as, there is not confidence level for each estimated function. By implementing this 

method on the collected data of yeast proteome network, the results are collected as 

shown in Table 4.1 which indicates the basic, estimated, and overlapping functions 

for each protein.  

Although some estimated functions seem correct as proteins ID (7, 19, 24, and 33) as 

shown in Table 4.1, there are some functions estimated as false positive as protein ID 

(1, 19, 22, 24, and 32) and others can not be predicted. 

 The leave one out (will be introduced later in the end of this chapter) is applied to this 

method and the sensitivity and specificity are calculated. The overlapping cells show 
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the overlapping numbers between the basic and estimated cells as shown in protein ID 

7 which has function ID 25, and protein ID 19 which has functions IDs 8, 43. 

 

Table 4.1 basic and estimated functions for Yeast proteome using neighbor counting method 

Protein ID Basic functions Estimated functions Overlap 

1 42 0 0 0 0 0 0 0 28 35 0 0 0 

2 15 42 0 0 0 0 0 0 0 0 0 0 0 

3 25 0 0 0 0 0 0 0 0 0 0 0 0 

4 7 25 0 0 0 0 0 0 0 0 0 0 0 

5 25 0 0 0 0 0 0 0 0 0 0 0 0 

6 25 0 0 0 0 0 0 0 0 0 0 0 0 

7 25 0 0 0 0 0 0 0 25 0 0 0 1 

8 25 0 0 0 0 0 0 0 0 0 0 0 0 

9 23 0 0 0 0 0 0 0 0 0 0 0 0 

10 31 0 0 0 0 0 0 0 0 0 0 0 0 

11 37 0 0 0 0 0 0 0 0 0 0 0 0 

12 2 0 0 0 0 0 0 0 0 0 0 0 0 

13 2 0 0 0 0 0 0 0 0 0 0 0 0 

14 15 30 0 0 0 0 0 0 0 0 0 0 0 

15 36 0 0 0 0 0 0 0 0 0 0 0 0 

16 10 13 27 28 0 0 0 0 0 0 0 0 0 

17 10 0 0 0 0 0 0 0 0 0 0 0 0 

18 3 8 0 0 0 0 0 0 0 0 0 0 0 

19 8 43 0 0 0 0 0 0 8 43 9 17 2 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 

21 25 0 0 0 0 0 0 0 0 0 0 0 0 

22 7 28 0 0 0 0 0 0 22 0 0 0 0 

23 16 0 0 0 0 0 0 0 0 0 0 0 0 

24 16 22 36 0 0 0 0 0 12 18 37 36 1 

25 28 0 0 0 0 0 0 0 0 0 0 0 0 

26 8 0 0 0 0 0 0 0 0 0 0 0 0 

27 3 16 18 0 0 0 0 0 0 0 0 0 0 

28 0 0 0 0 0 0 0 0 0 0 0 0 0 

29 2 3 15 0 0 0 0 0 0 0 0 0 0 

30 15 16 0 0 0 0 0 0 0 0 0 0 0 

31 3 0 0 0 0 0 0 0 0 0 0 0 0 

32 3 0 0 0 0 0 0 0 37 36 0 0 0 

33 6 8 10 17 24 28 43 0 6 8 43 17 4 

 

Although this method is very simple and easy, it introduces the basic idea of 

estimating the functions exploring the data of surrounding proteins and produces 

roughly good results compared to other techniques. 
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4.3 Chi-square method 

 

Chi-square method is to infer protein functions based on X
2
- statistics and 

overcome the third problem of the neighboring count method (confidence level) that 

takes the fraction of each function among total database of proteins. It is developed by 

Hishigaki [16]. As shown in Fig.4.2, a sample of interacted proteins contains 

annotated proteins which they have functions (white proteins) and others do not have 

(black ones) are introduced. 

 

 

Fig.4.2 sample of proteome network 

For a protein pi, let 

ni (j) = the number of proteins interact with Pi and have function Fj.  

ei(j)  = #Nei(i) X  πj be the expected number of proteins in Nei(i) having function Fj, 

where, #Nei(i) is the number of proteins in Nei(i), and πj is the fraction of the function 

among proteins. )( jsi  is defined as the score value.  

                                  )(/)]()([)( 2 jejejnjs iiii                                             (4.1) 

This method is one of the significance methods used to specify the confidence 

(significance) level and value for each estimated function. Although Chi-square 

method depends on the statistical measurements, their results do not reach for the 

required target as well as it introduces poor results compared to the neighbor counting 

method. 

Although Protein function prediction approaches consider the frequency of proteins 

having the function of interest as well as all the neighbors with less weight placed on 

far away neighbors than close neighbors, the chi-square method does not take the 

distance between the proteins, it just overcomes the significance value. By 

implementing this method to Yeast proteome network data, the next results are 

collected as shown in Table 4.2. The estimated results are poor comparing to the 
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previous method. It is noticed that protein ID 19 has only one overlapping function 

(8), and protein ID 33 has two overlapping functions (6, 8), where, the neighbor 

counting method presents two functions in ID 19 and four functions in ID 33, in 

addition the other estimated and overlapping functions for different protein ID. Also 

as mentioned above the leave one out method will be applied to this method to 

calculate the sensitivity and specificity for chi-square method. 

Table 4.2 basic and estimated functions for Yeast proteome using Chi-square method 

Protein_ID Basic Functions Estimated Functions Overlapping 

1 42 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 15 42 0 0 0 0 0 0 0 0 0 0 0 0 

3 25 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 7 25 0 0 0 0 0 0 0 0 0 0 0 0 

5 25 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 25 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 25 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 25 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 23 0 0 0 0 0 0 0 0 0 0 0 0 0 

10 31 0 0 0 0 0 0 0 0 0 0 0 0 0 

11 37 0 0 0 0 0 0 0 0 0 0 0 0 0 

12 2 0 0 0 0 0 0 0 0 0 0 0 0 0 

13 2 0 0 0 0 0 0 0 0 0 0 0 0 0 

14 15 30 0 0 0 0 0 0 0 0 0 0 0 0 

15 36 0 0 0 0 0 0 0 0 0 0 0 0 0 

16 10 13 27 28 0 0 0 0 0 0 0 0 0 0 

17 10 0 0 0 0 0 0 0 0 0 0 0 0 0 

18 3 8 0 0 0 0 0 0 0 0 0 0 0 0 

19 8 43 0 0 0 0 0 0 8 0 0 0 0 1 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

21 25 0 0 0 0 0 0 0 0 0 0 0 0 0 

22 7 28 0 0 0 0 0 0 22 0 0 0 0 0 

23 16 0 0 0 0 0 0 0 0 0 0 0 0 0 

24 16 22 36 0 0 0 0 0 0 0 0 0 0 0 

25 28 0 0 0 0 0 0 0 0 0 0 0 0 0 

26 8 0 0 0 0 0 0 0 0 0 0 0 0 0 

27 3 16 18 0 0 0 0 0 0 0 0 0 0 0 

28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

29 2 3 15 0 0 0 0 0 0 0 0 0 0 0 

30 15 16 0 0 0 0 0 0 0 0 0 0 0 0 

31 3 0 0 0 0 0 0 0 0 0 0 0 0 0 

32 3 0 0 0 0 0 0 0 0 0 0 0 0 0 

33 6 8 10 17 24 28 43 0 6 8 11 0 0 2 
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4.4 Markov random field method  

 

Markov random field method overcomes all the above problems by 

considering the entire interactions network. Because it considers the frequency of 

proteins having the function of interest as well as all the neighbors with less weight 

placed on far away neighbors than close neighbors. Also it can calculate the 

probability that an un-annotated protein has a function of interest [17].  

The approach considers that for a given function fi, it assigns 1 to proteins which are 

annotated and have that function, and assigns 0 to proteins  which are annotated and 

do not have this function.  

Let X = (x1, ... xn, xn+1, ..., xn+m) denotes the functional annotations of all proteins 

where x1….. xn are un-annotated, and  xn+1 … xn+m  are annotated. It gets the prior 

probability distribution of X based on the interaction network technique; Gibbs 

distribution [18]. Defining Gibbs distribution for protein-protein interaction network 

without the internal interactions is done as: 

        

                                       (4.2) 

                                                                                                                          

Where N is the total number of proteins (N = n + m) and Ni is the number of proteins 

which are assigned with 1. 

The approach needs to define the following items: 

• N11 the number of edges in which both the edges proteins got assignment 1.                  

 



Sji

ji xxN
),(

11                                                                                                           (4.3) 

        = # {(11) pairs in S}, 

• N10 the number of edges in which the edges proteins have different assignments.     



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Sji
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10 )1()1(                                                                                  (4.4) 

       = #{(10) pairs in S}, 

• N00 the number of edges in which both the edges vertices got assignment 0. 



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       = #{(00) pairs in S}. 
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Also the approach defines H1(X) and H2(X) as a model: 

11 )( NxH  .                                                                                                             (4.6) 

0011102 )( NNNxH   .                                                                                       (4.7) 

 

Where α, β and γ define the model parameter set ϴ and are calculated. 

 

The Gibbs distribution can be written as: 

 

)(2)(1))(/1()|( XHXHeZXP   .                                    (4.8) 

 

Where Z( ) is the function of the parameters. 

 

The approach has used sampling method (Gibbs sampling) to get the unknown xi. 

After estimating the parameters and getting the prior distribution, approach uses the 

Bayesian algorithm to get the posterior probability given the prior probability (count 

of given function fi by number of known proteins). By applying this approach to the 

yeast proteome, better results (high sensitivity and high specificity) are collected. As 

shown in Table 4.3, some of x00, x10, and x11 values are collected. It is noticed, some 

values as function ID 4 has x11 equal 0 which reflects the poor estimation for this 

function through the surrounding proteins and interactions using this technique. 

 

Table 4.3 Edge number for the three states of the interaction network 

Function ID X00 X10 & X01 X11 

1 2495 52 12 

2 2437 101 21 

3 2372 164 23 

4 2547 12 0 

5 2153 297 109 

6 2245 240 74 

7 2212 299 48 

8 2413 101 45 

9 2388 156 15 

10 2105 346 108 

11 2485 55 19 

12 2382 123 54 
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4.5 Prodistin 

 

PRODISTIN [133] uses the Czekanowski-Dice distance between each pair of 

proteins as a distance metric and clusters the proteins using the BIONJ clustering 

algorithm [134]. The Czekanowski-Dice distance between every two proteins u and v 

is calculated. The approach uses a simple first-order model of the sampling variances 

and covariance of evolutionary distance estimates. This model leads to a simple 

expression of the minimum variance reduction, which is fully consistent with the 

agglomerative approach. These elements are combined to form BIONJ. And the 

minimum results will be selected. The formula of this technique is shown in equation 

4.9.  

                                               
vNNuvNNu

NvNu
vuD




),(  .                                   (4.9) 

 

Where: Nu refers to the set that contains u and its level-1 neighbors. Nu Δ Nv refers 

to the symmetric difference between two sets u and v. D (u, v) is the distance between 

u and v. 

 

- D (u, v) < 1 if u and v are level-1 neighbors, 

- D (u, v) will be evaluated to 0. If Nu = Nv, and 

- D (u, v) will be evaluated to 1. if Nu ∩ Nv = ∅. 

 

The largest connected components in a protein interaction network are only used. The 

BIONJ algorithm produces a hierarchical classification tree. A PRODISTIN 

functional class for a function is defined to be the largest possible sub-tree in the 

classification tree that: 1) it contains at least three proteins having the function; and 2) 

it has at least 50% of its annotated members having the function. Un-annotated 

proteins in the functional class are then predicted with the function. 
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4.6 Samanta  

 

Samanta technique is like PRODISTIN. It applies clustering techniques to 

partition the proteome into functional modules, but using a different distance metric 

[135]. A p-value between two proteins is computed as follows: 
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Where: N refers to all proteins in the interaction network, 

m = |Nu∩Nv|, n1 = |Nu|, and n2 = |Nv| 

 

The p-value is reflective of the likelihood of proteins u and v sharing m neighbors 

given that u has n1 neighbors and v has n2 neighbors. A similar measure known as the 

Hyper-geometric distance is also introduced in [136] for estimating interaction 

reliability. Using the p-value as a distance metric, proteins are clustered using a 

hierarchical clustering approach. Begin with each protein as a cluster. The two 

clusters with the smallest p-value are merged to form a cluster. The p-value between 

two clusters is computed by the geometric mean of the p-value of its components. 

 

4.7 Support Vector Machines 

 

Lanckriet et al. [137] has introduced an integrated Support Vector Machines 

classifier for function prediction, in which protein-protein interaction data was used to 

derive one of the kernels using pair-wise interaction similarity between proteins based 

on interaction data. 
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4.8 Functional flow 

 

Nabieva et al. [138] has proposed a network-based algorithm that simulates 

functional flow between proteins. Proteins are initially assigned infinite potential for a 

function if a protein is annotated with that function and 0 potential otherwise. Functions 

are then simulated to flow from proteins with higher potential to their level-1 neighbors 

that have lower potential. The amount of flow is influenced by the reliability of the 

interactions between interaction partners, which is derived similarly as in our approach. 

 

4.9 Leave one out 

 

The relationship between quality of prediction and network’s information is 

estimated by applying the leave-one-out method which is applied to proteins have at 

least one interaction. Calculation of sensitivity and specificity is required to determine 

the quality of the prediction. The sensitivity (SN) and specificity (SP) are defined as: 






k

i

k

i

ni

Ki

SN                                                                                                                        (4.11) 





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i

mi

Ki

SP                                                                                                                        (4.12) 

 

Where ni is the number of observed functions for protein Pi, mi is the number of 

predicted functions for protein Pi, and ki is the overlap between them.  

 

4.10 Summary 

 

In this chapter, the most common methods used to estimate the protein 

function prediction exploring data of protein-protein interactions network were 

defined and discussed (neighbor counting method, chi-square method, MRF, 

Prodistin, Samanta, support vector machine, functional flow). It was noticed that 

neighbor counting method was the seed of these methods which could get enhanced 

results by integrating its technique with weighted interactions. Markov random field 



Chapter 4 

 

 44 

method was the best method (high sensitivity) that because it used weights for the 

interacted proteins. It considered the weights for seeds (single proteins), interacted 

proteins having the same function, and interacted proteins which one of them had the 

function and the other did not have it. Also support vector machine method got better 

results.  
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Chapter 5  

 

 

Improvement of Yeast Protein Functions Prediction 

Using Weighted Protein-Protein Interaction  

 

 

   

 Protein function prediction is among the most important tasks in the field of 

bioinformatics as it can lead to understanding cell activities. Since the most recent 

methods of protein functions prediction are performed using protein-protein 

interaction network data, so the reliability of these interactions is very critical point in 

prediction process. Protein-protein interactions are identified by high-throughput 

experimental methods as Y2H, mass spectrometry of co-immunoprecipitated protein 

complexes Co-IP, Gene co-expression, TAP purification Cross link, Co-purification, 

biochemical and other methods. It is noticed that a challenging technical problem is 

done by using the first two methods which lead to spurious interactions as self 

activation in Y2H and abundant with contaminants CO-IP. This problem leads to false 

positive interactions [98]. So getting a quantitative method for evaluating the path 

way through proteomics data is required. A number of experimental and 

computational approaches are implemented for large-scale mapping of PPIs to realize 

the potential of protein networks for systems analysis. One method utilizes multiple 

independent sets of training positives to reduce the potential bias in using single 

training set as association with publishing identifier, or foundation in two species or 

more, or have expression correlation more than 0.6 [139]. Another technique is 

getting the conserved patterns of protein interaction in multiple species [140]. Also 

there are many methods for determining the reliability of interactions [138, 141-145].  
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Usually, equally-weighted protein-protein interactions (PPI) are used to 

predict the protein functions. In this chapter, we provide a new weighting strategy for 

PPI to improve the prediction of protein functions. These weights are dependent on 

the local and global network topologies as well as the number and type of 

experimental verification methods. The proposed methods are applied to yeast 

proteome and integrated with neighbor counting method to predict the protein 

functions of unknown proteins. The results reveal great improvement in the sensitivity 

and specificity of prediction of two functional categories: cellular role and cell 

locations. The studied species is presented in the first section. Later on, the study 

challenges, suggested methodology, and the estimated results are indicated 

respectively. The target of this study is to improve the reliability of the interactions 

and increasing the confidence of the protein function prediction.  

 

5.1 Yeast  Saccharomyces Cerevisiae  

 

5.1.1 Yeast history  

Yeast (Saccharomyce Cerevisiaeas) is a model of organisms. It is a very 

simple eukaryote as shown in Fig.5.1. Yeast is used as a model for human Genome 

which has about 6400 protein-coding genes. In April 1996, the complete genome 

sequence of the brewers and bakers yeast saccharomyces Cerevisiae was sequenced. 

The project was launched by an initiative of A. Goffeau 1989 and the European 

Commission (EC) to sequence chromosome 111 in a pilot study. This was an 

important event, not just because it was the first complete eukaryotic genome 

sequence, but also because it was the first total sequence for an important model 

organism for which there is a large constituency of researches ready and able to 

exploit the sequence data. One third of their functions are un-annotated as shown in 

Fig.5.2. 

 

 

Fig.5.1 Yeast as simple model organism [wiki/Yeast] 
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5.1.2 Why Yeast 

Herein, we can summarize why the current research focus on yeast as following:  

 

1- Yeast has already provided biologists with a valuable resource for determining the 

function of individual human genes involved in medical problems, such as cancer, 

neurological disorders, and skeletal disorder. Over the next few years, scientists in the 

United States and Europe will piece together for the first time a comprehensive look 

at how all the genes in a eukaryotic cell function as an integrated system. ”The yeast 

genome is closer to the human genome than anything completely sequenced so far, 

“said Dr. Francis Collins, director of the National Center for Human Genome 

Research  NCHGR, part of the National Institutes of health  NIH . 

 

2- Biologists have studied yeast, known by its scientific name saccharomyces 

Cerevisiae, for many decades because it offers valuable clues to understanding the 

work of more-advanced organisms. Humans and yeast, for example, share a number 

of similarities in their genetic make up. For example, many regions of yeast DNA 

contain stretches of DNA subunits, called bases that are very close or identical to 

those in human DNA. These similarities tell scientists that, genes in those regions 

play a critical role in cell function in both species, or they would have been lost 

during the 1 billion years of evolution that separate yeast and humans. About one-

third of yeast genes are related to those in the human. Some of these critical processes 

include DNA coping and repair of damaged DNA, Protein synthesis and transport 

across membranes, and control of metabolic processes. 

 

3- In cancer research, S. Cerevisiae has emerged as an important model for studying 

control of the eukaryotic cell cycle. Although yeast DNA shares many similarities 

with human DNA, finding yeast genes is easier because the yeast genome lacks the 

long stretches of filler DNA and repeated bases the human genome contains, which 

often cause scientists problems when examining a long DNA piece for the presence of 

genes. Yet, scientists know. 

 

4- The difficulty of experiments on human body. 
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5- Some researchers made seminal discoveries concerning the control of the cell 

cycle. They have identified key molecules that regulate the cell cycle in all eukaryotic 

organisms, including yeast, plants, animals and human based on study of Yeast. 

Defects in cell cycle control may lead to the type of chromosome alteration seen in 

cancer cells.  

 

6- Yeasts have recently been used to generate electricity in microbial fuel cells, and 

produce ethanol for the bio-fuel industry. 

 

 

 

Function annotation of Yeast

Function annotated

Function un-annotated

 

 

Fig.5.2 Yeast function annotation 

 

 

5.1.3 Yeast Features 

 

      In this study, 6416 proteins are studied and divided into three functional 

categories. Fig.5.3: Cellular role functions including 43 sub-function categories, Cell 

location function including 29 sub-function categories, and Biochemical functions 

including 57 sub-function categories. Table 5.1 shows some examples of sub-function 

categories. 
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Table 5.1 Yeast sub-function categories, function name, and the number of proteins for each function. 

Function category Function name # proteins 

Cellular role Aging 39 

Cellular role Amino-acid metabolism 218 

Cellular role Carbohydrate metabolism 254 

Cellular role Cell adhesion 4 

Cellular role Cell cycle control 213 

Cellular role Cell polarity 216 

Cellular role Cell stress 331 

Cellular role Cell structure 120 

Cellular role Cell wall maintenance 184 

Cellular role 
Chromatin/chromosome 

structure 
274 

Cellular role Cyto kinesis 40 

Cellular role DNA repair 154 

Cell location Bud neck 61 

Cell location Cell ends 6 

Cell location Cell wall 70 

Cell location Centrosome/spindle pole body 72 

Cell location Contractile ring 3 

Cell location Cytoplasmic 755 

Cell location Cytoskeletal 107 

Cell location Endoplasmic reticulum 225 

Cell location Endosome/Endosomal vesicles 36 

Cell location 
Extracellular  excluding cell 

wall  
34 

Biochemical ATPase 247 

Biochemical ATP-binding cassette 31 

Biochemical Activator 46 

Biochemical Active "transporter," primary 93 

Biochemical 
Active "transporter," 

secondary 
201 

Biochemical Adhesin/agglutinin 7 

Biochemical Anchor Protein 13 

Biochemical Channel [passive transporter] 15 

Biochemical Chaperones 90 

Biochemical Complex assembly protein 76 
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Yeast function categories

Cellular role

 Cell location

 Biochemical

 

 

Fig.5.3 Yeast function categories 

 

 

5.2 Challenges of the study 

 

Protein function prediction through protein-protein interaction network is 

considered as one of the most difficult problems in proteomic research era. It has a lot 

of problems as follow: 

  

5.2.1 Yeast protein Naming 

 

The official Gene Name of S. Cerevisiae gene is referred as the standard name 

on SGD locus page, and generally becomes the standard name based on its 

publication in a peer-reviewed paper describing characterization of that gene. Any 

alternative Gene Name is referred to as an Alias. Gene Names in S.Cerevisiae are 

generally three letters followed by number. For example: CDC28-A Gene Name 

conferred on a nuclear ORF on the basis of genetic characterization. Different copies 

of duplicated genes may be indicated by an extension to the end of the Gene Name. 

This extension can be made by either adding a letter, e.g. ‘A’ or ‘B’ as in the case of 

the ribosomal protein genes, or by adding a hyphen and a number, e.g. ‘-1’, ‘-2’, as in 

the case of YRF1genes encoding the ‘Y’ helicase or the ribosomal RNA genes. 

As one of the problems shown in this research area is the protein naming. Since the 

proteins are collected from different centers, universities, institutes, and countries, 

each protein may have more than one name. In Yeast proteome, protein may have up 

to eight names as shown in Table 5.2. Protein ID =1 has four names: two as gene 

names (AAC1 – ANC1) and others as accessions (YM9796.09 - YMR056C). Also 

protein ID = 17 has 8 different names (ABF2- CDRP1- HIM1- HM- P19 HM- mt 



Chapter 5  
 

 62 

TFA- YM9916.11- YMR072W). Since different names lead to a conflict especially in 

PPI, the reliability of each protein and its name should be found. So herein, all 

possible names for each protein are created and collected in single field. 

 

Table 5.2 Yeast proteins and their different names 

 

5.2.2 Protein clusters and interaction 

 

 Proteins are divided into clusters according to special characteristic as 

common function, structure, pathway; eg. Protein may be found in more than one 

cluster. Assuming the function category as cluster, protein is considered in one to 

eight different clusters (function categories). For example protein name (ACT1, 

ABY1, END7, YFL039C) in cellular role category has 7 sub-functions (Cell polarity- 

cell structure- chromatin/chromosome structure- mating response- other metabolism- 

poll 2 transcription- vesicular transport). Although there are 2523 proteins in yeast 

have no annotated functions (one third of proteome number), there are 1236 proteins 

have two functions and 383 proteins have three functions. It is noticed that proteins in 

different cluster may have interactions which inverse/contradictory the basic idea of 

prediction “If two proteins interact, they are neighbors of each others”. For the un-

Protein ID Name 1 Name 2 Name 3 Name 4 Name 5 Name 6 Name 7 Name 8 

1 AAC1   ANC1   YM9796.09  YMR056C     

2 AAC3  ANC3  YBR0753  YBR085W    

3 AAD3  YCR107W      

4 AAD4  D0752  YDL243C      

5 AAD6  YFL056C       

6 AAD10  J2245  YJR155W      

7 AAD14  AKR9B1  N0300  YNL331C     

8 AAD15  O0205  YOL165C      

9 AAH1  N1208  N1825  YNL141W     

10 AAP1  H8179.24  YHR047C      

11 AAR2  YBL0611  YBL06.06  YBL074C     

12 AAT1  YKL461  YKL106W      

13 AAT2   AAT1   ASP5  L1746  YLR027C    

14 ABC1  COQ8  G2920  YGL119W    

15 ABD1  YBR1602  YBR236C      

16 ABF1  BAF1  OBF1  REB2  GFI  YKL505  YKL112W  

17 ABF2  CDRP1  HIM1  HM  P19-HM  mtTFA  YM9916.11  YMR072W 
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annotated proteins, the functions of their neighbors contain information about the 

function of the un-annotated protein. Since the considered interactions are physical 

interactions, the interactions over different functional clusters are not important in the 

study and will be neglected from the calculations regarding the estimated correlation 

over protein clusters/functions. 

 

5.2.3 Protein-protein interactions 

 

Since more than one third of yeast proteome are losing for their functions in 

every category (Table 5.3), it should get reliable protein interactions. So the used data 

is collected from MIPS (Munich Information Center for Protein Sequences (MIPS, 

http://mips.gsf.de)) which is the most reliable and robust data sources for protein 

interactions. MIPS contains 2559 physical interactions among 6416 proteins. These 

interactions have 120 ones as self interactions which lead to worth results especially if 

the protein is found in two different function categories (clusters).  

Self interactions have been removed from the proposed technique. Moreover, both the 

interaction network and the functional annotations of the proteins are incomplete. It is 

noticed that, there is variety in the number of interactions for each protein which 

reaches for 29 interactions in some proteins. Fig.5.4 shows the variety of interactions 

over the number of proteins. 

 

Table 5.3 Numbers of Annotated and un-annotated proteins for All Proteins Based on Three Functional 

categories 

 

Biochemical function 

 

Annotated 3353 

Un-annotated 3063 

Sub-cellular location 

 

Annotated 3181 

Un-annotated 3235 

Cellular role 

 

Annotated 3894 

Un-annotated 2522 

http://mips.gsf.de)/
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As shown in Fig.5.4, more than 300 proteins have more than 5 interactions and about 

1000 proteins have more than two interactions (two neighbors). These interactions 

reach for 29 interactions as Proteins ID =1556 “KRE28”, and protein ID= 3258 

“SNP1”. Since the reliability of these interactions is very critical issue in the study, 

furthermore that all interactions take the same weight “same strength” which it does 

not indicate the strength of the interaction between the two studied proteins, the study 

introduces a new and good reliable measure for determining the strength of 

interactions. These measures produce a weight for each interaction relating to a lot of 

parameters will be discussed later. 

Yeast proteins interaction
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Fig.5.4 yeast proteins interactions 

 

5.3 Protein function prediction using a new weighting algorithm for 

PPI 

 

Usually, equally-weighted protein-protein interactions (PPI) are used to 

predict the protein functions. In this study, it is provided a new weighting strategy for 

PPI to improve the prediction of protein functions. These weights are dependent on 

the local and global network topologies as well as the number and type of 

experimental verification methods. The proposed methods are applied to the studied 

material “yeast proteome” and integrated with neighbor counting method to predict 

the protein functions of un-known proteins. The study introduces a novel algorithm by 

comparing the proteins in protein-protein interaction network to the connected routers 

in the same autonomous number of networking. Protein acts as router (node) and edge 

(interaction between two proteins) as connection between two routers as shown in 
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Fig.5.5, 5.6, where routers can have up to 100 interactions but 29 interactions as 

maximum in yeast proteome. 

 

   

 

                   Fig.5.5  (a) small routing connection system           (b) large routing system 

 

The routing system is performed using many ways as (LAN, WAN, Serial) as the 

different ways of connections (different experimental methods for protein interactions 

in protein system). Initially, the router is not aware of any neighbor routers on the 

link. So linked state protocol is applied to the routing system, where a link is an 

interface on a router and the protocol is the control system of all connected routers. 

The protocol includes some information as: 1)-Interface’s IP address/mask, 2)-The 

type of network; Ethernet (broadcast) or serial point-to-point link, 3)-The cost of the 

link, and 4)-Any neighbor routers on that link. In protein system the same protocol is 

happened 1)- the protein is identified by name, ID, sequence, and its functions (if 

known), 2)- the type of network; just interaction between two proteins or dense 

interactions (cluster), 3)- the weight of the interaction (our contribution), and 4)- all 

neighbors of the adjacent protein.   

 

 

 

Fig.5.6 a part of connected proteins indicates the leafs (yellow nodes) 

a b 
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The protein interactions are calculated till reach the second level. The algorithm is 

performed on three steps 1)- determining the level and degree for each adjacent 

protein, 2)- calculating the weight (cost) for each interaction, and 3)- integrating these 

data to predict the function of the un-annotated proteins using neighborhood counting 

method.  

 

5.3.1 Protein degree and level 

 

There is a difference between the degree and the level of certain node. The 

degree of protein is defined as the total number of adjacent proteins (proteins directly 

connected) [54]. As shown in Fig.5.7, protein A has degree equal 6. But the protein 

level is the layer of nodes related to the studied one. 

 

 
 

Fig.5.7 Degree of the Protein (black node A has degree equal 6) 

 

The directed nodes are the first level and their neighbors are the second level and so 

on as shown in Fig.5.7. The red nodes are the first level of protein A (Black one) 

where yellow nodes are the second level proteins (nodes connected to protein’s A 

neighbors) and the green nodes are the third level. 

 

 

Fig.5.8 real part of yeast proteome using Inter View program 
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In router networks, the hop count principal (the number of routers which send packets 

through routing system) is performed to determine the router level. In our study, the 

second level is assumed to be enough to get the most important information about the 

function of protein. Also, some cases of interactions act as closed loops which have 

been dealt as first level [54, 146-148]. By applying the concept of node level to the 

proposed data, it can be noted as shown in Fig.5.8, proteins ID numbers (1913, 3246, 

and 3517) are the first level for the studied protein (1) and all the yellow nodes are 

second level. As shown in Table 5.4, protein IDs, number of interactions, and the IDs 

of neighbors are produced. 

 

Table 5.4 sample of proteins and their interactions 

 

Protein ID # interactions p1 p2 p3 p4 p5 p6 p7 P8 p9 p10 

32 1 3258 0 0 0 0 0 0 0 0 0 

33 23 19 33 33 84 304 333 370 407 568 1065 

34 17 56 475 1118 1277 2027 3350 3352 3342 3346 3347 

35 0 0 0 0 0 0 0 0 0 0 0 

36 5 36 36 2557 3092 4052 0 0 0 0 0 

37 0 0 0 0 0 0 0 0 0 0 0 

38 0 0 0 0 0 0 0 0 0 0 0 

39 0 0 0 0 0 0 0 0 0 0 0 

40 1 3802 0 0 0 0 0 0 0 0 0 

41 3 1726 3275 386 0 0 0 0 0 0 0 

42 0 0 0 0 0 0 0 0 0 0 0 

43 0 0 0 0 0 0 0 0 0 0 0 

44 0 0 0 0 0 0 0 0 0 0 0 

45 0 0 0 0 0 0 0 0 0 0 0 

46 1 3708 0 0 0 0 0 0 0 0 0 

47 1 4590 0 0 0 0 0 0 0 0 0 

48 0 0 0 0 0 0 0 0 0 0 0 

49 0 0 0 0 0 0 0 0 0 0 0 

50 0 0 0 0 0 0 0 0 0 0 0 

51 0 0 0 0 0 0 0 0 0 0 0 

52 0 0 0 0 0 0 0 0 0 0 0 

53 0 0 0 0 0 0 0 0 0 0 0 
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5.3.2 PPI weighting strategy  

 

In this study, the Protein-Protein interactions are weighted. Three factors are 

considered to calculate these weights for all interactions. These factors are: 

experimental verification methods, Interaction Generality for local topology, and 

Interaction Generality for global topology. 

 

5.3.2.1 Experimental verification method 

 

Protein-protein interactions (PPI) can be identified by a lot of methods as: 

affinity precipitation, affinity chromatography, Yeast to hybrid, purified complex, 

reconstituted complex, biochemical assay, chemical lethality and chemical rescue 

[149]. Since data sets of PPIs contain a lot of false positive interactions, a crucial step 

in analyzing proteomics data is separating the subset of credible interactions from the 

background noise. The technique of this method is divided into two parts: the first 

technique takes the count number of experimental methods only without determining 

their strength (reliability). The second technique takes the reliability of each method 

[150] into consideration furthermore the count number of methods. Then a 

comparison between these two techniques is introduced to indicate their effect on the 

protein function prediction process.  

 

 A. Number of experimental methods  

 

According to the different chemical structure of amino acids, each protein 

interaction pair is identified by one method or more. By applying the previous 

mentioned experimental methods on Yeast protein interactions, it is found that 

interactions are identified by one or two up to ten different methods. 
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Table 5.5 shows some of Yeast interaction pairs, number of identification methods. And determine the 

state of each used experimental method for identification ((1, 2) for satisfy and (–) not found). 

 

Protein_1 Protein_2 # Identification Method Y2H Cross-link affinity chromo precipitation assay purification in Vetro Others 

YKL161C      RLM1 1 1 -  -  - - -  -  -  

AAC1 YHR005C-A 1   1  -  -  - -   - -  

AAD14     AAD14 1 1  - -   -  -  -  -  - 

AAD6   YNL201C 1 1  - -   -  -  -  -  - 

ABP1      ACT1 3 1  - 1  -  - 1  -  - 

ABP1    RVS167 4 1  - -  1  -  -  - 2 

ABP1      SRV2 3  -  - -   -  -  - 1 2 

YER045C      PSE1 1 1 -  -   -  - -   -  - 

ACC1      DMC1 1 1 -  -   -  - -   -  - 

ACC1      SNP1 1 1 -  -   -  - -   -  - 

ACE2   YNL157W 1 1 -  -   -  - -   -  - 

ACS2      SNP1 1 1 -  -   -  - -   -  - 

ACT1      ACT1 4 1 1 1  - 1 -   -  - 

ACT1      AIP1 1 1 -  -   -  - -   -  - 

ACT1      BEM1 2 1 -  -  1  - -   -  - 

ACT1      BNI1 1 1 -  -   -  - -   -  - 

 

Regarding the data taken from MIPS database, each interaction pair (protein names) 

has its number of experimental methods as shown in Table 5.5. For example, it is 

found that, protein interaction (ABP1 and ACT1) is identified by 3 methods (Yeast 

two hybrid, Affinity chromatography, and Purification) while interaction pair (ACT1 

and BEM1) is identified by 2 methods (Y2H, and precipitation).  

It is noticed that, cells have title ‘other’ mean that, the interaction can be happened 

relating to one of these reasons: (redundancy, gel retardation, gel filtration or 

identified in Pub Med). Also self interaction can be created as week point in the 

experimental method as shown in interactions (AAD14 and ACT1). 

Some interactions are identified by nine or ten experimental methods as (ADA2 and 

GCN5) and (CMD1 and NUF1) respectively. Fig.5.9 shows that most of the Yeast 

protein interactions are identified by one experimental method (~ 1890 interactions). 

Also shows the maximum number of identifications reached for 10. 

Herein, our technique considers the interactions that identified by just one 

experimental method as low confidence (with weight 0.5) and interactions identified 

by more than one as high confidence (with weight 1). As shown in Fig.5.10, each 

identified method and its number of interaction is indicated. It is noticed that, the Y2H 
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interactions.  

 

 

 

 

 

 

 

 

Fig.5.9 Experimental methods related to the interaction pairs that reach ten in some interactions. (More 

than one third of Yeast interactions have been identified by one method Y2H) 
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Fig.5.10 Experimental method type and its number of interaction pairs. 

B. Number of experimental methods and their reliability 

As shown in Fig.5.10, most of the interactions are identified by Y2H method 

which contains spurious interactions as self activations furthermore the false positive 
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interactions. So reliability confidence scale should be considered as well as the 

number of interaction. The reliability scale of experimental methods was taken from 

the GRID database as shown in Table 5.6. 

Table 5.6 the reliability scale of some experimental methods regarding to the GRID datasets 

Experimental method Reliability score 

Chromatography 0.82 

Precipitation 0.46 

Two hybrid 0.27 

Biochemical Assay 0.67 

Purification 0.89 

Other 0.35 

  

Suppose the reliability Reli of each experimental method (i) is estimated as in Table 

5.6. And assume that the experimental methods are independent. The reliability Rel 

(u, v) of the interaction of (u, v) is taken as the probability that at least one of the 

involved experimental methods is reliable [151].  The reliability score will be 

calculated from the formula shown in equation-5.1. It is noticed that, the term ni, u, v 

was assumed to equal one (assuming one trial only for each experimental method). 

 

Rel (u,v) = 1- ΠiϵE(u,v) (1-Reli)
ni

                    (5.1) 

 

 

C. Comparison between the reliability methods 

 

Regarding the number and the type of experimental methods, there are different 

values in confidence scores of the reliability. As shown in Table 5.7; the first 

interaction between (YKL161C and RLM1) is identified by one method (Y2H). It has 

confidence scores 0.5 and 0.27 respectively relating to the two suggested methods. It 

is noticed that, in spite of the first two rows have been identified by one experimental 

method, the score in the second method is different (the range reaches 0.4). Also for 

interactions are identified by more than one method, they have varieties in the scores 

according to the type of interactions. 
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Table 5.7 comparison between the two used methods for determining the reliability for protein 

interactions 

Protein 1 Protein 2      Experimental methods     Reliability Method 1 Reliability Method 2 

YKL161C  RLM1 Y2H 0.5 0.27 

ACT1 TPM2 Link Assay 0.5 0.67 

ABP1 ACT1 Y2H, Purification, Precipitation 1 0.956 

ABP1    RVS167 Y2H,Precipitation, two of Others 1 0.833 

 

 

As shown in Fig.5.11, estimating the Protein functions from the surrounding proteins 

is created. The prediction process is performed relating to the number of interactions, 

number of surrounding functions (most frequent), reliability of interactions according 

to the type of identification methods. The types are (1 for Yeast two hybrid, 2 for 

affinity purifications, 3 for precipitation), and the maximum score is calculated. 

Protein (YGL245W) has function number 6 (Cytoplasm) in cell location function 

category. Also it has functions numbers 34 and 36 as cellular role function category 

(protein synthesis, RNA processing/modifications) respectively. The yellow cells are 

assumed un-known and their functions are estimated and compared by the real 

functions. For protein ARC1, it has two interactions; the first produces functions 6-34-

36 by weights (0.5 (one experimental method) -0.89 (affinity purification)).  

The second interaction presents 6-22-34 by weights (1- 0.94) two experimental 

methods and (affinity purification and precipitation) respectively. The estimated 

functions according to the neighbor counting method with reliability of the number of 

interactions are (6-34-22-36) with weights (1.5-1.5-1-0.5) respectively. The estimated 

functions according to the neighbor counting method with reliability of type of 

experimental methods are (6-34-22-36) by weights (1.83-1.83-0.94-0.89) respectively. 

On the other hand, in Fig.11b the protein ACC1 has estimated functions as (20) by 

weight (1-0.54) respectively. The estimation in both cases will be roughly good if a 

threshold more than one is determined. The first case presents functions 6, 34 only but 

the second case does not produce any functions and can be said, this method does not 

provide good results. In another words, the reliability of interactions does not lead to 

positive prediction for the second case. 
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Fig.a                                                                          Fig.b 

Fig.5.11 protein function prediction with (a) different number of experimental methods and (b) 

different confidence scores of reliability. 

 

By applying the neighbor counting method with equal weights, weights relating to the 

number of interactions, and weights for the strength of interaction on the three types 

of Yeast functions categories. The curves of sensitivity and specificity of the three 

protein functions categories are created as shown in Fig.5.12-14 respectively. 

 

 

 

Fig.5.12; the sensitivity and specificity of protein function prediction in cell location for w0, w1, w2 

(equal weight, number of experimental methods, and the reliability of interactions) with k=2-5 as 

number of interactions. 
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Since the reliability of protein interactions is very critical point in determining the PPI 

strength and protein function prediction, a qualitative comparison between different 

weights (unity, weights related to number of interactions, and weights related to the 

reliability) have been introduced. The reliability of interactions is affected on protein 

function prediction. The weights of reliability (strength and number) of experimental 

methods have introduced better sensitivity than equal weights (traditional neighbour 

counting method) in cell location and cellular role functions categories. For 

biochemical function category, the old method has introduced roughly good results 

compared to the new ones. 

The sensitivity was enhanced by increasing the number of interactions for each 

predicted protein. The combination of these two scores will be the first measure in 

calculating the global interaction weight.  
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Fig.5.13; the sensitivity and specificity of protein function prediction in Biochemical for w0, w1, w2 

(equal weight, number of experimental methods, and the reliability of interactions) with k=2-5 as 

number of interactions. 
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Fig.5.14 the sensitivity and specificity of protein function prediction in cellular role for w0, w1, w2 

(equal weight, number of experimental methods, and the reliability of interactions) with k=2-5 as 

number of interactions. 

 

5.3.2.2 Interaction Generality IG1 (local topology) 

 

The second method for calculating the weights is using IG1 concept 

(Interaction Generality 1) [138, 144, 151].  A new method for assessing the reliability 

of protein–protein interactions (local topology) is obtained in biological experiments 

basically by getting the number of proteins involved in a given interaction (number of 

leafs (proteins) connecting to the two studied proteins incremented by one) as shown 

in Fig.5.15.  

 

Fig.5.15 protein network data, the edge between proteins (4, 17) has IG1 value 2 where the edge 

between proteins     (7, 14) has IG1 value equal 3. 
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IG1 assumes that complicated interaction networks are likely to be true positives. By 

implementing the IG1 on the collected data (yeast proteins interactions) it has been 

found that the range of IG1 is from 1 up to 21 as shown in Fig.5.16 that means there 

are some interactions that have many leafs proteins reach twenty. According to IG1 

concept, increasing values leads to not correct interactions (false positive interaction). 

In the suggested algorithm, it assumed that interaction that has IG1 value less than 4 

(as threshold) has high confidence (100%) where more than this value is low 

confidence. For example the interaction between proteins (YMR056C and YHRS01C) 

has IG1 value equal 3 (weight = 100%) where the interaction between proteins 

(YMR056C and YDR167W) has IG1 value equal 4 (weight = 50%). Also on the other 

hand, the interaction between proteins (YDL043C and YMR117C) has IG1 value 

equal 21 (weight = 50%).  
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Fig.5.16 the relation between the number of interactions and IG1 
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Table 5.8 the reliability score of IG1 of protein interactions 

 

PID_1 PID_2 IG1 Reliability score 

1 1913 3 1 

1 3246 1 1 

1 3517 4 0.5 

7 7 0 0 

19 33 7 0.5 

19 2980 1 1 

19 3384 1 1 

22 2483 2 1 

24 785 4 0.5 

24 3258 14 0.5 

25 5838 2 1 

32 3258 13 0.5 

33 33 0 0 

33 84 7 0.5 

33 304 8 0.5 

33 333 8 0.5 

 

As shown in Table 5.8, the reliability score of IG1 is indicated in the last column. It is 

noticed that, there are some cells showing zero (0) which correspond the self 

interactions as in cases of protein ID 7, and ID 33. According to the determined 

threshold (<4), the reliability score is high confidence (100%), else lead to low 

confidence. Although this method introduces a measure for the interaction reliability, 

it indicates the local topology only and does not introduce a measure for the global 

topology of the network. So this method will be integrated with other techniques as it 

will be introduced later. 

 

5.3.2.3 Interaction Generality IG2 (global topology) 

 

The third method is calculating the weights by using IG2 concept (Interaction 

Generality 2), [145, 151]. This algorithm explores the major five sub-graphs of 

network to get information about the global topology of the network. After collecting 

the five values for each interaction according to Fig.5.17, the principal component 

analysis (PCA) concept has been implemented regarding to Saito definition. 
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Fig.5.17 the most common five sub-graphs of network 

 

 By implementing PCA for the previous major five topologies of yeast proteins 

network, it has been found a range of varieties for IG2 values from -281 up to ~27 as 

shown in Table 5.9. The cells of t1-t5 are the values of the suggested five sub-graphs 

for yeast protein network. The average values of the collected data (t1-t5) are 1.415, 

10.234, 24.826, 6.107, and 1.89 respectively. By determining threshold equal 19 as 

the margin of reliability to assume that IG2 values less than the threshold are more 

accurate (100%) than higher ones.  

Table 5.9 IG2 values for yeast protein interactions 

 

P_name 1 P_name 2 PID_1 PID_2 t1 t2 t3 t4 t5 IG2 

AAC1 YHR005C-A 1 1913 0 0 0 2 2 26.94071 

ANC1 SNF5 1 3246 0 0 0 3 0 26.90991 

ANC1 TAF25 1 3517 0 0 164 5 3 -121.486 

ABP1 ACT1 19 33 2 0 4 10 6 26.97287 

ABP1 RVS167 19 2980 1 1 2 13 0 23.08996 

ABP1 SRV2 19 3384 1 1 2 12 0 24.42532 

YER045C PSE1 22 2483 0 0 2 3 1 24.44631 

ACC1 DMC1 24 785 0 0 0 20 3 25.10544 

ACC1 SNP1 24 3258 0 0 0 10 13 26.56783 

ACE2 YNL157W 25 5838 0 0 0 0 1 26.8268 

ACS2 SNP1 32 3258 0 0 0 7 12 26.97778 

ACT1 AIP1 33 84 0 0 8 10 6 26.88486 

ACT1 BEM1 33 304 0 2 20 14 7 26.97287 

ACT1 BNI1 33 333 2 2 4 14 7 19.55493 

ACT1 BUD6 33 370 1 1 10 22 7 7.772698 

ACT1 CAP2 33 407 0 0 8 10 6 22.16398 

ACT1 COF1 33 568 0 0 8 10 5 17.03328 

ACT1 FUS1 33 1065 0 0 8 10 6 19.55493 

ACT1 GLK1 33 1164 0 0 8 7 9 19.55002 

ACT1 IQG1 33 1470 0 2 8 13 6 19.55493 

ACT1 LAS17 33 1583 0 0 8 9 7 19.63262 

ACT1 MYO4 33 1983 0 0 8 10 5 18.64504 
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5.3.3 Protein function prediction by weights integration 

 

Regarding the three previous methods of calculating the weights, number of 

high confidence interactions is collected compared to low confidence ones. After 

collecting the weights from the three previous methods (number of experimental 

methods, IG1 and IG2), new weights strategies can be created as average or PCA of 

these three values.  Six different weights for each interaction are collected. As 

indicated in Table 5.10 interaction between proteins (AAC1 and YHR005C-A) has 

W0=1 which means equal weight for any interaction, W1=0.5 which means that it is 

identified by only one experimental method, W2=1 that means it has less than four 

leafs in IG1 (IG1<4), W3=0.5 that indicates that IG2 is more than 19, W4 is the 

average of the three weights which equal 0.66 (1/3 Σ Wi, i=1..3 ), and the last weight 

W5 (PCA of the three weights with threshold equal zero) is 0.5 that indicates that its 

value is more than zero. The previous example shows a weak interaction (edge) 

between the protein ID 1 (AAC1) and protein ID 1913 (YHR005C-A). Another 

example is high confidence (strong interaction) as shown in the second row, protein 

interaction (edge) between ANC1 and SNF5 where the weights are (1, 1, 1, 0.5, 0.83,  

1) for W0-W5 respectively.  

Relating to the main three measurements (number of experimental methods, IG1 and 

IG2), a lot of weights can be created as (applying AND/OR processes on the three 

weights or each weight has its coefficient according to its important role in 

determining the edge 0.35 - 0.2 - 0.4 respectively for W1, W2 and W3).  

After collecting the levels and degree for each protein, and the six different weights, 

the neighbor counting method (frequencies of interaction partners having certain 

functions of interest) is implemented to predict the functions to all un-known proteins. 

Comparison between the new weights (W1-W5) and weight less technique W0 (edges 

with equal weights) algorithms is performed for proteins having interactions up to 

five. It is shown that for most selected new weights at specific specificity the 

sensitivity is higher than for weight less interactions. Fig.5.18-20 show the sensitivity 

and specificity for the three yeast protein function categories relating to the number of 

interactions k =2-5. 
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Table 5.10 new suggested weights for yeast protein interactions. w0- w5 are equal weights, 

experimental methods, IG1, IG2, average, and weights PCA. 

 

Protein A name 
 

Protein B name 

 

Protein 

A-ID 

 

Protein B-ID 

 

W0 W1 W2  W3 W4 W5 

AAC1 YHR005C-A 1 1913 1 0.5 1 0.5 0.66 0.5 

ANC1 SNF5 1 3246 1 1 1 0.5 0.83 1 

ANC1 TAF25 1 3517 1 0.5 0.5 1 0.66 1 

ABP1 ACT1 19 33 1 1 0.5 0.5 0.66 1 

ABP1 RVS167 19 2980 1 1 1 0.5 0.83 1 

ABP1 SRV2 19 3384 1 1 1 0.5 0.83 1 

YER045C PSE1 22 2483 1 0.5 1 0.5 0.66 0.5 

ACC1 DMC1 24 785 1 0.5 0.5 0.5 0.5 0.5 

ACC1 SNP1 24 3258 1 0.5 0.5 0.5 0.5 0.5 

ACE2 YNL157W 25 5838 1 0.5 1 0.5 0.66 0.5 

ACS2 SNP1 32 3258 1 0.5 0.5 0.5 0.5 0.5 

ACT1 AIP1 33 84 1 0.5 0.5 0.5 0.5 1 

ACT1 BEM1 33 304 1 1 0.5 1 0.83 1 

ACT1 BNI1 33 333 1 0.5 0.5 0.5 0.5 0.5 

ACT1 BUD6 33 370 1 0.5 0.5 1 0.66 1 

ACT1 CAP2 33 407 1 1 0.5 0.5 0.66 1 

ACT1 COF1 33 568 1 1 0.5 0.5 0.66 1 

ACT1 FUS1 33 1065 1 0.5 0.5 0.5 0.5 1 

ACT1 GLK1 33 1164 1 1 0.5 0.5 0.66 1 

ACT1 IQG1 33 1470 1 1 0.5 1 0.83 1 

ACT1 LAS17 33 1583 1 1 0.5 0.5 0.66 1 

ACT1 MYO4 33 1983 1 0.5 0.5 0.5 0.5 1 
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Biochemical function with k=4
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Fig.5.18 the sensitivity and specificity of the Biochemical function category for number of interactions 

k=2-5. 
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Fig.5.19 the sensitivity and specificity of the cell location function category for number of interactions 

k=2-5. 
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Fig.5.20 the sensitivity and specificity of the cellular role function category for number of interactions 

k=2-5. 

 

5.4 Summary  

 

In this chapter, a new weighting technique for PPI was introduced. This 

technique depended on the number of experimental identification methods 

furthermore the local and global topologies. As shown in the previous Figures, the 

results of the cellular role function category was enhanced and improved specially in 

the three suggested basic weights w1, w2, and w3. Although the average and PCA 

weights introduced better results than the weight less (unity weight) technique, they 

gave poor results comparing to the three weights (w1, w2, and w3). 

 Also it was noticed that, the sensitivity was improved with increasing number of 

interactions. In the second function category (cell location), all new weights were 

roughly overlapped and made shift in positive direction to improve the sensitivity and 

specificity. Also the larger number of interactions improved the results. But in the 

third functional category Fig.5.18 (Biochemical function), the weight less technique 
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was better than the suggested algorithms which meant that biochemical function 

category did not depend on the interactions and the protein neighbors and the 

computational methods failed in estimating the protein functions of un-known 

proteins from the surrounding neighbors. So we could conclude our work as:  

1- The new weighting technique enhanced the sensitivity and specificity for two 

function categories (cell location and cellular role). 

2- Increasing the number of interactions improved the sensitivity and specificity. 

3- The technique did not reveal good results in biochemical function category 

which indicated, the estimation of this function category was very difficult 

using the neighbor data. 
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Chapter 6 

 

 

Protein functions correlation based on overlapping 

proteins and cluster interactions 

 

  

A lot of methods are developed to predict protein functions based on different 

information sources as protein structure, sequences, protein domain, protein-protein 

interactions, genetic interactions, and gene expression analysis. The accuracy of 

prediction can be enhanced by integrating multiple sources of information or 

collecting relations between the known functions. Recently, the researchers introduce 

different methods to determine the probability of protein function prediction using the 

information extracted from PPI. Although these techniques are promising, they lack 

the addressing of effective problems such as determining the relations between the 

protein functions “Usually, the relations between the protein functions do not be 

considered in protein function/interaction prediction”.  

 

In this chapter, a strategy for determining the relation between the protein functions is 

proposed. The technique is based on the overlapping number of proteins and 

interactions over protein clusters to determine the correlation between the sub-

function categories as well as improve the protein function prediction process. 

Herein, we try to estimate values that represent the relation between each function 

and other functions within the same category depending on integrating the number of 

overlapping proteins [152], and cluster interactions [153]. The proposed method is 

applied to Yeast proteome (selected species) for the mentioned reasons in previous 

chapter (5.1). The revealed results are promising where the interactions are regarding 

the fact, the interacted proteins have common function (major function) (Brown et al. 

2000; Eisen et al. 1998; Pavlidis et al. 2001).  
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6.1 Protein functions correlations  

 

Because proteins are fundamental components for all living cells and each one 

Consists of sequences of Amino Acids (AAs) and performs a variety of biological 

tasks as Control physicochemical conditions inside the cell or  transmit biological 

signals, so determining the functions for each protein is an important task. Since 

proteins work in complex system, they can bind to each other and interact. One of the 

most important problems in proteomics is protein complex isolation and mapping 

protein-protein interactions. The target of these processes is to understand the cell 

functions and to have basic idea about the relations between the proteins functions. 

Although estimating the protein functions correlations is very important, many 

researchers are interested in determining the individual protein functions not the 

relations between these functions. Protein functions may be predicted from sequences 

[6, 7], gene expression [1, 2], protein domains [8, 9], protein localizations [3, 4, 5], 

and protein-protein interactions [12- 18, 154]. 

In most cases, obtaining information about the relations between different functions is 

of great importance, since this would increase the certainty of protein function 

prediction.  

As mentioned before, protein may have more than one function (up to 8 functions in 

Yeast Saccharomyces cerevisiae). Some of these functions may be correlated, anti 

correlated or independent. Protein may be seed (self dependent) or participate in 

certain function or in-complex (temporary or permanent).  

 

If protein has certain function Fx_1 and it has another function as Fx_2 but it should 

not have function Fx_3, so it can be said that functions (Fx_1, Fx_2) have specific 

relations and functions (Fx_1, Fx_3) are anti correlated. The proposed technique is to 

estimate the relation between the protein functions based on the overlapping proteins 

and interactions over the protein clusters. 
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Table 6.1 Numbers of Annotated and un-annotated proteins for All Proteins Based on Three Functional 

categories 
 

Biochemical function 

Annotated 3353 

Un-annotated 3063 

Sub-cellular location 

Annotated 3181 

Un-annotated 3235 

Cellular role 

Annotated 3894 

Un-annotated 2522 

 

Table 6.2 Yeast sub-function categories, function name and the number of proteins for each function. 

F_ID Function category Function name # proteins 

1 Cellular role Aging 39 

2 Cellular role Amino-acid metabolism 218 

3 Cellular role Carbohydrate metabolism 254 

4 Cellular role Cell adhesion 4 

5 Cellular role Cell cycle control 213 

6 Cellular role Cell polarity 216 

7 Cellular role Cell stress 331 

8 Cellular role Cell structure 120 

9 Cellular role Cell wall maintenance 184 

10 Cellular role Chromatin/chromosome structure 274 

11 Cellular role Cyto kinesis 40 

12 Cellular role DNA repair 154 

1 Cell location Bud neck 61 

2 Cell location Cell ends 6 

3 Cell location Cell wall 70 

4 Cell location Centrosome/spindle pole body 72 

5 Cell location Contractile ring 3 

6 Cell location Cytoplasmic 755 

7 Cell location Cytoskeletal 107 

8 Cell location Endoplasmic reticulum 225 

9 Cell location Endosome/Endosomal vesicles 36 

10 Cell location Extracellular (excluding cell wall) 34 

1 Biochemical ATPase 247 

2 Biochemical ATP-binding cassette 31 

3 Biochemical Activator 46 

4 Biochemical Active "transporter," primary 93 

5 Biochemical Active "transporter," secondary 201 

6 Biochemical Adhesin/agglutinin 7 

7 Biochemical Anchor Protein 13 

8 Biochemical Channel [passive transporter] 15 

9 Biochemical Chaperones 90 

10 Biochemical Complex assembly protein 76 
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The proposed method is applied to yeast proteome for the previous mentioned 

reasons. Regarding the yeast (Saccharomyces cerevisiae) studied species, it has three 

function categories; Cellular role functions (C.R) (contains 43 sub-function category), 

Cell location functions (C.L) (contains 29 sub-function category) and Bio-chemical 

functions (Bio-ch) (contains 57 sub-function category) as shown in Table 6.1 and 

Table 6.2. Yeast proteins are defined in the Yeast Proteome Databases. Each function 

category has certain number of proteins. And some of those proteins are involved in 

more than one sub-function category.  

As shown in Table 6.1, each function category has its annotated and un-annotated 

numbers of proteins. For biochemical functions categories, there are 3353 annotated 

proteins and 3063 as un-annotated proteins. Roughly one third of the global numbers 

of all yeast proteins are un-annotated. In Table 6.2, each sub-function category has its 

ID and its number of proteins is shown. The basic idea of function correlation is 

coming from example as shown in Fig.6.1; group of proteins have the same functions 

which leads to there is a relation between those functions. 

 

 

 

Fig.6.1 proteins have the same functions; correlation between functions 

 

As shown in Fig.6.1, protein_1 has functions f1, f2, f5 and protein_2, protein_3 have 

functions f1, f5, and f1, f3, f5, f19 respectively. It is noticed that functions f1and f5 

are common between the three proteins which leads to new idea “is there a correlation 

between those functions”. The answer depends on the natural of the functions. The 

previous methods try to estimate the relations regarding the interactions between the 

proteins [12]. Although this method try to estimate the relations through the 

interactions, the method does not introduce a clear view (relation probability) about 
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these relations and does not present the anti correlation property. Herein, the relations 

are calculated relating to three methods; cluster interactions, overlapping proteins, and 

integrating the two methods. 

 

6.2 Protein cluster interaction 

 

Proteins Functions

?
Function may lead to 

more than one protein

Protein may have more than one function  

Fig.6.2 the relation between the proteins and functions 

 

Proteins are acted as network. The simplest representation takes the form of a 

network graph consisting of nodes and edges. Proteins are represented as nodes in the 

graph and two proteins that interact physically are represented as adjacent nodes 

connected by an edge. Each group of proteins doing similar action called cluster (may 

have sequence similarity or similar function). So the network consists of groups of 

clusters. The clusters may be self assembled or have external interactions. The 

interactions may be real interactions (physical interactions between proteins in the 

two different groups or clusters) or from overlapping proteins (same proteins are 

found in the two clusters and have self interactions). Fig.6.2 shows the relations 

between the proteins and clusters; cluster has group of proteins and protein may be 

found into more than one cluster. 
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Fig.6.3 Two interacted clusters 

 

As shown in Fig.6.3, two clusters can interact and these interactions are bidirectional. 

Herein, the relations between protein functions are estimated from these interactions. 

Table 6.3 shows the intersection numbers of cluster interactions in Yeast Biochemical 

function categories. It introduces the first 26 sub-functions (yellow colored), number 

of proteins (red cells) and interactions for each cluster respectively. Each crossed cell 

in table indicates the interaction number of the two indicating functions or clusters. 

For example proteins sub-function category_1 (cluster-1) interacts with proteins sub-

function category_14 (cluster-14) by 49 interactions; cluster-1 contains 247 proteins, 

cluster-14 contains 283 proteins, and there are 49 interactions between those clusters 

as shown in Table 6.3. Although this method introduces a new concept for 

determining the relations between the protein functions, it can not indicate clear view 

for calculating these interactions. There are many drawbacks for this method as: 1)- 

the number of interactions is small comparing to the number of proteins in both 

clusters. 2)- some of these interactions may be considered as false positive 

interactions (from verification method). 3)- some interactions are considered as self 

interactions (17) in case cluster-1 and cluster-14 (proteins in both clusters). Also as 

shown in Table 6.3, some cells contain a few number of interactions as 3 interactions 

between clusters-1 and cluster-2 which can not be used as measure for these relations. 

On the other hand, there are some clusters have no interactions with any ones (self 

interactions) as clusters (24, 6).  The reasons are, these clusters have group of proteins 

does not have the ability to interact with others or because the required function needs 

only one protein. Because the number of interactions between the crossed clusters is 

small, the threshold that determines the strength of correlation for cluster interactions 

is very difficult to be specified. The threshold can be estimated as certain number 

(specific) or as percentage of the number of proteins. In the proposed technique, the 

threshold is suggested as more than 10% of the number of proteins found in one of the 

two studied clusters. By applying this technique to yeast biochemical sub-function 
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categories, the green cells are considered as higher numbers of interactions between 

the two interacted clusters. As shown between cluster-1 and cluster-14, there are 49 

interactions as ~20% of number of proteins. 

 

Table 6.3 the relations between yeast protein functions based on the number of interactions 

 

  247 31 46 93 201 7 13 15 90 76 23 23 24 283 30 26 61 23 33 84 640 69 48 6 98 90 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

247 1 33 3 8 9 1 0 0 0 11 6 11 1 2 49 1 0 5 3 4 7 53 2 2 0 3 3 

31 2 3 1 1 2 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 1 5 1 0 0 0 0 

46 3 8 1 6 0 1 0 1 0 1 4 2 1 0 8 7 1 3 1 1 3 11 11 0 0 0 0 

93 4 9 2 0 6 0 0 0 0 0 6 0 0 0 1 0 0 0 0 0 1 9 2 0 0 0 0 

201 5 1 0 1 0 0 0 0 0 0 0 0 0 0 3 0 1 1 1 0 0 2 2 0 0 0 0 

7 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

13 7 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

15 8 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

90 9 11 0 1 0 0 0 1 0 26 1 2 4 0 0 0 0 2 5 19 0 15 4 2 0 0 0 

76 10 6 0 4 6 0 0 0 0 1 7 0 1 0 9 1 1 1 0 0 1 7 3 0 0 0 0 

23 11 11 0 2 0 0 0 0 0 2 0 5 0 0 3 0 0 0 0 0 0 10 0 0 0 0 0 

23 12 1 0 1 0 0 0 0 0 4 1 0 0 0 1 0 0 0 0 3 0 0 4 1 0 0 0 

24 13 2 0 0 0 0 0 0 0 0 0 0 0 4 3 0 0 0 0 0 0 1 0 0 0 0 0 

283 14 49 1 8 1 3 0 0 1 0 9 3 1 3 60 0 0 2 0 0 5 36 9 1 0 3 3 

30 15 1 0 7 0 0 0 0 0 0 1 0 0 0 0 16 2 3 0 0 0 4 0 0 0 0 0 

26 16 0 0 1 0 1 0 0 0 0 1 0 0 0 0 2 1 3 0 0 0 3 1 0 0 0 1 

61 17 5 2 3 0 1 0 0 0 2 1 0 0 0 2 3 3 5 17 2 2 15 4 2 0 0 0 

23 18 3 0 1 0 1 0 0 0 5 0 0 0 0 0 0 0 17 3 5 1 21 4 0 0 0 0 

33 19 4 0 1 0 0 0 0 0 19 0 0 3 0 0 0 0 2 5 6 0 5 2 1 0 0 0 

84 20 7 1 3 1 0 0 0 0 0 1 0 0 0 5 0 0 2 1 0 2 12 0 1 0 0 0 

640 21 53 5 11 9 2 0 1 0 15 7 10 0 1 36 4 3 15 21 5 12 79 9 8 0 2 0 

69 22 2 1 11 2 2 0 0 0 4 3 0 4 0 9 0 1 4 4 2 0 9 6 1 0 0 1 

48 23 2 0 0 0 0 0 0 0 2 0 0 1 0 1 0 0 2 0 1 1 8 1 1 0 1 0 

6 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

98 25 3 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 2 0 1 0 1 0 

90 26 3 0 0 0 0 0 0 0 0 0 0 0 0 3 0 1 0 0 0 0 0 1 0 0 0 5 

 

Also it can be noted that, some values can satisfy the suggested threshold as number 

of intractions between clusters 1& 21, clusters 9, 19, and clusters 18 & 21 as 53 

(21%),19 (58%) and 21(91%) respectively. 
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6.3 Function categories and overlapping proteins 

 

The second technique for estimating the function correlation is the overlapping 

proteins. This technique is based on the number of proteins found in the two studied 

clusters (overlapped number of proteins). If there are some proteins in the two studied 

clusters, it can be said that there is a correlation between those clusters. By applying 

the proposed technique on the yeast function category (Biochemical), it has found a 

lot of direct relations between the sub- function categories as shown in Table 6.4 and 

Table 6.5. Method collects all sub-function categories on the two axes as shown in 

Table 6.4 and puts the number of overlapped proteins in each cross section cell 

(square) and compares this number (cell) with the smaller number of the two 

surrounding sub- categories (red cells). As shown the first top left cell indicates the 

sub-function category number one and contains 247 that mean the first sub-function 

category contains 247 proteins. The rest cells in the first row indicate the overlapping 

number of proteins between the first sub-function and residuals of the same sub-

functions category according to the column number. Percentage between each cell 

number and the smaller number of the two surrounding sub-function categories is 

calculated. By determining threshold equal to 0.85, direct relationships between the 

two sub-function categories is estimated.  

As illustrated in Table 6.5; the method can determine 9 direct relationships among 57 

functions in biochemical sub-function categories. It is noticed that if the threshold 

value is decreased to 0.72, the direct relations between the sub-function categories 

will increase (22 values). The red cells (diagonal) show the number of proteins in 

each sub-function and the green cells show the overlapping cross section for high 

correlated functions. The direct relations between the functions mean correlation 

between those functions.  

For example if protein has function x, it should have function y because there is high 

correlations between function x and function y. as shown in Table 6.5, there are 9 

direct relations (green cells in Table 6.4). 
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Table 6.4 the overlapping number of proteins over the Yeast biochemical function categories 

  1 2 3 4 5 6 7 8 9 

1

0 

1

1 

1

2 

1

3 14 

1

5 

1

6 

1

7 

1

8 

1

9 

2

0 21 

2

2 

2

3 

2

4 

2

5 

2

6 

1 

24

7 

3

1 3 

6

6 0 0 0 0 9 3 

2

3 0 0 64 0 0 4 0 4 

8

3 

22

4 5 1 0 2 0 

2 0 

3

1 0 

2

3 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 31 0 0 0 0 0 

3 0 0 

4

6 0 0 0 0 0 1 1 0 0 0 9 0 0 0 0 2 1 2 4 0 0 1 1 

4 0 0 0 

9

3 4 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 66 0 0 0 0 0 

5 0 0 0 0 

20

1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 

1

3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

8 0 0 0 0 0 0 0 

1

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 

9

0 1 4 0 0 1 0 0 0 0 

2

8 0 8 3 

1

5 0 0 0 

1

0 0 0 0 0 0 0 0 0 0 

7

6 2 0 0 3 1 0 0 0 0 0 2 2 0 0 1 0 

1

1 0 0 0 0 0 0 0 0 0 0 

2

3 0 0 0 0 0 0 0 0 0 23 0 0 0 0 0 

1

2 0 0 0 0 0 0 0 0 0 0 0 

2

3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

1

3 0 0 0 0 0 0 0 0 0 0 0 0 

2

4 7 0 0 0 0 0 0 5 0 0 0 0 0 

1

4 0 0 0 0 0 0 0 0 0 0 0 0 0 

28

3 0 0 1 0 0 

4

1 70 8 3 0 0 0 

1

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3

0 0 0 0 0 0 0 0 0 0 0 0 

1

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2

6 0 0 0 0 0 0 0 0 0 0 

1

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6

1 0 0 0 58 1 0 0 0 0 

1

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2

3 0 0 0 0 0 0 0 0 

1

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3

3 0 4 3 1 0 0 0 

2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

8

4 82 2 0 0 0 0 

2

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

64

0 3 1 0 5 5 

2

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6

9 0 0 0 0 

2

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4

8 0 0 0 

2

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 

2

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9

8 1 

2

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9

0 

 

 

Table 6.5 the direct relations over Yeast Biochemical sub-function categories when the threshold is 

greater than 0.85. 

 

Fx_1 ID Fx_2 ID Fx_1 name Fx_2 name Score 

1 2 ATPase ATP-binding 1 

1 11 ATPase Conserved ATP 1 

1 20 ATPase Helicase 0.99 

1 21 ATPase Hydrolase 0.91 

2 21 ATP-binding Hydrolase 1 

9 19 
Chaperones 

 

Heat shock 

protein 
0.85 
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11 21 
Conserved 

ATP 
Hydrolase 1 

17 21 

GTP-binding 

protein/GTPase 

 

Hydrolase 0.95 

20 21 Helicase Hydrolase 0.98 

 

 

Because the correlation score between functions (1, and 2) is 1, proteins have sub-

function category_2 (ATP-binding) will have by default sub-function category_1 

(ATPase) as shown in Table 6.5. And each protein has sub-function category_11 

(conserved ATP) will have sub-function category_1 (ATPase).  

The scores between four relations are ones which means, all proteins have the first 

function they will have the second function. If the threshold decreases into 0.72, a lot 

of direct relations can be created (blue cells (22)) as relation between sub-function 

category_1 (ATPase) and sub-function category_4 (transporter) which has scored 

0.72. These scores are collected and integrated with scores of cluster interactions. The 

direct relations between the studied functions are acted as shown in Fig.6.4. 

 

 

 

Fig.6.4 relations between the Biochemical sub-function category_2 towards the sub-function 

category_1 

 

6.4 Overlapping and Interaction integration 

 

In this section, the scores of overlapping and cluster interactions are integrated 

to determine the relation between the functions either positive (to participate in the 

same functions) or negative (anti correlations, if protein has one function, it should 

not have the other one) or independent (there is no relations between the studied 

functions).                                              

Herein, if the score of overlapping proteins is more than the threshold (0.85), it will be 

positive otherwise will be negative. Also for the cluster interactions, if its score has 
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more than 10% of the numbers found in one of the two clusters, it will be positive and 

other wise will be negative. 

The function relation technique is integrated with the traditional method of protein 

function prediction (neighbor counting method). Improved results are gained than 

previous. As known in neighborhood method, it finds the neighbor proteins and gets 

their assigned functions and the frequencies of occurrence of these functions. Then, 

these functions are arranged in descending order according to their frequencies. The 

first k functions are considered and assigned to the un-annotated protein. The authors 

in [18] used this technique with k equals to 3. By applying the proposed technique on 

the yeast function categories, the results are as shown in Table 6.6 and Table 6.7. The 

algorithm shows increasing number of true positive (TP) and decreasing the true 

negative (TN) and false positive (FP).  

Table 6.6 shows each yeast Biochemical function category and its results.  Function 

category_1 has 247 proteins, 47 of them identified as TP and the rest (200) identified 

as TN and there are 141 proteins identified as FP. On the other hand function 

category_2 has 2 proteins as (TP), 29 proteins as (TN) and 15 proteins as (FP). Also 

function category_11 has 6 proteins as (TP), 17 proteins as (TN) and 10 proteins as 

(FP). It can be noted that the integrated algorithm enhanced (increased) the numbers 

of TP and decreased the numbers of TN and FP. As shown in Table 6.7 the integration 

between function_1 and Function_2 (positive overlapping and positive interactions) 

shows the same numbers of function_2 (least one). And integration between 

function_1 and function_11 has 6 proteins as (TP, the same number of function_11 

true positive) and decreases the number of FP (141 & 10  7). The integration 

process has been divided into for cases regarding to the states of overlapping and 

interactions. The collected cases are 1)- Positive overlapping & positive interactions 

(the score of overlapping more than the threshold (0.85) and the number of 

interactions are more than 10% of the minimum number of proteins in one category), 

2)- positive overlapping and negative interactions, 3)- negative overlapping and 

positive interactions, and 4)- negative overlapping and negative interactions. It can be 

noted that in case of (positive & positive), enhanced results has been gained specially 

in increasing the TP and decreasing the TN and FP. Although the number of TP is 

small relating to one function of them, but it is very accurate and equal to the 

minimum number over the two functions. It is very clear that the numbers of TN and 
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FP are decreased as in cases functions (1-21) which they have FP equal to 141 and 

395 respectively and now it is 74. The results will be poor when the two scores are 

negative which reflects the effect of overlapping and interactions. But when one of 

them is positive and the other is negative, it has variety in results. The negative of 

interaction score fixes the number of TN and the negative of overlapping score 

increases the TN. It can be indicated that, the overlapping numbers of proteins and the 

number of interactions has affected the protein function prediction process in positive 

way. And the relations between the protein functions have enhanced the degree of 

confidence. 

 

Table 6.6 yeast biochemical functions, estimated numbers of proteins as true positive (TP), true 

negative (TN), and false positive (FP) 
 

Function category TP TN FP 

1 47 200 141 

2 2 29 15 

4 9 84 18 

9 25 65 29 

11 6 17 10 

14 67 216 194 

18 4 19 36 

19 7 26 16 

20 4 80 45 

21 91 549 395 

 

Table 6.7 an integrated algorithm relating to the overlapping number of proteins and number of 

interactions according to the determined thresholds 

 

F:x-y Overlapping Interactions TP TN FP 

1-2 31/31 + 3/31 (~)+ 2 29 15 

1-11 23/23 + 11/23 + 6 17 7 

2-21 31/31 + 5/31 + 2 29 13 

11-21 23/23 + 10/23 + 6 17 7 

1-20 83/84 + 7/84 - 4 80 26 

1-21 224/247 + 53/247 + 29 218 74 

20-21 82/84 + 12/84 + 4 80 26 

1-4 66/99 - 9/93 - 4 89 14 
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4-21 66/93 - 9/93 - 4 89 13 

1-14 64/247 - 49/247 + 12 235 35 

 

18-21 
0/23 - 21/23 + 0 23 12 

 

  

 In this chapter, an integrated technique is introduced to estimate the correlations or 

relations between yeast protein functions. The technique depends on the overlapping 

numbers of proteins as well as number of interactions over the protein clusters. By 

applying the proposed algorithm to the collected data, the results are improved; 

reducing the number of true negative and false positive furthermore increasing the 

true positive results.  

The results are good when the two measures are positive. Although the number of 

interactions is important for enhancement the results but the overlapping number is 

more critical. In protein function prediction problem, the effect of the function 

correlations has been indicated and the results are better than the absolute method 

(neighbor counting method without function correlation).  

 

6.5 Function Relations  

 

It can be noted that the relations over the protein functions is divided into two 

classes: direct and indirect relations. 

 

6.5.1 Direct relationships 

 

By applying the same concept of overlapping number of proteins, the direct 

relations can be estimated through the threshold (over threshold). As illustrated in 

Table 6.4, method can determine 9 direct relations (more than the threshold (0.85)) 

between 57 functions in Bio-chemical sub-function categories and 4, 7 direct relations 

in cellular role and cell location with thresholds 0.72 and 0.79 respectively. It can be 

noted that the threshold value is a big number to express the correlation between the 

two sub-function categories. If the threshold decreases till 0.70 in biochemical 

function, there are more than 22 direct relations. 
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The technique indicates that there is a direct relationship between sub-function 

category 1 (ATPase) and the second function (ATP-binding cassette) with weight 

equal 100% towards sub-function category one. It means that if protein has function 

category 2 it should have function category one. In the fourth row of Table 6.5, the 

weight is equal to the 0.9 that means 90% of the proteins which have sub-function 

category 21 (Hydrolase) have sub-function category 1 (ATPase). This technique 

converts the undirected graph of physical interactions between the proteins (protein 

interaction network) into directed graph between the sub-function categories which 

have been taken into consideration to enhance the accuracy of protein function 

prediction. As shown in Fig.6.5, direct relation between sub-function 11 towards sub-

function 1 by 100% which means that, any protein will have sub-function 11 should 

have sub-function 1. 

 

 

                                              

Fig.6.5 directed relation between the two sub-function categories 11, 1 and its weight equal (100%). 

 

Because the directed relations cannot give a wide screen for all relations between the 

sub-function categories, so the study has discussed the indirect relationships and anti-

correlations between the proteins sub-functions category. 

 

 

6.5.2 Indirect relationships  

 

Because the few number of direct relations, the study puts some conditions to 

estimate the indirect relationships and uncorrelated functions. If there are three sub - 

functions categories A, B and C and each function contains number of proteins X1, 

X2 and X3 respectively  and 

 

If    A∩ B = n1 proteins,           

       A∩ C = n2 proteins, and  

       B∩ C = n3 proteins 

The next combinations can be collected: 

11 1 
100% 
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a-   n1 = 0 and / or n2 = 0 

b-   n1 = n2                        

            1- (n1=n2=n3)                                                                         

            2- (n1=n2 and n3=0) 

            3- (n1=n2 ≠n3) 

c-  n1 ≠ n2 

a. [n1= 0 and/or n2=0]   

 

 If the number of proteins in the cross section between two sub-function category 

is zero (no overlapped proteins are found) that leads to uncertainty case. We cannot 

say that there is anti correlation between these two sub-function categories which 

have been intersected by zero. So, it should calculate the indirect relationship between 

two or more function categories if they interact in the same number of proteins for the 

same function category. 

b. [n1=n2] 

 

1- [n1= n2 = n3] 

 

The same proteins found in the three sub-function categories 

(A∩B∩C=n1=n2=n3) that leads to there is a correlation between B, C toward A and 

so on. If number m of proteins have functions B and C, they should have function A. 

as shown in Fig.6.6. If protein has the two sub-functions category it should have the 

third one or by the statistical view p (A\B, C) = 1 the probability of protein to have 

sub-function category A conditional sub-function categories B and C equal the unity 

as shown in Fig.6.6. Protein has function A (first function) and given (conditional) 

function B (second function), it should have the third one function C. 

 

 

 

 

 

                                                                                       

Fig.6.6  the conditional relationship between the sub-function categories. 

A/B/C 

B/C/A 

C/A/B 
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A 

B/C 

C/B 

 

2- [n1= n2 & n3=0]  

 

If protein has function A and B it should not have function C as shown in 

Fig.6.7 or in the statistical view P (B\A, C) = P (C\A, B) = 0 the probability of protein 

to have the third function conditional the two functions is zero. 

 

         

 

 

 

Fig.6.7 anti correlation between the two sub-functions category B, C given sub-function category A. 

 

3- [n1= n2 ≠ n3] 

 

If the protein is in two sub-function categories and is not in the third so it leads to 

uncertainty case. 

 

c. [n1< > n2] 

 

If the number of proteins is not the same in the two sub-function categories, it 

should have three combinations condition: 

 

1- [n1< n2] & [A ∩ B] = 0 

 

There is no intersection between the proteins of the two sub-function 

categories that leads to uncertainty case. 

 

2- [n1< n2] & [A ∩ B] < n1 

 

n1 is fraction of n2 (some proteins of the first sub-function category are found 

in the second sub-function category) that also leads to uncertainty. 

 

3- [n1< n2] 
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All n1 are found in n2 that leads to correlation between the two studied 

functions. Protein has function category A as shown in Fig.6.8 has correlation towards 

C given function B. 

                                                                                                    

 

Fig.6.8 protein has function A/B and has conditional function B/A respectively it will have function C. 

 

6.5.3 Protein functions integrations 

 

The function relation technique has integrated with the traditional methods of 

protein function prediction. And improved results have been collected than previous. 

As known in neighborhood counting method, the function with high frequency has 

been taken as first one then the others (less frequency) without taking the relation 

between the functions into consideration. Now, the function has accepted by the 

highest frequency and bigger number of correlation or relations. For example sub-

function category 1 (ATPase) contains 247 proteins (yeast protein function database) 

and has directed relation with sub-function category 2 (ATP-binding cassette) 

regarding to our technique with weight 100%. After applying the combination 

between neighbor counting method and the studied technique, it has been found that 

the results are as shown in Table 6.7, It can be noted that the numbers of the false 

positive and true negative in combination technique are less than in single mode 

(neighbor method) in addition the number of the true positive is roughly the same or 

less (the difference in the values according to the weight value). The studied 

technique has clear addition on the accuracy of the prediction. 

By applying the Chi-square method to get the correlation between the two sub-

function categories 1 and 2, it has been found that for each prediction, the score 

values of the two functions are the highest scores. An illustrated example; if protein 

has function 4 as a basic function category and has direct relationship with function 

category 17 by weight 0.75 and indirect relationship with function categories 6, 7, 28 

respectively the technique can illustrate the relationships as shown in Fig.6.9. 

    

A/B 

   B/A 

    C 
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Fig.6.9 an example for complete combination between sub-function category 4 and the rest functions of 

the cellular role category in Yeast. 

 

 

 

6.6 Summary 

 

         In this chapter, a novel technique was introduced to get the relations 

(correlation) between the functions in the same function category in yeast 

(Saccharomyces cerevisiae). In this technique, the overlapping numbers and cluster 

interactions were considered in determining these relations. By applying the technique 

on all the functions categories and mixing the results with any method of protein 

function predictions as neighborhood and Chi-square methods, enhanced results and 

increasing of the accuracy were achieved. The conversion of undirected interactions 

between the proteins into directed interactions between the clusters was very critical 

point for determining the function correlation. Also producing a global figure for the 

function relations is performed. 
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Yeast Protein Function Motif (Signature) 

Extraction Based on Sequence Alignment 

 

 

        Protein function prediction is one of the most important problems in the field of 

proteomics since it leads to determining cell functions. Since proteome is divided into 

clusters, each cluster (group of proteins) should have common characteristics. One of 

these characteristics is to have the same functions. In this study we try to extract 

motifs for each sub-function category in yeast proteins. The technique is based on 

applying multiple sequence alignment (MSA) to all yeast protein function categories. 

The protein sequences are collected from different data sources as DIP, PIR, and 

SWISS PROT.  

BIO- CLC program is used to apply the sequence alignment. Threshold is determined 

for every protein function category to indicate the most common frequent amino acids 

to be as feature for this category. After implementing the algorithm, sequence is 

verified with some proteins have the correct functions and the gained results are good. 

The technique is considered as verification method for protein function prediction.  
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7.1 Protein sequence Overview 

 

Proteins are macromolecules response for doing many functions. They are the 

main building blocks and functional molecules of the cell. Every 3 bases of RNA 

(codon) correspond to one amino acid which is arranged to build the protein. Proteins 

are consisted of sequence of amino acids which are the basic units of structure. When 

the 20 amino acids (natural components) are sequenced in different numbers and 

different orders, infinite number of proteins can be created. If the length of amino 

acids is more than 40, it is called protein otherwise called multi peptide.  

The sequence of amino acids is response for the folding shape of protein (3D 

structure) as well as its main functions. In particular, proteins transmit regulatory 

signals throughout the cell, catalyze a tremendous number of chemical reactions, and 

are critical for the stability of numerous cellular structures. As known, each group of 

proteins having specific characteristic is called cluster (group). One example for these 

clusters is the similarity in doing specific function. Many methods have been 

developed to predict the protein functions as analyzing gene expression patterns, 

phylogenetic profiles, protein sequences, protein domains, and protein interaction 

networks, and estimated correlation. Since most of the prediction methods depend on 

the protein sequences and the fact that if two proteins have similar sequences, they 

may have the same function, the protein sequences is our interest in this study.  

Each protein function category (cluster) has group of proteins is defined and their 

protein sequences are collected. Many data sources as DIP, PIR, and SWISS PROT 

are used to get these sequences that because protein may have more than one name 

and its sequence is not found in one data source. Accurate multiple sequence 

alignment technique is performed to those sequences using Bio-CLC program.  

So in this chapter, we introduce technique using multiple sequence alignment to 

extract certain motif for each sub-function category. The technique is applied to Yeast 

protein sequences (complete sequence genome) and extracted consensuses are 

collected and considered as feature (signature) for each sub-function category. By 

collecting these extracted motifs (features), protein function prediction process is 
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verified. This chapter is organized as follows; the proposed algorithm is explained in 

next section following by the results of the work together with their discussion.  

 

7.2 Motif extraction 

Function category motif extraction is one of the most important tasks in 

proteomics that because it is considered as a feature to identify this category. Protein 

sequence search in BLAST or NCBI is considered one of the multiple diverse sources 

in identification the proteins and determining their functions [155].  

In this study, an integrated method is used among different data sources to get the 

annotated protein sequences. The sequences which have same sub-function category 

are collected and multiple sequence alignment is used to extract specific motif 

(consensus) for each sub-function category. 

 

7.2.1 Protein sequence collection 

Although BLAST and NCBI web sites are used to get protein data, it is very 

exhaustive process to gain the protein sequences manually. A group of databases as 

DIP, PIR, SWISS-PROT, and MIPS are integrated to collect these sequences. This 

integration is performed, since all annotated proteins are not found in one database. 

Although DIP (Database of Interacting Proteins) is the most famous data source used 

to get the sequences of yeast proteins, it misses for some proteins which collected 

from other databases. 

As shown in Table 7.1, a sample of protein names and parts of their sequences is 

indicated. It can be noted that, the protein names are gene names which means the 

DIP databases deal with gene names not the international name (accession / standard 

name). So comparison between the protein names and data sources is performed to 

identify all data about the protein (it is considered as one of the challenges of yeast 

naming as mentioned in section 5.2). It can be shown in Table 7.2, some missed cells 

which loss the corresponding names for these proteins. As example; protein code DIP: 
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239N equal Q27272 code in SWISS PROT equal A49067 in PIR database. But DIP 

772 did not have corresponding code in SWISS PROT.  

Table 7.2 indicates the relations over different data sources for yeast proteins. 

Relating to the distinguished names of proteins (Gene name, Accession number, and 

ORF) and the different databases, the standard core for protein should be given 

(Accession number).  

 

Table 7.1 Sample of protein names and their sequences from DIP database. 

 

Table 7.2 Different data sources for protein names and their codes 

DIP 

interaction 
DIP code SP code PIR code GI code DIP code SP code PIR code GI code 

DIP:193E DIP:239N SWP:Q27272 PIR:A49067 GI:1079142 DIP:368N SWP:P04637 PIR:DNHU53 GI:8400738 

DIP:196E DIP:237N SWP:P47825 PIR:A48184 GI:477148 DIP:36N SWP:P08047 PIR:A29635 GI:88887 

DIP:199E DIP:772N  PIR:S41672 GI:1085161 DIP:368N SWP:P04637 PIR:DNHU53 GI:8400738 

DIP:207E DIP:387N SWP:P12428 PIR:FYFFB GI:72497 DIP:388N SWP:P10090 PIR:FYFFW GI:17136592 

DIP:229E DIP:237N SWP:P47825 PIR:A48184 GI:477148 DIP:570N SWP:P03254 PIR:Q2AD2 GI:74182 

DIP:271E DIP:121N SWP:P19538 PIR:A38926 GI:24638496 DIP:754N SWP:P41044 PIR:S37695 GI:17136674 

DIP:272E DIP:492N  PIR:JC4234 GI:17137760 DIP:121N SWP:P19538 PIR:A38926 GI:24638496 

DIP:273E DIP:45N  PIR:A31225 GI:24639671 DIP:526N  PIR:JU0092 GI:17136554 

DIP:274E DIP:54N SWP:P13677 PIR:A32392 GI:17136716 DIP:526N  PIR:JU0092 GI:17136554 

DIP:275E DIP:769N  PIR:S40691 GI:2119474 DIP:526N  PIR:JU0092 GI:17136554 

DIP:276E DIP:537N SWP:P07181 PIR:MCFF GI:17647231 DIP:526N  PIR:JU0092 GI:17136554 

DIP:342E DIP:187N SWP:P10083 PIR:A43731 GI:17136654 DIP:73N SWP:P18491 PIR:A34688 GI:24654863 

DIP:344E DIP:40N SWP:P16371 PIR:A30047 GI:24650241 DIP:637N  PIR:S06956 GI:85137 

DIP:345E DIP:325N SWP:P10084 PIR:B43731 GI:17136616 DIP:356N SWP:Q01068 PIR:D46177 GI:24650229 

 

Protein 

Name 
Protein sequence 

BNI1 MLKNSGSKHSNSKESHSNSSSGIFQNLKRLANSNATNSNTGSPTYASQQQHSPVGNEVSTSPASSSS…… 

BNI4 MSDSISDSKSSELLNSTFYSSTSINTLDHARTFRNSLILKEISDQSLNSSIKPCESVLDRDVESSVLQ…… 

BNI5 MGLDQDKIKKRLSQIEIDINQMNQMIDENLQLVEPAEDEAVEDNVKDTGVVDAVKVAETALFSGND…. 

BUD2 MSSNNEPAQSRTSYFKLNEFLSNVKHYKNTFKGEIQWCNNLSLNDWKTHYLQITSTGALTHSIDELTA…. 

BUD3 MEKDLSSLYSEKKDKENDETLFNIKLSKSVVETTPLNGHSLFDDDKSLSDWTDNVFTQSVFYHGSDD… 

BUD4 MAQDIDKLARDEEKPVKLSSSPLKFTLKSTQPLLSYPESPIHRSSIEIETNYDDEDEEEEDAYTCLTQS…. 

BUD5 MRTAVPQLLEATACVSRECPLVKRSQDIKRARKRLLSDWYRLGADANMDAVLLVVNSAWRFLAVWR… 

BUD6 MKMAVDDPTYGTPKIKRTASSSSSIETTVTKLLMSTKHLLQVLTQWSKGTTSGRLVSDAYVQLGNDF… 
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 Yeast protein functions are divided into three function categories: Bio-chemical 

functions (contains 57 sub-function categories), Cellular role functions (contains 43 

sub-function categories), and Cell location (contains 29 sub-function categories). The 

study collects all possible protein sequences related to every specific sub-function 

category in one place. The average of collected protein sequences is 41% of the total 

number of protein sequences. An example for the collected number of sequences, 

Biochemical ATPase sub-function category which has 247 proteins, 112 protein 

sequences are collected. But for Biochemical protein motor sub-category which has 

17 proteins, 12 protein sequences are collected.  

7.2.2 Multiple Sequence Alignment 

  Although there are many methods used in motif extraction as Deterministic 

algorithm (match or mismatch), Probabilistic algorithm, Combination between 

Deterministic and Probabilistic presentation and M-PST (mismatch probabilistic 

suffix tree) [58], the multiple sequence alignment has produced good results. Also it 

has been used in determining the interactions protein [60] and probabilistic approach 

[156]. 

In this study, CLC BIO package is used to perform MSA (multiple sequence 

alignment) for all collected protein sequences that have the same function. As shown 

in Fig.7.5, the alignment process after applying MSA to the FASTA format protein 

sequences is indicated.  

It is noticed that, all collected proteins should be in the same sequence format to have 

the multiple sequence alignment. Some data sources have other formats as GCG, 

Staden, EMBL, Clustal, MSF, Gen-bank, RSF, and FASTA formats.  

As shown in Fig.7.1:7.4, some examples of these formats are introduced. So the 

collected sequences from different data sources should be converted into FASTA 

format. 
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!!NA_SEQUENCE 1.0 test.seq Length: 5390 April 22, 1999 13:50 Type: N Check: 8167 

.. 1 ttatataaaa aatgctgaaa acaggatcaa ggaggaagat ttaaatatag 51 atataatata 

tgggaagaaa cataaaaacg aaataagaac agctaaatat 

Fig.7.1 GCG sample format 

The hallmarks of a GCG formatted sequence are: it begins with the line (all 

uppercase) !!NA_MULTIPLE_ALIGNMENT 1.0 for nucleic acid sequences or 

!AA_MULTIPLE_ALIGNMENT 1.0 for amino acid sequences. A description line which 

contains informative text describing what is in the file. A dividing line which contains 

the number of bases or residues in the sequence, when the file was created, and 

importantly, two dots (..) which act as a divider between the descriptive information 

and the following sequence information. The programs of the Staden suite of 

biological analysis software accept sequences in staden format as shown in Fig.7.2. A 

typical staden format file: Staden formatted sequence files contain the sequence (Ns, 

AAs) and nothing else  

GGTACGTAGTAGCTGCTGCTACGTGCGCTAGCTAGTACGTCATTA 

CGACGTAGATGCTAGCTGACTCGATGCAGTACGTAGTAGCTGCTG 

CTACGTGCGCTAGCTAGTACGTCACGACGTAGATGCTAGCTGACT CGATGC 

Fig.7.2 Staden format sequence 

Another format as shown in Fig.7.3 is Gen-bank format which is considered as one of 

the most important used sequences in protein files. 
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Fig.7.3 Gen-bank sequence file 

Sequences in FASTA formatted files are preceded by a line starting with >. The first 

word on this line is the name of the sequence. The rest of the line is a description of 

the sequence. The remaining lines contain the sequence itself. An example of a 

FASTA file containing a single sequence is: 

>1-BNI5 

MGLDQDKIKKRLSQIEIDINQMNQMIDENLQLVEPAEDEAVEDNVKDTGVVDAVKVAETALFSGNDGAD

SNPGDSAQVEEHKTAQVHIPTENEANKSTDDPSQLSVTQPFIAKEQITHTAIAIGDSYNSFVANSAGNEKA

KDSCTENKEDGTVNIDQNRGEADVEIIENNDDEWEDEKSDVEEGRVDKGTEENSEIESFKSPMPQNNTLG

GENKLDAELVLDKFSSANKDLDIQPQTIVVGGDNEYNHESSRLADQTPHDDNSENCPNRSGGSTPLDSQT

KIFIPKKNSKEDGTNINHFNSDGDGQKKMANFETRRPTNPFRVISVSSNSNSRNGSRKSSLNKYDSPVSSPI

TSASELGSIAKLEKRHDYLSMKCIKLQKEIDYL….. 

Fig.7.4 FASTA file format for protein BNI5 of Yeast 

The protein sequences in FASTA format are collected and used in Bio-CLC program. 

The MSA is performed in accurate mode option. On the left hand side of Fig.7.5, the 

names of proteins are shown and by different colors the amino acids are arranged. 

Each 10 AAs are separated by gab to indicate the protein sequences. In the button, the 
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conservation and gap fraction are indicated. The conservation means the most 

frequent (strength) of amino acids in one place but the gap fraction means the 

difference between amino acids in this location. High conservation and low gap 

fraction are good indication for extracting the consensus. The first ten amino acids 

have high density relationships so the conservation level is increased and gab fraction 

is decreased as low percentage. So consensus is created as [SxNDSGx-P].  

  

Fig.7.5 MSA over collected proteins. Specific motif (consensus) has been extracted from the first 10 

proteins locations 

The extracted amino acids (letters) are divided into three parts. Capital letters 

(SNDSGP) which means the first letters of most proper amino acids, (-) means gap 

(no amino acid in this location) and (x) means any amino acid can be found in this 

location. On the other hand, there are the unrelated sequences which have poor 

relations so they have high gap fraction. 

Although the motif is clear for each specific area, the motif is difficult process to be 

extracted. Since the manual extraction is very exhaustive process, a detected threshold 

is created for consensus spectrum.  
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The threshold is detected relating to the maximum conservation percentage of the 

sequence alignment. The relation between the conservation percentage and alignment 

position is created as shown in Fig.7.6. The threshold is around 20% which means any 

alignment conservation more than threshold (~0.2) will be as motif location (measure 

for the function). Fig.7.6 shows 11 peaks more than the determined threshold where 

there is just one as maxima.  

 

Fig.7.6 the relation between the conservation and alignment position  

 

It is noticed that, the threshold value for determining the consensus is different for 

each sub-function category according to the sequences alignment strength as shown in 

Fig.7.7. This value is determined visually from the spectral graph or from the two 

dimensional data array between the sequence position and frequent percentage. 

In this study, the multiple sequence alignment is applied to all protein sequences of 

Yeast (127 sub-functions). For each sub-function, protein sequences have been 

collected and sequence alignment is performed to extract specific motif. This motif is 

considered as feature (signature) for this function. As shown in Table 7.3, some 

motifs are collected for each sub-function category. These motifs are considered as 

identified features for each function. And it can be used to verify the predicted 

functions. If motif of function (A) for example is found in protein sequence and the 

mathematical methods estimate that protein to have this function (A), protein has high 

confidence to perform this function (high probability). Also it is noticed that, there are 

some sub-functions have no motifs. The reasons in this cases are as: 1)- the matching 
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of alignment is less than the suggested threshold, 2)- the sequences have other 

functions may change the main sequence of the protein, or 3)- the group of proteins 

(collected sequences) can not express the function. As shown in Table 7.3, function 

ID 2 has no clear motifs because in Fig.7.7a, the maximum amplitude does not reach 

for the required threshold. But the extracted motifs for protein functions 3, 8, and 5 as 

match as the peaks of the spectrum of the Fig.7.7. b, c, d respectively. 

 

Fig.7.7 four different alignment graphs spectrum (consensus versus the position) for Bio-chemical sub-

function categories  

 

Table 7.3 Yeast protein functions and its extracted motifs indicating the start and end positions for 

biochemical sub-functions 

Function 

ID 
Function Name 

Startin

g 

positio

n 

End 

positio

n 

Consensus 

2 

Amino-acid 

metabolism -- -- -------------------------------------------------------------- 

3 

Carbohydrate 

metabolism 138 176 TS-----ATELSR-R--T-A-AN---LEDL--------I 

8 Cell structure 182 203 LDSRSSEXSEAALST---ESES 
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5 Cell cycle control 111 140 
SLSSNXTLNTXEXESS--SEELKXTTRSEQSRRSTSLKI---

SSES-E 

 

 

7.3 Summary  

          In this chapter, we tried to extract motifs for each sub-function category in yeast 

proteins. The technique was based on applying multiple sequence alignment (MSA) to 

all yeast protein function categories sequences which were collected from different 

data sources as DIP, PIR, and SWISS PROT. CLC BIO program was used for 

applying sequence alignment. Motifs were extracted related to the most frequent 

positions of amino acids in the alignment. These motifs were considered as identified 

features for each function. And they could be used to verify the predicted functions. If 

motif of function for example was found in protein sequence and the mathematical 

methods estimated that protein to have this function, protein had high confidence to 

perform this function (high probability).  

Although most of collected functions had specific motifs, there were few sub-function 

categories that had no motifs which reflected failure of this method in verifying the 

prediction process. So as advanced study, the collected protein sequences should have 

just one known functions (not more one) to avoid the confusion of two or more 

function motifs. 
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Conclusion and Future work 
 

 

 

            Protein function prediction is one of the most important and hot tasks in the field 

of proteomics, since it leads to understanding cell activities. Protein functions may be 

predicted from protein sequences, gene expression, protein domains, protein 

localizations, protein structure, and protein-protein interactions (PPI) as recent 

computational techniques. Although protein function prediction through PPI networks is 

a powerful modality, it lacks the following points: 1) the reliability of the protein 

interactions to be considered in the prediction process where each interaction can be 

identified by one or more experimental method. And each experimental method has its 

score of stability and reliability, 2) the relations between the known functions which 

participate with the prediction process and 3) the features that identify these functions. 

Most of the previous computational techniques do not consider these points; that is why it 

decreases the confidence of the prediction process. 

In this thesis, some algorithms were provided with new ideas to overcome the above-

mentioned drawbacks. Regarding the reliability, an integrated algorithm was proposed. It 

included the experimental identification method; that contained the number of 

experimental methods furthermore their reliabilities, local topology which indicated the 

number of surroundings for the studied proteins, and global topology which illustrated 

the most common graphs for the proteins through the network. In addition, a new 

weighting algorithm was calculated using all the previous data. This new technique 

explored the collected data to create reliable interactions and enhance the prediction 

process. 

Moreover, a novel technique was introduced to express the relations between protein 

functions, it included number of interactions between the protein clusters and overlapping 

number of proteins that had the same functions. This technique indicated the correlation, 
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anti-correlation, and independency between some protein functions which affected the 

protein function prediction. 

Motif extraction was also performed using specific technique as multiple sequence 

alignment (MSA) in order to take advantage of the features that identified protein 

functions. This consensus (the most common positions of amino acids for proteins in 

multiple sequences alignment) was considered as the signature of that function and was 

used to identify it. 

The proposed techniques were applied to Yeast data “Saccharomyces Cerevisiae” the 

simple eukaryote species which had complete genome and sequences. Yeast had a bout 

6500 proteins classified into three main function categories. Each one of those function 

categories (biochemical – cell location – cellular role) contained many sub-functions.  

The obtained results were validated via valuable methods and the results revealed great 

enhancement in protein function prediction process. The sensitivity and specificity of the 

results were more reliable than the previous techniques. The results of the cellular role 

function category were enhanced and improved specially in the three suggested basic 

weights w1 (experimental method), w2 (local topology), and w3 (global topology). The 

average and PCA weights introduced better results than weight less (unity weight) 

technique. Also it was noticed that, the sensitivity was improved with increasing number 

of interactions. In the second function category (cell location), all new weights were 

roughly overlapped and made shift in the positive direction to improve the sensitivity and 

specificity. Also the larger number of interactions improved the results. But the third 

functional category (Biochemical function), the weight less technique was better than the 

suggested algorithms which meant that biochemical function category did not depend on 

the interactions and the protein neighbors and the computational methods failed in 

estimating the protein functions of un-known proteins from the surrounding neighbors. 

On the second hand (protein function relations), many functions were estimated from 

these relations furthermore the anti-correlation concept which applied for all functions.  

Finally for the third technique (motif function extraction), many protein function 
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categories had one or more motifs (sequence of amino acids) which they had 

conservation value greater than the determined threshold. These motifs were considered 

as signatures for those functions.   

So we concluded our work as:  

1- The new weighting technique enhanced the sensitivity and specificity for two 

function categories (cell location and cellular role). 

2- Increasing the number of interactions improved the sensitivity and specificity. 

3- The technique did not reveal good results in biochemical function category which 

indicated, the estimation of this function category was very difficult using the 

neighbor data. 

4- Some protein functions had high correlation reached for 100% which meant that 

any protein had one of the correlated functions it had the second one. 

5- The correlation based on the overlapping number of protein was more accurate 

than based on the protein cluster interactions. 

6- The integration between the cluster interactions and overlapping number of 

proteins gave higher accuracy than any one of them. 

7- Motifs were extracted related to the most frequent positions of amino acids in the 

alignment.  

8- These motifs were considered as identified features for each function. And it used 

to verify the predicted functions. If motif of function for example was found in 

protein sequence and the mathematical methods estimated that protein to have this 

function, protein had high confidence to perform this function (high probability).  

9- There were few sub-function categories had no motifs which reflected the failure 

of this method in verifying the prediction process.  
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FUTURE WORK 

 

Herein, some methods and techniques can be performed to the data sources as: 

 

1- The new weighting technique can be integrated with MRF method and other 

statistical techniques. 

2- Calculating the reliability of the interactions by other techniques as protein 

domains. 

3- Applying the MSA to proteins that contain just one function not more. 

4-  Collecting all these data and results in one package.  

5- Applying all the previous techniques to human proteins. 

6- Getting a relation between the function and the structure part that response for 

doing it. 

7- Estimating the protein functions through other new techniques as fussy logic or 

neural network. 
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‌ث   

 نبذة عن الرسالة

 

يعد التنبؤ بوظائف البروتينات واحدة من اهم المهام المطلوبة فى علم البروتين حيث انها تعمل على فهم نشاط 

, تركيب البروتينات او من  الخلية. فهذا التنبؤ يمكن ان يحدث من خلال تسلسلات البروتين, مواضع البروتينات

 .في السنوات السابقة خلال تحليل شبكات البروتينات كعلم حديث

بالرغم من أن الطريقة الحديثة )تحليل شبكات البروتين( تعتبر واحدة من الطرق المتقدمة الا انها تخلو من بعض ف

او  من الروابط المتواجدة بين البروتينات لم يتم اكتشافهبعض   -اولا: تى تؤثر على دقة هذا التنبؤ مثلالعوامل ال

لم يتم التعبير عن  -ثانيا:دقيقة وغير معبرة.  فها بطرق غيران تكون صدفة او تم اكتشا بدقة ولكن يمكن اتحديده

 كونديد مؤشرات معينة لكل وظيفة لتلم يتم تح -ثالثا:لها فى عملية التنبؤ. العلاقات بين هذة الوظائف واستغلا

 بمثابة بصمة لهذة الوظيفة.

تم علاج دقة الروابط ف. جديدة لكى تتغلب على العقبات السابقة فى هذة الرسالة تم تقديم العديد من الطرق بافكار 

دقة كل طريقة اضافة للوضع الحالى للرابط من عن طريق عمل اسلوب جديد ياخذ عدد طرق الاكتشاف و

  المنظور المحلى و الكلى.

البروتينات فقد تم اكتشافها عن طريق الروابط بين مجموعة البروتينات و بالنسبة الى العلاقات بين وظائف 

بروتينات المتطابقة فى كل وظيفة. اما بالنسبة الى الحصول على عوامل مميزة لتلك الوظائف علاوة على عدد  ال

ون مميزة محازاة لتسلسلات البروتينات لكى يتم اخذ اعلى متشابهات من الاحماض الامينية لكى تكفقد تم عمل 

 .لكل وظيفة

 0066فطر الخميرة يحتوى على ف.هذة الطرق تم تطبيقهاعلى فطر الخميرة الذى يتشابه مع الانسان الى حد كبير 

الكيميائية , وضع البروتين فى الخلية و دور  من حيث الروابط  بروتين و تنقسم وظائفة الى ثلاثة وظائف اساسية

 البروتين فى الخلية.

الاساليب والطرق تم الحصول على نتائج عالية الدقة مما ادى الى التنبؤ بهذة الوظائف بدرجة  بعد تطبيق هذة

 .و عالية صحيحة
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