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Summary:

Elastography is a promising medical imaging modality to image the distribution of elastic properties
in a region of interest. This technique maps the distribution of parameters related to the mechanical
attributes in the target to color coded visual information. In medical imaging, elastography is being
studied for its potential as a diagnostic tool in detecting pathological changes in soft tissues by
monitoring stiffness changes. For instance, scirrthous carcinoma appears as extremely hard nodules in the
breast elastogram.

Many approaches to displacement estimation in ultrasound elastography exist. The standard
estimation technique, which is based on 1D gated crosscorrelation, has some disadvantages. It cannot
operate well under high applied compression and does not utilize inherent smoothness in tissues. This
leads to redundant searches for successive radio frequency segments and occurrence of false detections.

It can be noticed that displacement estimation in elastography is similar to the motion estimation
phase in video compression domain. Although some differences exist between the natures of the
ultrasonic image and the photographic image, 2D block matching algorithms can be used with ultrasound
radio frequency frames to generate displacement fields.

In this study, we review the basic principles underlying elastography. Then, we introduce steps of
standard gated 1D crosscorrelation elastography and the impact each step has on signal-to-noise ratio,
contrast-to-noise ratio and computation time of elastogram. Then, we propose a modified version of one
of the 2D block matching algorithms which make it more oriented to work with US data. We also utilize
the inherent continuity in the imaged tissue to make an optimized version of the previously modified
algorithm. Additional constraints on the displacement estimation are imposed to reduce discontinuities.
We tested the effects of some parameters and postprocessing on the estimation output. Quantitative and
visual assessments of the resulting elastograms show that the new technique does not suffer from the
same drawbacks of the standard technique. We conclude with potential future work to enhance the
quality and runtime of the proposed 2D displacement estimation method.
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Abstract

Elastography is a promising medical imaging modality to image the distribution of
elastic properties in a region of interest. This technique maps the distribution of
parameters related to the mechanical attributes in the target to color coded visual
information. In medical imaging, elastography is being studied for its potential as a
diagnostic tool in detecting pathological changes in soft tissues by monitoring stiffness
changes. For instance, scirrhous carcinoma appears as extremely hard nodules in the
breast elastogram.

Many approaches to displacement estimation in ultrasound elastography exist. The
standard estimation technique, which is based on 1D gated crosscorrelation, has some
disadvantages. It cannot operate well under high applied compression and does not
utilize inherent smoothness in tissues. This leads to redundant searches for successive
radio frequency segments and occurrence of false detections.

It can be noticed that displacement estimation in elastography is similar to the
motion estimation phase in video compression domain. Although some differences
exist between the natures of the ultrasonic image and the photographic image, 2D block
matching algorithms can be used with ultrasound radio frequency frames to generate
displacement fields.

In this study, we review the basic principles underlying elastography. Then, we
introduce steps of standard gated 1D crosscorrelation elastography and the impact each
step has on signal-to-noise ratio, contrast-to-noise ratio and computation time of
elastogram. Then, we propose a modified version of one of the 2D block matching
algorithms which make it more oriented to work with US data. We also utilize the
inherent continuity in the imaged tissue to make an optimized version of the previously
modified algorithm. Additional constraints on the displacement estimation are imposed
to reduce discontinuities. We tested the effects of some parameters and postprocessing
on the estimation output. Quantitative and visual assessments of the resulting
elastograms show that the new technique does not suffer from the same drawbacks of
the standard technique. We conclude with potential future work to enhance the quality
and runtime of the proposed 2D displacement estimation method.



Chapter 1 : Introduction

Elastography is an established medical imaging modality used to image the
distribution of elastic properties such as stiffness and elastic moduli as well as
viscoelastic and poroelastic properties in a region of interest [1]. This technique maps
the distribution of parameters related to the mechanical attributes in the target to color
coded visual information. In medical imaging, elastography is being studied for its
potential as a diagnostic tool in detecting pathological changes in soft tissues [2].

1.1. Motivation

1.1.1. Conventional detection of cancers and cirrhosis

Long before medical imaging, palpation was an important clinical examination
method, and was practiced by the ancient Egyptians about 5000 years ago. The first
treatise in the book of the heart at the Edwin Smith and Ebers Papyrus, a part is shown
in Figure 1.1, is entitled ”"Beginning of the secret of the physician” and written between
1500 and 3000 B.C. [3].

Figure 1.1: Part of the Ebers papyrus, one of the earliest known descriptions of
cancer documents believed to have been written in Egypt about 1600 B.C.

According to [4], this papyrus included the first written evidence suggestive of
breast cancer, which was detected by palpation. The Ebers papyrus describes large
tumors of skull lesions suggestive of metastatic cancer, which have been found in
skeletal remains from the Bronze age, 1900 to 1600 B.C. Stone describes in his work
[5] how the ancient physician followed the same steps in the process of examination as
we follow in our modern medical practice. Interrogation of the patient was the first step,
followed by the classical steps of inspection, palpation of the body and the diseased
organs.



Palpation is still one of the standard examination method performed in the modern
diagnosis for the detection of breast, thyroid, prostate, and liver abnormalities.
Palpation is used to measure swelling, detect bone fracture, find and measure the pulse,
or to locate changes in the pathological state of tissue and organs. On the one hand,
palpation is not very accurate, because of its poor sensitivity with respect to small and
deeply located lesions as well as to its limited accuracy in terms of morphological
localization of lesions.

Early detection is one of the primary requirements of successful cancer treatment
especially in breast and prostate cancer. Thus, early detection through screening
methods, such as mammography, is considered central to cancer surveillance programs
throughout the world. In spite of the unquestionable successes, there remains an urgent
need to improve both sensitivity and specificity of cancer imaging modalities. In the
USA and other developed countries, cancer is responsible for about 25% of all deaths.
On a yearly basis, 0.5% of the population is diagnosed with cancer, especially breast
and prostate cancer, which present about 33% of all common cancer cases for females
and males respectively [6, 7]. Adenocarcinoma of the prostate is the most prevalent
malignant cancer and the second cause of cancer-specific death in men. Its annual
incidence is approximately 185,000 in Europe [7]. Its therapy is more effective when
cancer is diagnosed at an early stage, but this carcinoma is usually asymptomatic and
therefore reliable diagnostic modalities are required. Accurate assessment of the local
extent of the disease is fundamentally important in the selection of appropriate local
treatment modalities.

When it comes to prostate cancer specifically, it is curable at an early stage.
Therefore, early detection is extremely important. At an early stage the prostate cancer
is mostly limited to the interior prostate capsule, which is the physical organ border that
separates the organ from surrounding tissue. Once tumor cells have broken through the
gland capsule, they spread throughout the body and affect other organs. A radical
prostatectomy is preferred, when tumor growth is still inside the prostate capsule. Even
at later stages radical prostatectomies are performed in special cases, in order to relief
pain or to enable physical activities. Nowadays several types of diagnostic methods are
used to detect prostate cancer using the evaluation of this area through digital rectal
examination (DRE) and the use of serum prostate-specific antigen (PSA). A major tool
in the diagnosis of prostate cancer is the DRE, which is using the fact that most tumors
of the prostate are significantly stiffer than normal surrounding tissues.

During DRE, the prostate is palpated manually by the physician, who has to be
experienced to achieve reliable diagnostic results. This method is unfortunately limited
in effectiveness, because small tumors and those deep inside the prostate or not close to
the rectal wall are usually not found using DRE alone. The PSA measurement provides
a level of suspicion for the presence of cancer, and an overall indication of its
development, but it does not give any information about the location, size and type of
the tumor. Transrectal ultrasonography (TRUS) is performed by applying B-mode
(brightness mode) US, which provides information about the relative ultrasonic
reflectivity of tissues, and is routinely used in prostate examination. Originally hailed as
a possible diagnostic modality for prostate cancer, TRUS is now known to have limited
applicability for initial diagnosis. Malignant lesions in the prostate can be hypoechoic,
isoechoic, or hyperechoic. Currently, TRUS offers the best available opportunity to



demonstrate prostate cancer. It is widely available, has a relatively low cost, and
provides the opportunity for precise and accurate needle biopsy of the gland. However,
because many prostatic tumors are both isoechoic and multifocal, TRUS has major
limitations in fully demonstrating prostate cancers. Furthermore, TRUS has low
echotexture specificity because many pathologic conditions may demonstrate similar
appearances as hypoechoic areas in the peripheral zone of the prostate. TRUS imaging
can detect approximately 2/3 of all tumors, whereas the remaining 1/3 appear isoechoic
and cannot be identified as tumors [8]. Neither MRI nor CT scans can replace TRUS
adequately for prostate cancer detection. However endorectal MRI permits the
determination of occult extraprostatic spread in given individual cases. The gold
standard remains the minimal invasive method using sextant biopsies guided by TRUS
examination. This process is an invasive sampling procedure that unfortunately cannot
exclude cancer for sure.

1.1.2. Value of Elasticity Imaging

Changes in tissue elasticity are related to the physiological health of the tissue.
Changes in tissue stiffness may manifest as changes in tissue elasticity which may
indicate pathogenic or malignant growth. A tumor is 5-28 times stiffer than the
background of normal soft tissue. For instance, scirrhous carcinoma appears as
extremely hard nodules in the breast [9]. In standard medical practice, tissue elasticity
is qualitatively assessed by palpation. While palpation may still be the preliminary
diagnostic step, its subjectivity (perception of degree of stiffness may vary from
physician to another) makes results more prone to inconsistency and hence less reliable.

The elastic properties of soft tissues depend on their molecular building blocks, and
on the microscopic and macroscopic structural organization of these blocks [10]. Some
data on tissue elastic properties were collected by Sarvazyan et al. [11], Parker et al.
[12] and Walz et al. [13]. Some of the authors’ recent results on breast and prostate
tissues in vitro are given in Table 1.1 and Table 1.2 [14] and visualized in Figure 1.2.
These results indicate that in the normal breast fibrous tissues are stiffer than glandular
tissues, which are in turn stiffer than adipose tissues. The two kinds of tumors studied
show different behaviors, with the infiltrating ductal carcinomas being significantly
stiffer than the ductal tumors. Some of the tissues exhibit marked non-linear changes in
their stiffness behavior with applied precompressive strain, while others remain
unchanged. There appear to be opportunities in differentiating breast tissues based on
their stiffness values as well as their non-linear stiffness behavior. Table 1.2 also show
significant differences are also evident among normal, BPH and cancerous tissues of
the.

Although many researchers have proposed imaging the stiffness distribution in
tissue to enhance diagnosis of cancer disease, as shown in [15], current medical practice
routinely uses sophisticated diagnostic tests through magnetic resonance imaging
(MRI), computed tomography (CT) and ultrasound (US) imaging, which cannot
provide direct measure of tissue elasticity.
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Figure 1.2: Tissue elastic moduli obtained from normal and abnormal breast and
prostate tissues (DCa = ductal carcinoma, IDCa = intraductal carcinoma, N. Ant.
= anterior portion of the normal prostate, N. Post. = posterior portion of the
normal prostate, BPH = benign prostatic hypertrophy).

Table 1.1: Results of actual stiffness measurements (in kPa) of normal and
abnormal breast tissues in vitro (20% precompression — 2% strain rate).

Tissue Type Stiffness Modulus (kPa)
Normal Fat 2018
Normal Glandular 48+15
Fibrous 220+88
Ductal CA 291167
Infiltrating ductal CA 558+180

Table 1.2: Results of actual stiffness measurements (in kPa) of normal and
abnormal prostate tissues in vitro (4% precompression — 8% strain rate).

Tissue Type Stiffness Modulus (kPa)
Normal anterior 63118
Normal posterior 70114
BPH 36+11
CA 221432




1.1.3. Value of elasticity imaging using Ultrasound (US
Elastography)

1.1.3.1. Ultrasound in Medical Applications

Ultrasonic waves are acoustic waves with frequencies above the audible range of
the human ear. Acoustic waves are merely the organized vibrations of matter that is
able to support the propagation of these waves. Medical ultrasound instrumentations
typically use much higher frequencies than the audible human hearing range. Most of
the medical applications are achieved with ultrasound at frequencies between 1 — 10
MHz. Most recent applications of ultrasound for examining the surface layers of skin
and the walls of blood vessels have involved frequencies in the range up to 40 MHz. At
even higher frequencies, acoustic microscopy can provide detailed images, based on the
acoustical characteristics of tissues. The choice of the suitable frequency for certain
application is a tradeoff between the combined needs of good resolution and good
penetrating ability. As the frequency is increased, the wavelength of ultrasound waves
gets progressively smaller, which accounts for the improved resolution capabilities of
ultrasound compared to ordinary sound waves. Before the first documented use in
diagnostic applications by Dussik in 1942, US was used in the field of medicine in
therapy. The incident and absorbed focused waves produce heat, which can be used to
decrease muscle cramps and to reduce pain. The destructive ability of high intensity
ultrasound had been also recognized earlier in the 1920s. One of the most important
ultrasound therapy applications is Lithotripsy, a clinical procedure whereby
extracorporeal shock waves are focused onto kidney stones to fragment them into
pieces small enough that they can be passed naturally [16]. The first diagnostic use of
US was reported in 1949 [17]. The researchers discovered the physical characteristics
of ultrasound and studied the acoustic impedance of various types of human tissue, as
well as the attenuation of ultrasound energy in tissues, impedance mismatch between
various tissues and related reflection coefficients, and the optimal sound wave
frequency for a diagnostic instrument to achieve adequate penetration of tissues and
resolution, without incurring tissue damage.

Nowadays, the use of ultrasound in the modern medical diagnosis has found a solid
niche among the various methods for imaging the body. Advantages of ultrasound
imaging against other imaging techniques are the following:

e The safe application at low radiated power; there is no documented hazard
associated with its safe use, and no radiating or ionizing waves are used, within
the range determined for medical applications compared to radiography which
has a well-documented hazard, depending on the dosage required [18].

e Sonography is a non-invasive or minimal invasive method, as waves are
generated entering the body and no foreign substances are needed to be injected
into the body to interact with the waves. The exception is using hazardless
ultrasound contrast agents, used in a few applications.

e The ability to produce real-time images to differentiate between soft tissue
types; ultrasound waves interact and propagate through soft tissue and liquid,
where they are partially reflected at interfaces between different soft tissues.
Thus, an US scan may be more sensitive to real time variations in soft tissue
type than a computed radiograph (CT) or magnetic resonance image (MRI).

e Simplicity, convenience and low cost for the patient and the physician:
ultrasound imaging is a simple technique, the session takes a few minutes and
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the scanning procedure itself is quite easy, so the patient mostly does not need
any precautions or complicated preparations. It must be noted, however, that the
advantage that ultrasound possesses in soft tissue scans is counterbalanced by
the lack of penetration in bony areas or air spaces. This limits the applications of
ultrasound in the skull, skeleton or in the lungs or some gastrointestinal areas.

1.1.3.2. Elasticity Imaging using US

As stated before, a small sized lesion or one that is embedded deep inside the tissue
is hard to detect by palpation. This necessitates painful, invasive biopsies. Among other
medical imaging modalities, acoustic imaging techniques are most well suited for
screening and routine diagnostic examinations of tissues that have strong sound contrast
properties. US B-mode imaging has been used extensively in clinical applications
ranging from obstetrics and gynecology to abdominal, cardiac and cancer imaging.
Ultrasonic imaging works on the principle of acoustic reflectivity and regions with
good contrast in echogenicity are detected well in the US image. However, two regions
with the same echogenicity may have different stiffness contrast. For instance, tumors
in the breast or prostate are much stiffer than the embedding tissue and scirrhosis of the
liver increases the stiffness of the whole tissue, yet the tissues may appear normal in US
scans. In other words, elasticity and echogenicity are uncorrelated and traditional B-
mode imaging may not detect elastic contrast. Elastography can provide new
information about areas opaque to sonography due to acoustic shadowing, areas with
hard lesions in a soft background and isoechoec regions that are invisible to
sonography.

This is the primary motivation behind elasticity imaging using US (elastography) -
to provide new information on tissue stiffness that can be complemented with echo
contrast information available from US imaging in order to have a more clinically
useful, specific and accurate diagnostic report. An example for that is the image shown
in Figure 1.3. Much research effort has been directed toward US elastography
realization since its inception [19]. Though still a relatively novel technique in the area
of imaging, elastography has evolved from a research bench to a diagnostic tool capable
of providing information for improved diagnosis. Today, elastography is being
considered as a potential replacement for painful biopsies.

(@) | (b)

Figure 1.3: (a) US image fused with elastography strain color map. (b) US image
alone (Isoechoec stiff nodule: suggesting invasive ductal CA (Hitachi Medical,
Tokyo, Japan))



1.2. Organization of the thesis

In Chapter 2, we review the basic principles underlying elastography. Then, we
introduce steps of standard gated 1D crosscorrelation elastography and the impact each
step has on signal-to-noise ratio, contrast-to-noise ratio and computation time of
elastogram. This basic 1D elastography technique suffers from some issues. So,
in Chapter 3, we propose a modified version of one of the 2D block matching
algorithms which make it more oriented to work with US data. We also utilize the
inherent continuity in the imaged tissue to make an optimized version of the previously
modified algorithm. The effects of imposing more constraints on the optimized
algorithm are studied. Also, we show the effects of the block size and postprocessing
on the estimation output. In the end, we present our conclusions and potential future
work in Chapter 4.



Chapter 2 : 1D Crosscorrelation Elastography

2.1. Elastography Principles

Elasticity imaging is typically done by processing the ultrasound RF data to
estimate tissue displacements induced by external stimuli or internal motion. Quasi
static compressions are used to excite the tissue externally in the direction of ultrasonic
radiation [19, 20]. Alternatively, internal stimuli from inherent activity of the organs
such as cardiovascular activity of the heart or blood flow can be used to produce
elastographic signal [2]. The resultant speckle patterns contain information about
internal displacement of the individual tissue components. Coherent echoes before and
after compression, in the direction of applied strain, are then divided into overlapping
windows in the time domain. The delay between these windows is tracked using
speckle tracking methods such as cross-correlation [21]. Assuming the velocity of
sound in the tissue is constant, the delay in time domain can be converted to
longitudinal displacement between the adjacent windows. The resultant strain
distribution can be obtained by computing the gradient of displacement. The resultant
strain images are referred to as 'axial strain elastograms'. Each pixel in an elastogram
denotes the amount of strain € experienced by the tissue during compression, given by

€ = % 2.(1)
where 7; and 7, denote the axial displacement estimates in windows 1 and 2
respectively separated by a distance of At. The applied compression is typically in the
range of 0.5-2% of tissue depth. The echoes are traced during or after the time that the
tissue undergoes deformation caused by the excitation.

A schematic of a typical elastography experiment is shown in Figure 2.1.The basic
assumption made in tissue elastography is that the tissue behaves as an elastic,
incompressible solid while in reality, it is viscoelastic. The assumption implies that
there is a linear relationship between tissue stress and strain, the tissue is isotropic,
there is no hysteresis, stress relaxation or creep. This assumption was justified in quasi-
static elastography experiments by Ophir et al [19].

In this simplistic model, the tissue is modeled as a cascaded spring with a rigid
base as shown in Figure 2.1. This is the 1D spring model of a layered tissue. In
Figure 2.1 (a), a transducer-compressor assembly is placed on the surface of the tissue,
ultrasonic pulses are fired and the echo response of the uncompressed tissue is
recorded. In Figure 2.1 (b), the tissue is uniformly compressed under quasi-static
controlled conditions, and the echo response of the compressed tissue is recorded. In
the case of uniaxial tensile stress in a cascaded spring assembly, the force in all the
spring segments is the same. Consequently, the mathematical model of tissue is
simplified and the equation of quasi-static uniaxial stress reduces to the Hookean
equation [2]

Fy = KAx, 2.2)

where K is the local stiffness of the tissue, F, is the applied stress and Ax is the
resulting local change in displacement.



The equivalent equation in this model for the continuous case becomes
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Figure 2.1: Schematic demonstrating the principle of elastography (a)
precompression (b) postcompression.

From 2.(4) we see that in the cascaded spring model, stiffness constant for a tissue
region can be quantified by Young's Modulus. Experiments have established that the
larger the area of the compressor, the more uniform the longitudinal stress fields and
consequently more uniform strain fields.

Figure 2.2 shows the strain profile of the set up in Figure 2.1. The level of applied
strain is kept small to maintain the Hookean equation in the linear range of stress-strain
relationship.

Ky Stiffness of the background
K, :Stffness of the inclusion

K >> K,

Strain

Axial depth

Figure 2.2: Ideal strain profile of a target with stiffer inclusion.



Strain is a 3D tensor, strain elastography is fundamentally a three dimensional
problem with displacement in the axial, lateral and elevational directions. Though
recent work on lateral and elevational strain estimation [22, 23] suggest that it is
possible to generate lateral and elevational elastograms, in this study we will focus only
on axial displacement and axial strain estimation. The concepts and approaches
developed in this work, however, can be easily extended to lateral and elevational strain
elastography.

2.2. Steps of 1D CC elastography

The general block diagram of any static US elastography is shown in Figure 2.3.

conventional US
machine

precompression postcompression
RF frame RF frame

motion estimation algorithm

displacement fields

strain estimation algorithm

| strain fields |

Figure 2.3: Elastography general block diagram.

2.2.1. Data Acquisition
2.2.1.1. US Imaging System and Principles

Most of the modern ultrasound medical diagnostic machines are based on the
pulse-echo technique as shown in Figure 2.4. In this technique, a short pulse of
ultrasound is transmitted by a transducer into the tissue regions being investigated.
Reflections from each of the various tissue boundaries due to changes in the acoustical
impedance are received back at the transducer, and the total transit time from initial
pulse transmission to reception of the echo is proportional to the depth of the boundary.
As the transmitted pulse progresses through the tissue of impedance Z; toward the
interface at depth l; with the organ of impedance Z,, essentially no reflection takes
place as long as the impedance Z; is more or less homogeneous.
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The first significant signal received is the reflection from the anterior organ
boundary at the depth point [; after the echo has returned to the transducer. Therefore,
the received echoes are only depending on areas of different echogenity and can be
reconstructed along the line of pulse propagation. The time from the initial pulse
emission to the time of arrival of the first boundary echo can be calculated as

l
t, = % 2.(5)

The pulse direction of propagation is called the axial direction. Displaying this single
line information according to the amplitude of the reflected wave is defined as the A-
mode3 display, see Figure 2.4.

lx:qlmnrai]

Object .
. _ &2 (axial)

Transducet

Pulser
circuit

A/D

’ CcOnverter

[l{fl] Timeidenth)

RF echo

A- line _.__I]L.,j,:,@_ Jﬂv‘ %}h&ﬁ:ﬁeﬂé /

= — demodulation

T

Figure 2.4: Elements of a simplified ultrasound pulse echo instrument. The
received RF echo signals are presented on the vertical axis, where the horizontal
axis defines the time of flight which is converted to equivalent depth of
penetration. RF signals are then demodulated representing the A-mode signals
and the B-mode image lines. The envelope of the echo signals is seen to the right,
which yields 1D-information about the tissue.

In order to develop the 2D information image of tissue echogenity distribution, the
ultrasonic pulse must be sent along transferred lines (A-lines) within one axis. The
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ultrasound beam is then translated to the perpendicular axis, which is called lateral
direction. From the demodulated signals (by methods like Hilbert transform) a gray
scale plane image of the tissue is generated, where the logarithmical compressed
envelope amplitude of the received echoes represents the image brightness. This grey
colored image defines the conventional B-scan (B-mode image). Figure 2.4 shows
elements of an A-mode pulse echo instrument and the demodulation from RF echo
signals to A-lines or to B-scans.

As seen from Eq. 2.(5), to relate the time of flight to the depth of the tissue
boundaries, the phase velocities in each medium have to be known. In the meantime, all
ultrasound scanners assume that the tissue phase velocity have a value partway between
those of water and muscle, that is ¢ = 1540 m/s. The emission of the beam is mainly
controlled electronically.

Basically there are three different kinds of images acquired by multi-element array
transducers, i.e. linear, convex, and phased as shown in Figure 2.5. When imaging with
a linear array, each A-line is constructed with a different sub-aperture composed of a
certain number of elements. The sub-aperture is translated over a region of interest.
This enables to construct a rectangular 2D B-mode image. A larger area can be scanned
with a smaller array if the elements are placed on a convex surface. A sector scan is
then obtained. This is useful for imaging the abdomen for example. The principle of
translating the active sub-aperture all over the probe is the same as for the linear array.
But in some cases this can still be insufficient. For imaging the heart for example,
smaller arrays are used in order to steer between the ribs; those arrays are called phased
arrays. Phased arrays enable to have a large field of view using a small array. In phased
arrays all elements of the array are used in transmit and receive. The direction of the
beam is controlled by electronically delaying the signals emitted and/or received by the
elements. The image can be acquired through a small window and the beam rapidly
swept over the region of interest. Recently more advanced transducers have been
developed. The number of elements is always increasing, and two dimensional arrays
are nowadays standard products. For both convex and phased array transducers, a
coordinate transformation is needed to interpolate (typically bilinear) the data
accurately on the display depending on the display resolution. Figure 2.6 shows an
example of scan conversion from polar to Cartesian coordinate typical of ultrasound
systems.

In all different kinds of arrays, beamforming can be used in emit and receive in
order to improve contrast, depth of field or more generally to control the characteristics
of the ultrasound image. A single focus can be used in transmit, and the user can select
the depth of the focus. The reflected and scattered field is then received by the
transducer again and amplified by the time gain compensation (TGC) amplifier. This
compensates for the loss in amplitude due to the attenuation experienced during
propagation of the sound field in the tissue. The US system components are shown in
details in Figure 2.7.
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Figure 2.5: (a) Convex array transducer for obtaining a polar cross-sectional
image. (b) Linear array transducer for obtaining a rectangular cross-sectional
image. (c) Phased array transducer for obtaining a polar cross-sectional image

using a transducer with a small aperture.
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Figure 2.6: Scan conversion process.
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Figure 2.7: Detailed US system with its components.

2.2.1.1. RF acquisition pre and postcompression

In our experiment, a set of digitized RF echo data is obtained after placing a
rectilinear array ultrasound transducer on the surface of the target tissue (the general
idea is represented in Figure 2.8). As stated before, the scanner usually operates
between 1MHz and 20MHz in order to optimize for resolution and penetration. The
surface is then slightly compressed with the transducer or with a transducer-compressor
assembly, and another set of digitized and compressed RF echo data is obtained from
the same area of interest. The pre- and post-compression signals are independently
stationary but jointly non-stationary and this should be taken into account while
processing these signals as will be presented later.

For testing purpose, we used the same phantom RF data in Rivaz et al. (applied
compression = 2%) which is a CIRS elastography phantom (CIRS, Norfolk, VA) [24],
[25]. The B-mode images for pre and postcompression frames are shown in Figure 2.9.
The size of both frames is 1700*508 samples. The semicircular stiff lesion can be fairly
seen due to being isoechoec with the surrounding tissue. An ROI around the lesion is
delineated by white rectangles in Figure 2.9(a,b) and shown separately in
Figure 2.9(c,d). The height of the ROI is bigger than the width to include wide range of
axial TDE values. The size of the ROI is 1301*188 samples'.

! In some discussions, we test the discussed algorithm on the full data. In others, we will test the
algorithm on the ROI.
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Sonogram Displacement Strain image

Figure 2.8: US RF data acquisition pre and postcompression

2.2.1. Time Delay Estimation for Axial Displacement

A time delay between the pre- and post-compressed echo signals arise from the
spatial shift of the compressed tissue. Assuming the speed of sound in the soft tissue is
constant, the spatial shift is proportional to the time shift. Hence, delay estimation in
time domain is equivalent to displacement estimation in spatial domain. Figure 2.10
shows an example for time delay between pre- and post-compressed A lines in
elastography. The quality of elastograms depends directly on the ability to estimate
time delay accurately [21]. The presence of noise in the post-compressed echo signal
induced by mechanical compression, imposes a limit on the accuracy achievable in time
delay estimation [26]. Time-delay estimation (TDE) can be performed using several
methods [27], [28]. Available estimators are Sum of Absolute Difference (SAD), Mean
Square Error (MSE), Cross-Correlation based tracking algorithms, Fourier-based
phase-tracking techniques [29], etc. Cross-correlation techniques are appropriate for
quasi-static applications.

In our implementation, local displacements are estimated by measuring time shifts
in short time histories. The resultant displacement between the gated pre- compression
and post-compression echo signal segments is estimated as the location of the peak of
cross-correlation between the pre- and post-compression signals in that window of
observation. Given the expression of the cross-correlation as

N
1
Royle] = 7 ) O/lieli + 1)), 2.(6)

where x is the pre-compressed signal, y is the post-compressed signal, 7, is the
estimated cross-correlation between pre- and post-compression signals, T is the time
delay between pre- and post-compression and N is the number of sample points in a
window. The estimated displacement is 7 at which 7, is maximum. The cross
correlation window is translated for all depths. Each window of observation is shifted
by a pre-defined linear distance till the last window of observation is reached for all
depths of observation.
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Figure 2.9: Phantom B-mode images. (a) Precompression. (b) Postcompression. (c)
Precompression (after cropping). (d) Postcompression (after cropping).
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Figure 2.10: An example of time delay between pre & postcompression RF lines.

The resulting displacement field of applying gated 1D CC to our phantom
data without any pre or postprocessing (window size = 3mm with 80% overlap)
is shown in Figure 2.11(a). The ideal displacement field (by numerical finite
element (FE) simulation) generated in [30] is shown also in Figure 2.11(b) for
qualitative comparison (quantitative measures will be shown later). It can be
seen that basic 1D gated CC processing alone is not enough to get appropriate
axial TDE fields and further pre and postprocessing is required.
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Figure 2.11: (a) Displacement field by basic 1D CC TDE. (b) Ideal displacement
field (by simulations).
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2.2.2. Preprocessing (before 1D CC)

The quality of time delay estimation depends on the extent of similarities between
the pre-compressed and post-compressed echoes. In elastography, the amount of
similarity is reduced due to the parameters involved in data acquisition. When
mechanically compressed, the tissue scatterer spacing is reduced and the resultant
echoes reflected from physically compressed acoustic scatterers will be distorted [2].
Note that this distortion also constitutes the actual strain that is displayed in the
elastograms. Due to this distortion, crosscorrelation between an uncompressed echo and
another temporally compressed echo will be poor since the compressed echo is no
longer a delayed replica of the uncompressed echo. This is referred to as decorrelation
noise. To partially correct this, the post compressed echo is usually temporally
stretched prior to CC computation. This step alleviates some of the axial decorrelation
and improves the SNR, [31]. Essentially, the stretching realigns the scatterers within
the correlation window. An appropriate stretching factor will make the post
compression echo a closer replica of the pre-compression echo and the cross correlation
will improve considerably. The choice of stretching factor is based on the amount of
applied strain. This is a constraint of this method - apriori knowledge of the applied
strain is required. Other methods like logarithmic amplitude compression and 1-bit
quantization do not require prior knowledge of the applied strain [32].

Temporal stretching is usually implemented wusing resampling (linear
interpolation). That is, stretching a signal s(t) by a factor of a means resampling the

signal to obtain S(i). For example, if the precompression signal is compressed by 1%,

then the stretching factor a for the postcompression signal should be 0.99 [33].
Stretching can be done either globally, where all windows are stretched equally, or
adaptively, where windows are stretched by different factors [34]. Adaptive stretching
is iterative and computationally intensive. For small strains (<2%), global stretching is
usually acceptable for signal conditioning. However, it is important to note that global
stretching works optimally when the target is homogeneous. When the target is non-
homogeneous (our case), stretching the target globally with a factor in the order of the
applied strain would imply over-stretching low-strain areas inside the inclusion or
under-stretching high strain areas in the background. This has the potential to corrupt
the strain image. Hence a global stretch factor should be chosen carefully. Figure 2.12
shows a practical simulation example to illustrate the effect of stretching on non-
homogeneous targets. The result of applying temporal stretching (stretch factor =
applied strain) in our study (where applied strain = 6%) is shown in Figure 2.13.

v - .
SOCRERN RS

Figure 2.12: Effect of varying stretch factor on CC result of simulation (FE)
phantom. (a) 0% stretch (b) 1% stretch (¢) 2% stretch (d) 3% stretch (e) 4%
stretch.
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Figure 2.13: TDE with temporal stretching (global) of postcompression RF line.

2.2.3. Postprocessing
2.2.3.1. Subsample TDE

In the CC approach, the time delay obtained between the pre-compressed and the
post-compressed A-lines is an integral multiple of the pixel sample interval. This is the
time quantization error due to digitization of RF data. In elastography where the applied
strain is in the range of 0.5%-2%, the actual time delay is much smaller than the sample
interval. To estimate sub-sample displacement values, it is required to interpolate
between samples [21]. One method to perform interpolation is by oversampling.
However, this method is computationally inefficient since it increases the length of the
entire cc function while we need finer resolution only near the peak, and hence is not
used here. An efficient interpolator used instead is parabolic interpolator around the
estimated peak.

The parabolic interpolation method that uses 3 points - the estimated peak and its
left and right neighbor points to compute the quadratic order polynomial passing
through them [35]. However, parabolic interpolation is a biased estimator of the true
location of the peak because it imposes a predetermined analytical shape on the
estimate. The bias error is minimum when the estimated peak coincides with the true
peak, or the true peak is half-way between the two samples. The bias error is maximum
when the true peak is about 0.257T distance from the estimated peak (T is the sampling
period). Reconstructive (sinc) interpolation can also be used. It is an unbiased estimator
but computationally expensive [35].
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The result of adding 3-point parabolic interpolation to latest result in Figure 2.13 is
shown in Figure 2.14.
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Figure 2.14: TDE after adding subsample 3-point parabolic interpolation.

2.2.3.2. 2D continuity check (median filtration)

Median filtering is an image engineering technique of noise-smoothing. Its edge
preserving feature makes it more useful than low-frequency linear filters in medical
imaging applications. It is effective for smoothing salt-pepper noise and false peaks.
Median filtering is also computationally more accurate, because it relies on numerical
comparisons and is not prone to overflow or rounding errors which may occur in linear
filtering implementations.

The result of adding median filtration to the last result is shown in Figure 2.15.

2.2.4. Strain Estimation
2.2.4.1. Spatial gradient

Axial strain is the spatial derivative of the displacement along the axial axis. Being
a differential measurement, it is more visually comprehensible than the TDE field
which is a measurement relative to the probe (consequently, TDE does not express true
physical displacement of scatterer — see Figure 2.11). It is estimated by computing the
local gradient of displacement over adjacent overlapping windows. The axial tissue

strain € estimated from two adjacent TDEs 7, and 7, separated by an interval At is
T2—Tq1

€ = T 2(7)
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Figure 2.15: TDE after adding median filtration to remove false estimates.

High window overlaps generate more pixels in the elastogram but also introduces large
noise. This degrades the SNRe of the strain estimate, rendering it less than useful for
detailed diagnosis [36].

2.2.4.2. Least-Squares strain estimator

Another strain estimator used instead of direct spatial derivation is a linear
regression-based estimator called Least-squares strain estimator (LSQSE) [36]. In this
method, each RF line is first differentiated independently: for each sample i, a line is
fitted to the displacement estimates in a window of length 2k + 1 around i (i.e. to the
samples i — k to i + k). The slope of the line is calculated as the strain measurement at
i, €;. The center of the window is then moved to i + 1 along the axial direction and the
strain value €;,1s calculated similarly. This estimator is reported to decrease noise in
resultant strain field.

We applied LSQSE in our study to the resultant TDE field in Figure 2.15 to
generate the axial strain field in Figure 2.16. Ideally, the strain field should have two
values, one for the background and lower one for the stiffer target according to
Figure 2.2.
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Figure 2.16: Axial strain field by applying LSQSE on TDE field in Figure 2.15.

2.3. Quality and Performance Analysis

2.3.1. Factors affecting elastographic quality

The elastographic performance is mainly affected by the following groups of
parameters [1]:

2.3.1.1. US parameters

These are factors related to acquisition of US data, like transducer center
frequency, f., bandwidth, BW, sonographic SNR, sampling frequency,f;.

2.3.1.2. DSP parameters

These are factors related to processing US data to generate elastograms, like the
length of the CC window and the shift between two consecutive CC windows.

2.3.1.3. Mechanical artefacts

Strain in the tissue depends not only on the modulus distribution in the tissue but
also on boundary conditions, both internal and external. These can include stress
concentrations and dilutions and target hardening artefacts [2]. Unlike other factors,
mechanical artefacts represent true variations in strain; other artefacts generally hinder
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an accurate depiction of the strain in the tissue. The mechanical artefacts may
sometimes be beneficial and facilitate diagnosis by highlighting the targets.

These three sets of parameters are somehow interdependent and need to be in
agreement with each other for optimal performance. For instance, the window length, a
DSP parameter, needs to be a function of the ultrasonic wavelength, an acoustic
parameter. Any change in the input parameters should be accompanied by adjusting the
interdependent parameters. When the applied strain is increased, the stretch factor by
which to reduce the decorrelation noise has to be increased in order to retain the quality
of the elastograms. Another example, the elastographic resolution improves with
increasing window overlaps. However, the upper bound of achievable resolution is
defined by the bandwidth of the transducer [37].

2.3.2. Quality and performance metrics

We chose two unitless measures used extensively in elastography for quantitative
assessment. That is the elastographic signal-to-noise ratio (SNR,) and contrast-to-noise
ratio (CNR,) defined by the following equation:

_ —
SNR, = 22, CNR, = /% 2.(8)

where §), and o, are the spatial average and standard deviation of the strain field in a
theoretically homogeneous strain window (typically background) and §; and o; are the
spatial average and standard deviation of the strain field in the target window (circular
inclusion). The SNRe of a TDE and strain fields of a FE simulation is o because in this
ideal case no variations occur in the homogenous window (consequentlyo;, = 0).
Variations (artefacts) are introduced by the imaging system. The advantage of using
CNRe as a quantitative measure of contrast is that it is not affected by output screen
variations between different setups such as brightness, contrast or gamma correction
[38].

2.3.3. Quantitative assessment of phases of 1D CC elastography

All the discussed steps of the 1D gated CC strain estimation were tested on full RF
frames (1700*508 RF samples). The SNR,, CNR,and runtime’ of the TDE
block (trpg) for TDE and strain fields in 2.2 are shown in Table 2.1(The background
and target measurement widows are delineated by white rectangles in Figure 2.16).

Table 2.1: Quantitative assessment of TDE fields in 2.2.

TDE ]?a;g dTlD ;: +temporal | +parabolic +median
method & CC) stretching | interpolation | filtration
SNR, 0.34 0.36 0.37 0.51
CNR, 0.15 0.47 0.47 0.61

trpg (5) 88.1 90.2349 93.4 93.9

2 All algorithms are implemented in MATLAB 2012a (Mathworks Inc., MA, USA) and tested on a 2.0 GHz Intel
processor.
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2.4. Disadvantages of 1D CC Techniques

The ultimate goal of elastography is to provide accurate information about the
health of tissues that will enable detection of disease at real-time and aid in fast and
objective diagnostic decision making. As shown before, the first trial of basic
elastography was based on estimation of displacement between a pair of RF signals
which can be accomplished using crosscorrelation techniques. Standard gated 1D CC
displacement estimators introduced by Ophir [19] have some disadvantages. They
cannot operate well under high applied strain ratios (>2%) due to off-axis decorrelation
(moving of scatterers in the lateral & elevation directions) which cannot be solved
using temporal stretching techniques (global or local iterative) [38]. Also, 1D CC
techniques do not utilize smoothness conditions, which are inherent tissue property, in
their operation. This leads to redundant searches for successive RF segments and
occurrence of false peaks when large search windows are used. 1D CC techniques are
also computationally expensive. Their asymptotic performance of 0(n?n,, log,(n,)),
(where n is the size of the input data and n,, is the size of the correlation window)
when operated on a pair of 1D RF data makes it challenging to employ them for real
time processing on standard hardware [39]. Consequently, dense (pixel-order
resolution) motion fields cannot be generated by 1D CC techniques.
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Chapter 3 : 2D Block Matching Elastography

It can be noticed that the TDE problem in elastography is similar to the motion
estimation phase in video compression domain (e.g. MPEG compression). Although
some differences exist between the natures of the ultrasonic image and the photographic
image (see Table 3.1) [40], block matching algorithms (BMAs), used with
photographic images, can be used with US radio frequency frames to generate
displacement fields.

Table 3.1: Comparison of photographic image and US image motion estimation

[40].
Image Type Photographic Image US Image
Image capture Camera Ultrasound scanner
Perspective projection of 3-D Cross section of 3-D tissue
Image plane .
objects structures
Intensity function Smooth, slow varying across Speck}e-hke pgttern,
objects rapidly varying
. . . . ion + ion +
Motion types Translation + rotation rigid Translation rptatlon
deformation
Typlc.al Pixel resolution (approx.) Pulse dimension resolution
resolution
Changes in external Low SNR, speckle
Challenges illumination, occlusion, aperture decorrelation, motion
problems, no gray value changes | ambiguities, spatial aliasing

In this chapter, we propose a modified version of one of the BMAs. This
modification makes the BMA more oriented to work with US data. We also utilize the
inherent continuity in the imaged tissue to make an optimized version of the previously
modified BMA. This continuity criterion accounts for the axial continuity, so we add a
lateral continuity correction step to remove false peaks along the horizontal direction
and enhance the resultant fields. Then, the effects of imposing more constraints on the
optimized algorithm are studied. Also, we show the effects of the block size and
postprocessing on the estimation output® [41, 42].

3.1. Modified Exhaustive Search (ES)

3.1.1. Basic ES

We used one of the BMAs (commonly used in video compression domain) to
estimate the displacement field of the precompression image. In the video compression
domain, where the video is a series of frames, BMAs are based on dividing a frame into
a matrix of non-overlapping square macro blocks and each block is compared with the

3 Based on our work in this part, we published two papers in IEEE conferences cited in the
“References” section of this thesis.
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corresponding block and its adjacent neighbors in the previous frame to create a vector
that represents the movement of a macro block in the previous frame from one location
to another in the current frame. This movement, calculated for all the macro blocks
comprising a frame, constitutes the displacement field.

The search criterion between blocks is based on minimizing a cost function. The
searched block that generates the least cost is considered the best match for the
reference block. Two cost functions are frequently used due to their simplicity, namely
Mean Absolute Difference (MAD) and Mean Squared Error (MSE) given by the

following equations:
1 N-1N-1 1 N-1N-1
N 5 2
MAD = FZ Z|Gii - Gy, MSE = FZ Z(Gu = Gy), 3.(D
i=0 j=0 i=0 j=0
where N is the side of the macro bock, G;; and G; ; are the pixels being compared in the
reference macro block and searched macro block, respectively. The formula for the
BMA is

No+1 Nqi+1

MAD(m1) = 0% 2 B P | GU ) + ) = GU+ i+ m ] +j+m), 3.2)
2 T2

where (m, n) is the search location (limited by the search range p), N;and N, are the
horizontal and vertical block dimensions respectively, (I,]) is the location of the center
of the reference image block.

For our application (US elastography), the search parameter p was initially set to 5
samples (the idea is represented in Figure 3.1(a)). There are various techniques for
block matching which differ in accuracy and speed [43], but we chose to start with the
most computationally expensive, yet most accurate, algorithm - the exhaustive search
(ES), to assess the quality of motion fields generated using BMAs with RF data.

l’\ [ &~ 7 & 4 ,-
p "/
/ P
) p '\[’ p [ p - p
p p
(a) ' ®)

(<)

Figure 3.1: ES with modifications. (a) Basic ES. (b) ES with the first modification
(lower-only search). (¢) ES with the two modifications (lower-only and less
horizontal search). In all configurations p represents the vertical search range and
Pr represents the horizontal search range (which typically should be less than p).
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The resultant axial TDE and strain (by LSQSE) fields by applying full ES to the
whole (i.e. not cropped) RF data are shown in Figure 3.2. The size of the RF data is
1700*508 and we used a block size of 5*5 (empirical). The SNRe, CNRe and runtime
(trpg) for full ES are shown in Table 3.2 (the background and target measurement
windows are delineated by the white rectangles in Figure 3.2(b)). The resulting fields
are noisy and not comprehensible (compared to the ideal TDE field in Figure 2.11 (b))
and thus the quantitative measurements are not meaningful. Consequently, in the
following sections we show our trials to modify and optimize the full ES algorithm to
get better results.

Table 3.2: Quantitative measurements for full ES.

SNRe CNRe trpg ()

0.01 0.01 742.23
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g
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A-line (samples)

(a) (b)
Figure 3.2: Axial (a) TDE and (b) strain fields by full ES.

3.1.2. First modification

After compressing the imaged tissue by the probe, the distance between any locus
in the tissue and the probe gets smaller. Consequently, every locus appears in an upper
location in the postcompression image than its original location in the precompression
image. Utilizing this, and because we were using the postcompression image as the
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reference image, we applied a modification to the ES algorithm in which we limit the
search range vertically to the lower half of the search window (see Figure 3.1(b)). We
expected this modification to enhance the quality of the displacement field (besides
enhancing speed definitely) as it should reduce false positives. We set the vertical
search range for ES to the applied axial compression depth (as it is the upper limit)
according to the following formula:

dz [samples] = dzT[m] X fs 3.03)
2

where dz is the applied compression length (0.2 inch), f; is the sampling frequency (40
Mhz in our case) and c is the US wave propagation speed (assumed 1540 m/s).
According to 3.(3), dz in samples was 264 and thus, even if this search range
theoretically should contain any motion vectors, getting a result using such a huge
search range is hard for a serial implementation of the ES algorithm.

3.1.3. Second modification

An additional property of elastography images is that the majority of the
displacement should be in the vertical (axial) direction due to the nature of the
compression (which is axial). This let us apply an additional modification to the ES
algorithm in which we limited the search range in the horizontal (lateral) direction (as
shown in Figure 3.1(c)) where p;, is the horizontal search parameter. Typically pj,
should be less than p (we set py to 2). Again we expected this to further reduce false
positives in addition to enhancing speed.

The resultant axial TDE and strain fields by applying the modified ES to the whole
RF data are shown in Figure 3.3. The SNRe, CNRe and runtime (t;pg) for the modified
ES are shown in Table 3.3.

100 200 300 400 500
(a) (b)

Figure 3.3: Axial (a) TDE and (b) strain fields by modified ES.
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Table 3.3: Quantitative measurements for modified ES.

SNRe CNRe trpe (8)

0.03 0.04 210.31

3.1.4. Problems of the modified ES

The results show that the modified ES still does not produce a comprehensible
strain field. This can be understood because the search ranges are empirical and small,
so the search window may not contain the corresponding block for the current reference
block. Also, the modified ES does not exploit the inherent tissue continuity and thus
may be subject to false detections.

3.2. Optimization of Modified ES (Exploiting Tissue
Continuity)

3.2.1. Axial continuity constraint (Axial Apriori)

A main problem facing application of conventional ES to elastography data (even
after the previous two modifications) is that the continuity of displacement fields (as the
tissue is a continuum) is not exploited by conventional ES. This results in noisy
displacement fields with no continuity and with false peaks (especially when the search
range is big) in addition to long search time.

To solve this problem, it is stated in [24] that due to the continuity of motion and
low value of applied strain, movement of adjacent regions in the RF frame should not
vary significantly. We applied the same concept to the BM problem as follows: let that
the axial displacement of location (I,]) in the RF frame be d,,;(I,]), then we can
confine the search range for the axial displacement of the lower sample, (I,] + 1), to
At (1)) — 1, dgyi(1,]), dgyi(1,]) + 1. This is equivalent to limiting the search range
for the lower sample to 1 sample in the 4 directions provided that the search center is
now updated with the displacement of the upper sample (i.e. the new search center is
(] + 1+ dau(L,))), not (I,J+1)). Applying the same concept to lateral
displacement, then we could confine the search range for displacement of location
(1,] + 1), to a 3-by-3 window centered at the location guided by the already-estimated
displacement of the adjacent (upper) sample. This guided location is (I + die: (1)), ] +
14+ dga(, ])). This idea can be expressed mathematically by changing the original
formula of block matching from 3.(2) to

MAD(m,n) = ﬁz}:_uzi;um(l FiJ+14) = CU+dige) +i+m]+1+de)) +j+1), 3.(4)
2 2

where m and n will be confined to -1, 0 and 1 only (i.e. a 3-by-3 search region around
the guided search center).
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To apply the previous idea, one should estimate the displacement field for the first
row in the reference image region of interest (ROI) then use this estimate as a basis for
the lower rows. So, we did modified ES for the first row (as no apriori are found yet)
then used the resultant displacement vectors to guide the search for displacements of
lower samples.

We implemented this modification using the axial search range calculated by 3.(3)
for the first row for full search and using a lateral search range = 10 A-lines (empirical).
The resultant axial TDE and strain fields by applying this optimized ES to the whole
RF data are shown in Figure 3.4. In Figure 3.5, the TDE for the A-line whose index is
400 is shown separately for better visualization of the TDE trend. The SNRe, CNRe
and runtime (t7pg) for the optimized ES are shown in Table 3.4.
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(a) (b)

Figure 3.4: Axial (a) TDE and (b) strain fields by optimized ES (exploiting the
inherent axial TDE continuity of tissues).

Table 3.4: Quantitative measurements for optimized ES.

SNRe CNRe tTDE (S)

1.91 0.15 87.14
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The results in Figure 3.4 and Figure 3.5 show that the axial TDE field undergoes
axial continuity after imposing continuity condition in this algorithm (optimized ES)..
Although the search window for the first row of the reference image is larger than that
for the modified ES, Table 3.4 shows that the time for the optimized ES is overall less
than that of modified ES (about 2.4x decrease - refer to Table 3.3). This is because full
search is done only for the first row, then the search region is reduced to 3-by-3 for the
rest of the reference samples.

1 D T T T T T T T T

axial TDE (samples)

70

| | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800
Sample (axial direction)

Figure 3.5: Axial TDE profile (by optimized ES) for the A-line whose index is 400.

However, it can be seen from Figure 3.4 (a) that the axial TDE undergoes lateral
discontinuity. This can be seen also in Figure 3.6, in which the TDE for sample 500
axially is shown separately for. The reason for this is that the large search region for the
first row leads to some false peaks appearing in the displacement estimation of the first
row. Since this estimation is used to guide the search for the lower row (and so on), the
false peaks propagate along the axial direction.

3.2.2. Lateral Continuity Correction (LCC)

We tried to solve the lateral discontinuity problem of the axial TDE field by
applying 1D median filtration to the displacement estimates of each row to remove the
outliers (false detections) before proceeding to the lower rows. The results of applying
1-by-15 median filtration as a LCC method to the axial TDE field in Figure 3.4 (a) are
shown in Figure 3.7. We can see that the axial TDE field exhibits better lateral
continuity (with some discontinuities still existing, especially at locations 205 and 340
laterally). The lesion boundaries are somehow delineated in the axial strain field in
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Figure 3.7 (b) as shown by the red contour. This improvement in qualitative results
comes also with improvement in the SNRe and CNRe values shown in Table 3.5
compared to quantitative results before the LCC step. Despite its improvement in both
qualitative and quantitative results, the LCC step did not affect the runtime t;pg
compared to the runtime of the optimized ES without LCC in Table 3.4.
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Figure 3.6: Axial TDE profile (by optimized ES) at sample 500.
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Figure 3.7: Axial (a) TDE and (b) strain fields by applying 1-by-15 median
filtration as a LCC method to the axial TDE field in Figure 3.4 (a).
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Table 3.5: Quantitative measurements for optimized ES with LCC.

SNRe CNRe tTDE (S)

2.97 0.18 89.97

3.2.3. Limiting axial search to the lower region of guided search
center

As stated in 3.2.1, the search region (m,n) were confined to -1, 0 and 1 only (i.e. a
3-by-3 search region around the guided search center). This resulted in the axial TDE
and strain profiles shown in Figure 3.8 at A-line 160 (chosen arbitrarily). However,
according to the ideal TDE field in Figure 2.11 (b), the axial TDE field for a
homogeneous phantom with a stiff inclusion® should be single-signed and monotonic
(consequently, the strain should be single-signed) [30]. The sign will be positive if the
reference frame is the postcompression frame and vice versa. The reason for this is the
following: since all measurements are relative to the transducer, the TDE at the start of
the echo is smaller than at the end. For a phantom with a homogenous elastic modulus,

d
— for the last

2
segment. If there are changes in the elastic modulus along the A-line, then the increase

in the time shift may be zero or very small in certain segments [44].

the TDE would start at zero for the closest segment and increase up to
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Figure 3.8: Axial (a) TDE and (b) strain profiles at A-line 160 (by applying
optimized ES with LCC).

* This condition might not hold for in-vivo imaging where internal motion (e.g. blood flow) can
exist. This can reverse the sign of the axial TDE even if the applied strain is axial and in one direction.
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As seen in Figure 3.8, neither of the two constraints (single-sign and monotonicity
of TDE) is satisfied. To apply this constraint to the optimized ES algorithm, Eq. 3.(4)
will not change but the axial search range n will be constrained to values > 0. This is
another physical constraint (similar to the constraint in 3.1.2) that should be applied to
the optimized ES (in addition to the axial and lateral continuity constraints previously
applied).

Applying this constraint to the optimized ES resulted in the axial TDE and strain
profiles shown in Figure 3.9 at A-line 160. By examining this figure, we can see that
the axial TDE profile adheres to the single-sign (positive in our case) and monotonicity
constraints and the axial strain consequently adheres to the single-sign constraint.
However, the axial TDE profile begins to decay with a constant slope after a certain
depth indicated by the vertical red line on Figure 3.9. This problem is investigated in
the next section. The reduction in search range by this constraint by a factor of § ledto a

reduction in trpg to 66.37 s. Comparing this value to t;pg in Table 3.5, we find that the
reduction is slightly less than § due to the full modified ES search for the first row
which is not affected by this constraint.
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Figure 3.9: Axial (a) TDE and (b) strain profiles at A-line 160 after applying
single-sign and monotonicity constraints to the optimized ES with LCC.
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3.2.4. Axial FOV limitation

Figure 3.9 (a) shows that axial TDE begins to decline after a certain depth (after the
vertical red line). This behavior disagrees with the ideal TDE profile in Figure 2.11 (b)

that shows that the axial TDE should increase gradually from zero for the closest
daz

/2
points appearing in the FOV of the postcompression RF frame will not be found in the
FOV in the precompression frame. This is clarified in Figure 3.10. So, it is wrong to
search for such points in the precompression frame. The depth added to the FOV in the
postcompression state that was not included in the precompression state is equal to the
applied displacement dz. That is,

segment to the probe to By examining our implementation, we found that some

d
dinax = Hrov — % X fs, 3.(5)

where d,q 1s the maximum depth in the postcompression frame for which

displacement estimation can be done, Hgyy is the FOV height (i.e. image depth) , and
f—z X fs 1s the applied displacement (in samples — refer to Eq. 3.(3)). This limitation is
2

reported also in [38].

N N
dz
) S
Hpoy
Hpoy
X
dz a0 a0
A W

Figure 3.10: The scatterer at point a entered the FOV of the US probe after the
compression. Hence, it is not possible to search for it in the precompression image
(the reference image in our case is the postcompression).

By adding this constraint to the optimized ES algorithm, the axial TDE profile at
A-line 160 is shown in Figure 3.11. This is the same as Figure 3.9 (a) but with
excluding the erroneous zone after d,;,,4,. This axial TDE profile adheres to the single-
sign and monotonicity constraints.
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Figure 3.11: Axial TDE profile at A-line 160 after excluding the lower erroneous
zone from the same profile in Figure 3.9 (a).

3.3. Effect of block size and shape

The kernel (block) size is a major parameter in BMAs affecting the accuracy and
resolution of the resultant elastogram and the runtime of the TDE algorithm. Both the
kernel size and shape can affect the output of the BMA. A trade-off between speckle
tracking accuracy and spatial resolution based on the selection of block size should be
done. The advantages of both large and small matching blocks are discussed in the
following paragraph.

A large kernel size reduces the noise effects in the image and can improve image
contrast as it increases the uniqueness of each data block and aligns the local data of
weak or homogeneous speckle patterns to those of strong or structural speckle patterns
[45]. However, a smaller kernel means a finer resolution and a better estimation of the
displacement. That is, the gain in accuracy by using large blocks is usually at the
expense of spatial resolution. In other words, a small kernel (about half the area of the
2D pulse-echo PSF of the US system) has the advantage of the assumption of rigid
body motion which is increasingly accurate as the size of the kernel is decreased, and
because spatial resolution is expected to improve with smaller kernels. For this reason,
BMA using large matching blocks fail to resolve non-rigid or highly varying motion
fields. By using a smaller size matching block, block matching algorithms perform
better in resolving highly varying motion fields and avoid the problem of nonuniform
motion vectors, often at the expense of increased susceptibility to noise and speckle
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decorrelation-related tracking errors because they are prone to pattern matching
ambiguities that can lead to displacement estimation errors. These ambiguities are due
to RF echo signal de-correlation, echo signal saturation, specular reflection,
homogeneous regions of weak scattering.

In Figure 3.12, Figure 3.13 and Figure 3.14°, we show the effect of varying block
size on the quality of the resultant axial TDE and strain fields by applying the
optimized ES algorithm with all the constraints developed earlier. It could be seen that
the smoothness of the TDE field and the visual quality of the strain field enhance
gradually till a certain block size (by visual judgment, the best fields were determined
at block size = 33*33 (Figure 3.13(a-b))) then begins to deteriorate again. As mentioned
before, when choosing the kernel size, one should understand the tradeoff between the
spatial resolution and the detection accuracy. The quantitative measures are shown in
Table 3.6 (note that the background and target measurement windows are delineated
with white and red rectangles in Figure 3.12(b) respectively). It is shown that a block
size of 33*33 gives the best combination of SNR, and CNR, among our trials. This is
in conformation with visual assessment. For the SNR, and CNR, measurements to be
more reliable, we should take several values at different window locations in the
background and the target. Concerning runtime, Figure 3.17 suggests a linear growth
rate (0O (n)) of trpg with block size.
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. Starting from this section, we will make our tests on the ROI around the inclusion (shown in
Figure 2.9(c,d)), not the whole RF frame.
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Figure 3.12: Axial (a) TDE and (b) strain fields by optimized ES with all
constraints at block size = 11*11. Axial (¢) TDE and (d) strain fields by optimized
ES with all constraints at block size = 21*21.
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Figure 3.13: Axial (a) TDE and (b) strain fields by optimized ES with all
constraints at block size = 33*33. Axial (¢) TDE and (d) strain fields by optimized
ES with all constraints at block size = 41*41.
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Figure 3.14: Axial (a) TDE and (b) strain fields by optimized ES with all
constraints at block size = 51*51. Axial (¢) TDE and (d) strain fields by optimized
ES with all constraints at block size = 63%63.
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Table 3.6: Quantitative measurements of strain elastogram generated by
optimized ES at different block size.

block size
(samples)

11x11

21x21

33x33

41x41

51x51

63%63

SNR,

8.82

942

7.9

6.58

5

2.3

CNR,

0.37

5.33

5.51

4.24

3.04

1.26

trpg (5)

31.274+0.36

48.621+0.02

83.571+0.07

118.124+3.18

166.810.26

236.48+0.28
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Figure 3.15: SNR,, values for strain estimation by optimized ES with all
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Figure 3.16: CNR, values for strain estimation by optimized ES with all
constraints at different block sizes.
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Figure 3.17: t;pg values for strain estimation by optimized ES with all constraints
at different block sizes.
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The qualitative and quantitative results reported in Figure 3.12—Figure 3.17 are for
fixed-size rectangular blocks. However, automatic selection of the block size and shape
is desirable. A recent study showed that the optimal block size is a function of the area
of 2D pulse-echo PSF of the US system [46]. The formation of an US RF image r(x, y)
can be modeled by a linear realtion involving the PSF of the US imaging system
h(x,y) and a discrete distribution of scatterers representing the medium d(x, y) in the
2D space by the following relation [47, 48]:

r(x,y) = h(x,y) ® d(x,y), 3.(6)
where ® denotes the convolution operator defined as
fy) ®g@y) 2 [ f(x,y) ® gin — x,f — y)dndp, 3.07)
and the scatterer distribution can be expressed as
d(x,y) = XiAid(x — xi,y — yo), 3.8)

where A; represents the i*" scatter echogenicity and (x;, y;) its position. The area of the
PSF Apgr(d) is depth dependent [46] and can be described as

Apsr(d) = Al(d) x Ad(d), 3.09)

where Al(d) is the -20 dB width of the lateral profile of the US field and Ad(d) is the -
20 dB axial length of the envelope of the US pulse.

For the system used in [46] study, the axial and lateral beam profiles are shown in
Figure 3.18. They reported that the optimal kernel size at a certain depth {Wlo (d) x

Wa, (d)} can be determined as
12 Xope (d, SNR(pj; ) (Al(d) x Ad(d)), 3.(10)

where & is a proportionality factor that is different in the areas at the boundary of the
image from inside the ROI.

4.0 : : :
3.8 |1 == beam width Al (d)
3.6 |-{ = pulse length Ad (d)
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length [mm]
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Figure 3.18: Distribution of -20 dB widths of lateral amplitude profile Al(d) and
pulse envelope Ad(d) of ultrasonic pulse at depths of 20, 40, 60, and 80 mm [46].
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Eqn. 3.(10) shows that the optimal kernel size is not fixed, but depth-dependent
and non-square. It shows also that the kernel size should get bigger with the depth of
interest (this can be seen also from Figure 3.18). However, the study in [46] did not
provide analytical expression for Al(d) and Ad(d) as a function of US imaging
parameters (f,, BW, beamforming (focusing and apodization)) but measured it
experimentally at several depths. This was not available in our study but can be
investigated in the future (specially that in [46] study they were using curvilinear
probes while we use rectilinear probes). Other studies provide more information about
analytical calculation of US PSF for different US imaging parameters under certain
assumptions [49, 50].

3.4. LCC in Optimized ES by Linear Regression

As shown before (see the enhancement from Figure 3.4 to Figure 3.7), the LCC
step is a fundamental part in the TDE step in order to account for the lateral continuity
property which is inherent in the imaged tissue. Until this point of discussion, we were
using a 1D moving median filter along the TDEs of each row in the ROI to check &
correct for lateral continuity before moving to the next (lower) row. Moving linear
regression (least squares) windows can also be used to do LCC [51, 52]. In this
technique, a finite 1D window is centered around a TDE point and a linear regression
estimate is generated for each point in this window. Then, each point in this window is
compared with the corresponding linear regression estimate. If the absolute difference
between the two values is bigger than a certain threshold, the TDE at this point is
considered a false peak and is replaced with its linear regression estimate. The
regression window is then moved to the next TDE point until all the TDEs along the
current row are checked for lateral continuity and corrected before proceeding to the
TDE step of the lower row. The regression window needs to be small and overlapping
because the correction step along the TDEs row is incremental. That is, the corrected
TDE point should be used for the correction of the next point along the row.

We show the results of using an ordinary linear regression filter for LCC in
Figure 3.19, Figure 3.20 for block sizes of 11 and 33 respectively. The regression
window length was 3 RF samples and the threshold used for false peak detection was
0.50, where o is the standard deviation of the TDEs in the current regression window.
Also, the results of using robust linear regression (via iterative reweighted least squares
(IRLS)) [53] are shown in Figure 3.21 and Figure 3.22 for block sizes of 11 and 33
respectively. A comparison of the runtime trpy between LCC using median filtration,
ordinary linear regression and robust linear regression is shown in Table 3.7 for block
sizes of 11 and 33 respectively. Despite being a naive salt-and-pepper noise removal
filter, the median filtration effect on quality and runtime was better than those of linear
regression filter. We need to investigate the effect of different regression window sizes
and detection threshold values on the efficiency of the LCC step. Also, nonlinear
regression filters [52] can be investigated in future work.
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Figure 3.19: Axial (a) TDE and (strain) fields by applying ordinary linear
regression as the LCC method in the optimized ES at block size = 11*11.
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Figure 3.20: Axial (a) TDE and (strain) fields by applying ordinary linear
regression as the LCC method in the optimized ES at block size = 33*33.
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Figure 3.21: Axial (a) TDE and (strain) fields by applying robust linear regression
(IRLS) as the LCC method in the optimized ES at block size = 11*11.
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Figure 3.22: Axial (a) TDE and (strain) fields by applying robust linear regression
(IRLS) as the LCC method in the optimized ES at block size = 33*33.
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Table 3.7: Comparing trpg of the optimized ES algorithm when different LCC
methods are used.

block size (samples) 11*11 33*33

trpr (s) (median) 31.27 83.57

trpe (s) (ordinary linear regression) 74.6 128.38
trpe (s) (robust linear regression) 202.14 275.08

3.5. Enhancing Strain Estimation

As stated before, axial strain generation from axial TDE field by direct spatial
derivation (finite differences) amplifies noise in the resulting elastogram. This problem
was alleviated by using the LSQSE method for strain generation and yielded
appropriate results. However, some discontinuities that propagate from the TDE step to
the strain generation step manifest in the resulting strain elastogram. Consequently, we
tested further postprocessing of the resultant strain field (i.e. after the strain generation
step) to enhance visual quality. 2D median filtration and Kalman filtration effects on
the resulting strain elastogram (already generated by LSQSE) are shown in the
following sections.

3.5.1. 2D Median Filtration

1D median filtration was already used in the LCC step in TDE to enhance lateral
continuity. We also tested 2D median filtration effect on strain quality. The results of
applying 2D median filtration (for constrained optimized ES block size = 21*21
samples) on strain generated by LSQSE are shown in Figure 3.23 and Figure 3.24 for
different kernel sizes (square) of the 2D median filter. The reader can see the visual
enhancement incurred by median postprocessing on strain elastogram (compared to the
case of no postprocessing in Figure 3.12(d)). Some discontinuities begin to disappear
gradually as the kernel size gets bigger. Also, the effect of kernel size on quantitative
measures of the strain elastogram is shown in Figure 3.25 and Figure 3.26. The
enhancement in both SNR, and CNR, conforms with the enhancement in visual
quality. From Figure 3.27, we can see that the postprocessing step runtime, t,,, using
2D median filtration is very small relative to the TDE step runtime reported before,
trpg (even with small BMA kernels — see Figure 3.17). 2D median filtration proved to
be effective for overall continuity checking and discontinuity removal in 2D (both axial
and lateral).
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Figure 3.23: Postprocessing the axial strain field (by optimized ES at block size =
21*21) with 2D median filtration of different window sizes ((a) 5*5, (b) 9*9, (¢)
13*13, (d) 17%17).

48



100 100
200 200
300 300
400 400
3
E- 500 500
£ 600 600
£
® 700 700
O
800 800
900 900
1000 1000
1100 1100
50 100 150
A-line (samples)
(@)
100 100
200 200
300 300
400 400
[75]
ko
g 500 500
w
£ 600 600
£
© 700 700
(A
800 800
900 900
1000 1000
1100 1100
50 100 150 50 100 150
A-line (samples)
(©) (d

Figure 3.24: Postprocessing the axial strain field (by optimized ES at block size =
21*21) with 2D median filtration of different window sizes ((a) 21*21, (b) 25%25,
() 29%29, (d) 33*33).
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Figure 3.25: The effect of the window size of the postprocessing 2D median filter
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Figure 3.26: The effect of the window size of the postprocessing 2D median filter
on CNR,.
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Figure 3.27: The effect of the window size of the postprocessing 2D median filter
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3.5.1. Kalman Filtration

In the LSQSE, adjacent RF lines are processed independently in axial strain
calculation. However, the strain value of each pixel can hardly be considered
independent from the strain value of its lateral neighbors. The only exception is the
boundary of two tissue types with different mechanical properties where the strain field
is discontinuous. This prior of piecewise strain continuity was exploited in [25] via a
Kalman filter to improve the quality of strain estimation [54, 55]. In this method, the
axial strain is calculated first using LSQSE as before. The axial continuity of the strain
field is maintained in this step. Then, the Kalman filter is applied in the lateral
direction. This step ensures continuity in the lateral direction.

We applied this technique to the axial TDE generated by our algorithm
(constrained optimized ES) to get the axial strain fields shown in Figure 3.28 and
Figure 3.29 for different block sizes. In these figures, the axial strain field for each
block size without the Kalman filter is compared to itself with Kalman filtration to
show the noise reduction caused by Kalman filtration. Compared to 2D median
filtration in Figure 3.23 and Figure 3.24, the Kalman filter removes the noise from the
strain image with minimal blurring and does not require manual selection of filtration
window size. The quantitative measures in Table 3.8 are improved over the measures in
Table 3.6 without Kalman filtration. This conforms with visual assessment.
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Figure 3.28: The axial strain (a) before and (b) after postprocessing by Kalman
filtration (block size = 11*11). The axial strain (c) before and (d) after
postprocessing by Kalman filtration (block size = 21*21).
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Figure 3.29: The axial strain (a) before and (b) after postprocessing by Kalman
filtration (block size = 33*33). The axial strain (c) before and (d) after
postprocessing by Kalman filtration (block size = 41%41).

Table 3.8: Quantitative measurements of axial strain generated by optimized ES
with all constraints and postprocessed by Kalman filtration.

block size (samples) 11*11 21*21 33*33 41*41
SNR, 12.34 11.09 8.81 7.31
CNR, 0.48 6.14 6.18 4.69

3.6. Summary

In this chapter, we proposed a modified version of the ES algorithm to make it
more oriented to work with US data. After examining the problems in the results, we
utilized the inherent axial continuity in the imaged phantom (mimicking soft tissues) to
further optimize modified ES. Results indicated that the lateral continuity of the axial
TDE should also be taken into account. So, we tested three techniques (median,
ordinary regression and robust regression correction) to do LCC. Additional constraints
on the TDE were imposed to reduce discontinuities. Also, we tested the effects of the
block size and postprocessing (by 2D median and Kalman filtration) on the estimation
output. From Figure 3.30, it could be seen that the optimized 2D ES algorithm does not
suffer from the problems of the basic 1D gated CC (the basic elastography approach)
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Figure 3.30: axial strain generated by (a) 1D gated CC (basic approach), and (b)
2D optimized ES with all constraints applied. Note that (b) is dense and smoother
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than (a) due to continuity constrains. Overall, the optimized 2D ES algorithm does
not suffer from the problems of the basic 1D gated CC.

Chapter 4 : Conclusion and Future Work

We presented an optimized version of the ES algorithm that exploits the inherent
continuity in the successive US images to generate axial TDE and strain fields. The
proposed algorithm was applied to elasticity phantom data. Results indicate that this
direction is promising. All of the enhancements introduced to the TDE problem by
means of 2D block matching yielded axial TDE and strain fields that are less noisy and
more comprehensible than the results of the basic 1D gated CC algorithm and even the
modified ES algorithm as seen in Figure 3.30. Overall, in optimized 2D ES, the stiff
inclusion (representing lesions) can be delineated and differentiated from the soft
material (representing healthy tissue of some echogenity as the stiff inclusion)
compared to the normal B-mode image as seen in Figure 4.1.

Depth (samples)

50 100 150 50 100 150
A-line (samples)

(2) (b)

Figure 4.1: (a) B-mode image and (b) axial strain field by 2D optimized ES with all
constraints applied.

Many points are potential to future work. In this study, we could investigate the
image processing parameters effects as we experimented on phantom RF dataset
already acquired, but we need to investigate the effects of US imaging params (e.g. f,
BW , beamforming) on the TDE process. More constraints that were discussed before in
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studies like Pellot-Barkat et al. [56], Shi and Varghese [57], Yeung et al. [40] and Zhu
et al. [58] can be added to the cost function to enhance detection and runtime and
reduce discontinuities. For example, the Cohen & Dinstein (CD2) cost function [59] is
more suitable with US data as it incorporates the characteristics of the US imaging
modality which considers the multiplicative speckle noise in US images. In our study of
2D BMAs, we did not perform 2D temporal stretching, which is expected to further
enhance the results of the optimized ES algorithm by removing the scaling effect
between the two tissue states (pre and postcompression) [22, 38, 60]. Clinical trials
with different applied strain levels and more quantitative measures are needed to better
assess the robustness of our algorithm to less bounded conditions found in in-vivo
imaging and other challenges (like inherent pulsations and blood movement in the
human body).

To enhance the runtime of the algorithm, several approaches are possible. But we
need to study the asymptotic performance of the optimized ES with all constraints
applied. We can use non-overlapping blocks for the reference image (like the case in
MPEG motion estimation) to enhance speed then interpolate the displacement of
skipped positions. Another approach is to apply motion estimation algorithm to
undersampled versions of the RF frames then upsample the resulting displacement
fields. A third approach is to make a parallel implementation of the motion estimation
algorithm to leverage the power of multiple CPUs and GPUs [39].
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