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Summary: 

The Doppler shift is now commonly used in ultrasound imaging to determine blood flow 

velocity and direction. During the acquisition of Doppler data a train of pulses 

transmitted repeatedly to be acquired from selected region of interest. The current data 

acquisition in Doppler system is limited by bioeffect of ultrasound heating, which is 

caused by rapid transmission of ultrasound pulses for a long time to the same location 

increase the average power per unit area beyond the AIUM safety standard. To overcome 

this limitation we propose a framework of compressed sensing (CS), which state that 

images and signals can be reconstructed by using a few numbers of measurements. The 

result shows that the proposed data acquisition alleviates the present data acquisition 

limitation and successfully demonstrated in real Doppler ultrasound data. 

The Doppler signal generated from a moving object contain not only great information 

about flow, but also backscatter signal contain clutter originated from surrounding tissue 

or slowly moving vessels. To estimate the flow accurately the clutter has to remove. In 

this work we proposed new clutter rejection methods to suppress the clutter. The methods 

validated using real and simulated Doppler data. The methods removed the clutter with 

high performance. 
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Abstract 

 

 

The difference between the frequencies in Doppler systems is commonly used to 

determine the blood flow velocity and direction within the body, this phenomenon is 

known as Doppler effects. Doppler generates either continues wave (CW) or pulsed wave 

(PW) ultrasound. During the acquisition of Doppler data a train of pulses transmitted 

repeatedly to be acquired from selected region of interest. In most case Doppler signal 

acquisition done in more than one mode, this lead to a limitation in Doppler data 

acquisition. 

The current data acquisition in Doppler system is limited by, bioeffect of ultrasound 

heating, which is caused by rapid transmission of ultrasound pulses for a long time to the 

same location lead to increasing in the average power per unit area beyond the AIUM 

safety standard. Beside the complicated scanning methods when the operator used mixed 

mode scanning, in other words highlight a specific scan line in a B-mode image and 

simultaneously generate the real-time Doppler spectrogram for that line on the same 

display scan. In addition the current acquisition methods use too much data to acquire the 

image this lead in increasing the process time and limit displaying the Doppler 

spectrogram in real-time.  

To overcome this limitation we propose a framework of compressed sensing (CS) to 

reduce the number of acquisitions. CS is a new sampling framework; state that images 

and signals can be reconstructed by using a few numbers of measurements. CS is the 

process for acquiring and reconstructing a signal that is supposed to be sparse or 

compressible. CS is useful in applications where one cannot afford to collect or transmit a 

lot of measurements such as medical imaging, data compression and data acquisition. The 

result shows that the proposed data acquisition alleviates the present data acquisition 

limitation and successfully demonstrated in real Doppler ultrasound data. 

The reconstruction time can be accelerated so as to achieve optimum reconstruction 

time by using multiprocessors systems. The algorithm applied to ℓ1-minimization 
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algorithms using duo-core CPU. The result shows that combining the CS and Parallel 

algorithms high quality recovered image within a very low time.   

The Doppler signal generated from a moving object contain not only great information 

about flow, but also backscatter signal contain clutter originated from surrounding tissue 

or slowly moving vessels. To get a Doppler ultrasound spectrogram image with a good 

quality, the clutter signals must be removed completely. Without enough clutter rejection, 

low velocity blood flow cannot be measured, and estimates of higher velocities will have 

a large bias. In most cases it is very difficult to a chive a complete suppression without 

affecting the Doppler signal. The current clutter rejections are; finite impulse response 

FIR, infinite impulse response IIR and polynomial regression PR filters. Due to 

limitations of current clutter rejection we proposed new cluttering methods to subtract 

unwanted signal. The proposed clutter based on principal component analysis and 

independent component analysis. The methods validate using real and simulated Doppler 

ultrasound data.  The result shows that the proposed method gives better cluttering over 

the present clutters types, when tested with real Doppler spectrogram data.  
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Chapter 1 

Introduction 

 

1.1 Introduction 

The difference between transmitted wave frequencies and reflected wave frequencies 

due to relative motion occurring between the source and the object, this phenomenon 

known as Doppler effects. In Doppler effects the frequency shift is proportional to the 

movement speed between the transducer and the object. This effect is now frequently 

used in ultrasound imaging to determine blood flow velocity and direction.   

Ultrasound imaging application in medical fields has several advantages over other 

medical imaging modalities. It’s used non invasive technique, its cheep, less examination 

time, movable, the investigation done without any ionizing radiation, capable of forming 

real time imaging and continuing improvement in image quality [1]. These advantages 

made ultrasound imaging system is the most widely imaging systems used among others 

medical imaging equipments. 

Doppler instruments generate either continuous wave (CW) or pulsed wave (PW) 

ultrasound [1, 2]. In CW units continuously transmit and received ultrasound wave, thus 

two element transducers were used for transmitting and receiving housed in one probe for 

easy handling and guarantee ultrasound beam overlap over a long distance. In PW units a 

single-element transducer used for transmitting and receiving the ultrasound energy 

pulses. The depth from where the echoes arise can be calculated by using a time interval 

between transmitting and then receiving the echoing sound. From the point of view of 

Doppler techniques, the parameters that describe a wave [2], i.e. amplitude, frequency 

and phase, are important. Frequency and phase are more important for Doppler methods 

since the velocity of blood is obtained from the shifts in the frequency and changes in 
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phase of scattered wave. The developments in Doppler technology have led to a vast 

increase in the number of non-invasive blood velocity investigation carried out in all 

areas of medicine.   

Doppler systems were used to obtain Doppler information at a specific organ. The 

master oscillator operates at a constant frequency and derives the transmitting crystal of 

the probe via transmitting amplifier. The returning ultrasound signal received by 

receiving crystal, containing echoes from both stationary and moving targets, is fed to the 

radio frequency (RF) amplifier. This amplified signal is then demodulated and filtered to 

produce audio frequency signals whose frequencies and amplitudes provide information 

about motion within the ultrasound beam. Demodulated and filtered Doppler frequency 

shift signals used to calculate the Doppler spectrogram. The acquisition of Doppler 

ultrasound data relies on the repeatedly transmitting ultrasound pulses to acquire data 

from a particular region of interest selected by the sonographer. Transmitting pulses to 

the same place continuously increased the heat per unit in the body.   

Image compression in Doppler ultrasound is needed in order to reduce the data volume 

and achieve a low rat bit, ideally without losses of image quality. The need for 

transmission bandwidth and storage space in the medical field, telemedicine applications 

and continuous development of ultrasound technologies, encourage the development of 

effective data reduction. 

In this thesis, we use the framework of compressed sensing for Doppler ultrasound 

signal dimensional reduction (compression) and reconstruction. Data reduction in 

Doppler will reduce the number of acquisitions, increased the patient safety and speed up 

the processing time. We apply the CS framework to Doppler signal using a few numbers 

of data to overcome the present Doppler data acquisition limitation.  The reconstruction 

of Doppler signal from these projections achieved using one of the reconstruction 

algorithms such as convex optimization, which is lead to ℓ1-norm minimization proposed 

in [5]. ℓ1-norm can exactly recover k-sparse signals and closely approximate 

compressible signals with high probability. The recovered signals were displayed as 

Doppler spectrogram. To perform the reconstruction four types of reconstruction 
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algorithms and five different numbers of measurements were used. The recovered images 

were evaluated by using Root mean Square Error (RMSE), Peak Signal-to-Noise Ratio 

(PSNR) expressed in dB and reconstruction time. RMSE, PSNR and the process time 

compared between the algorithms.  

The reconstruction time can be accelerated so as to achieve optimum reconstruction 

time by using multiprocessor systems. The algorithm applied to ℓ1-minimization 

algorithms using duo-core central processing unit. The result shows that combining the 

CS and Parallel computing algorithms gives high quality recovered image within a very 

low time.  

The Doppler signal generated from a moving object contain not only great information 

about flow, but also backscatter signal contain clutter originated from surrounding tissue 

or slowly moving vessels. This clutter signal is typically 40 to 80 dB stronger than the 

Doppler shift signal originated from blood [6-10]. Thus an accurate clutter rejection is 

needed to estimate the flow accurately, by decreasing the bias in flow estimation. Clutter 

suppression is very important step in the processing of Doppler signal. A high pass filter 

is commonly used to remove the clutter signal from the Doppler shift signal. A high pass 

filter is used to suppress signal from stationary or slow moving tissue or any other organs. 

Signals originated from a slow moving object and tissues are low-frequency signals, 

generally they may have amplitude much stronger than high frequency signals generated 

from the faster blood flow. Thus, for separating the signals from blood and tissue, high 

pass filter with a sharp transition band is necessary.  

    Various types of static filter have been proposed to remove the clutter from the 

backscattered signals originated from moving object or surrounding tissue, such as finite 

impulse response (FIR) filter with a short impulse response, infinite impulse response 

(IIR) filter with special initialization so as to reduce the ring-down time and polynomial 

regression (PR) filter [11 - 16]. The clutter from tissue often changes through space and 

time due to changes in physiology and tissue structure [17], and due to a limited number 

of data samples available (less than 20 sample volume [7]), in addition, if the clutter filter 

not appropriate selected the signal-to-noise ratio would be corrupted [9]. Due to all this, 
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high pass filter can’t effectively suppress the clutter without affecting the desired flow 

signal [18]. To remove the clutter with high performance we proposed more advance 

clutter methods that can overcome these drawbacks of the high pass filter. 

    In this thesis a new method for clutter suppression have been proposed, to remove the 

clutter originated from moving objects and surrounding tissue. The proposed method 

analyzes the Doppler data using blind source separation techniques within the framework 

of principal component analysis (PCA) and independent component analysis (ICA). PCA 

and ICA proposed in [19 - 21]. ICA and PCA have been proposed for different 

applications in biomedical field such as, their application in analysis of 

electroencephalographic (EEG) data and event-related potential (ERP) data [22-23], in 

the analysis of functional magnetic resonance imaging [24], in Doppler ultrasound [25] 

and in clutter rejection in color flow mapping [26]. The RF Doppler data is the sum of the 

signals from blood flow and backscatter signal originated from surrounding tissue or 

slowly moving vessels. The data prepared to satisfy ICA and PCA by doing some 

preprocess steps, then small window was considered. Both PCA and ICA applied to the 

original data set (the data after windowing), so as to re-expressed the data into a new 

coordinate system such that the clutter and echo signal separated along different bases. 

Filtering is then achieved by rejecting the bases describing the clutter signal from moving 

tissue and returning the signal containing information regarding blood flow. The output 

can be used to generate Doppler spectrogram with high performance. The performance of 

the techniques is quantified by using a simulated data and real Doppler data (heart data) 

[27]. In addition, the performance of the proposed method compared with present 

cluttering filters.  

 

1.2 Problem Statement  

The acquisition of Doppler ultrasound data relies on the repeatedly transmitting 

ultrasound pulses to acquire data from a particular region of interest. Such acquisition 

must be extremely precise in its periodicity to ensure that the Doppler signal is uniformly 
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sampled for further spectrogram processing. This can be a major constraint to ultrasound 

imaging systems when this Doppler signal acquisition is done in such modes as Duplex 

or Triplex imaging where B-mode or color flow signals are acquired concurrently. This 

constraint reduces the frame rates for other modes and hence limit the ability of the 

sonographer to follow events in real-time. Moreover, the rapid periodic transmission of 

ultrasound pulses to the same location increase the average power per unit area beyond 

the AIUM safety standards and therefore limitation on the sampling will be imposed 

reducing the ability to acquire more data. 

In this thesis, a new framework is proposed to alleviate such limitations through the use 

of compressed sensing theory to reduce the number of acquisitions and eliminating the 

sampling uniformity constraints. The new methodology is presented and demonstrated in 

real Doppler ultrasound data. Also we proposed combining the compressed sensing 

theory with parallel computing to accelerate the reconstruction time.    

The Doppler signal generated from a moving object contaminated with the clutter 

signals. Due to the limitations stated in the previous section it’s very difficult to remove 

the clutter with present cluttering methods. Thus a new cluttering method is needed to 

overcome the current clutters limitation.  

New cluttering methods proposed for cluttering rejection so as to overcome the current 

clutters limitation. The proposed methods base on PCA and ICA. We want to make use 

of the proposed techniques to improve the image quality in a Doppler ultrasound 

spectrogram by removing the clutter signal with high performance without affecting the 

blood flow signal. 

 

1.3 Overview of Thesis  

This thesis organized as follows: Chapter 2 gives an overview of the Doppler 

ultrasound system and the limitation of the Doppler data acquisition. The compressed 

sensing theory reviewed beside a review of principal component analysis and 

independent component analysis. Overview of clutter rejection is given. Parallel 
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computing also reviewed. In chapter 3 we discuss the theory of compressed sensing in 

more details and its application in different areas. The parallel computing also discussed 

in the chapter in details. In chapter 4 we discuss our proposed data acquisition and 

application of compressed sensing for Doppler spectrogram reconstruction. Also the 

application of parallel methods for reconstruction time reduction was discussed. In 

chapter 5 methods used to separate the blood flow from stationary or slow moving tissue 

discussed in detail and the proposed methods for cluttering also discussed in deep. In 

chapter 6 the application of clutter to the Doppler data was discussed and also the types 

of the data used for experimental perfection were discussed. The result and discussion of 

the works was illustrated in chapter 7. In chapter 8 the conclusion and recommendations 

for future work were given. 
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Chapter 2 

Background 

 

This chapter gives the unfamiliar reader a short introductory to Doppler ultrasound and 

Doppler Effect and terms used in this context. It also gives more indepth information 

about Doppler ultrasound systems, the model investigated in this thesis work. An 

overview of a continuous wave, pulsed wave and duplex Doppler systems are given and 

current data acquisition limitations are reviewed. A review of the compressed sensing 

theory of the main topics of this thesis is given. A review of parallel computation also 

was given. The clutter rejection for Doppler signal reviewed, and the proposed methods 

used for cluttering also were reviewed. 

 

2.1- Ultrasonic Wave 

Ultrasonic wave is same as audible sound waves produced by the push pull action of 

the source in the propagating medium. The source is normally a transducer in which the 

vibrating element is a piece of piezoelectric ceramic or plastic driven by an appropriate 

voltage signal [1, 2].  

The Doppler instrument generates either pulsed wave (PW) or continuous wave (CW) 

ultrasound; more details will be given later. Beside PW and CW, other types of ultrasonic 

wave such as shear or surface waves are available but are rarely applied in medical 

ultrasonic because of their attenuation in soft tissue [1].  

From the point of view of Doppler techniques, the parameters that describe a wave, 

such as amplitude, frequency and phase, are important. The frequency and phase are 

more important for Doppler methods since the velocity of blood is obtained from the 

shifts in the frequency and changes in phase of scattered waves. 
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2.1.1 Intensity and Power  

The acoustic intensity of a wave is the average flow of energy through a unit area 

normal to the propagation direction in unit time. The intensity is the average of the rate of 

work done per unit area by one element of fluid in an adjacent element. The intensity is 

related to the pressure amplitude PA, the particle velocity amplitude UA and the 

displacement amplitude XA, by the following relation:                    

                           

                         � = �� ���� ���⁄ � = 	 �� 	��	�	��� =	 �� 	��	�	�2����	���                             (2.1) 

 

Where c is speed of sound in soft tissue and ρ� is the density. 

The intensity measured at the focus of the beam or within 1 - 2 cm of the transducer 

face. The intensity of a continuous wave ultrasound beam measured at spatial peak ��
 or 

averaged across the beam to give spatial average ��	. For pulsed wave ultrasound the 

intensity measured with either temporal average or spatial average. When temporal and 

average peak combined, they give intensity parameters, which are useful in 

characterizing the acoustic output of ultrasound systems [1, 2]. The widespread 

combinations proposed are, spatial peak - temporal average ��
�	, spatial peak-pulse 

average ��

	, spatial peak - temporal peak ��
�
 and spatial average - temporal average ��	�	. The intensity is normally measured with a hydrophone, which takes the form of a 

small probe with a piezoelectric element on it. 

The power of an ultrasonic beam is the rate of flow of energy through the cross-

sectional area of the beam. When the ultrasonic wave passes through the body, it 

transports energy from the source (transducers) into the medium (body). The ultrasound 

power measured with a radiation balance [1]. When the ultrasonic beam is completely 

absorbed by a target, it applies a force of W/c on the target. If the target reflected all the 

ultrasound, the force on it is given by: 
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                   ������� !	� "�# = 	2$ �%                                                                        (2.2) 

 

Where W is the power of the beam and c is the velocity of sound in the propagating 

medium 

In Doppler ultrasound the intensity and power are very important from safety point of 

view.   

 

2.1.2 Scattering  

When an ultrasound wave travelling through a medium strikes a discontinuity of 

dimensions similar to or less than a wavelength, some of the energy of the wave is 

scattered in many directions. Scattering is the process of central importance in diagnostic 

ultrasonics, since it provides most of the signals for both echo imaging and Doppler 

techniques. The discontinuities may be changes in density or compressibility or both. The 

red cells in blood, act as scattering centers which produce the signals used in Doppler 

techniques [1]. 

The total scattering cross-section, σ&, of the target represented by the ratio of the total 

power, S, scattered by a target to the incident intensity, I. This ratio is used to compare 

the scattering power of different structures. The total scattering cross-section given by: 

 

                                 '� = ()                                                                                             (2.3) 

 

From the point of view of Doppler techniques, the study of scattering is important since 

it improves our understanding of continuous wave and pulsed wave systems. The 

operator need not be concerned with scattered except to note that the signals from blood 

is very much weaker than from soft tissue. The sample volume of soft tissue is therefore 

is much larger than that for blood. Clutter filters normally included in Doppler device to 
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reduce low frequency signals from moving tissue, the clutter rejection will be discussed 

in details in chapter 5.    

 

2.1.3 Reflection and transmission   

When ultrasound waves travelling through one medium to another medium with 

different acoustic impedance, some of the waves reflected back toward the source of the 

wave and some are transmitted into the new medium. There are two items must be 

considered when studying the reflection and transmission of the ultrasonic waves.  The 

first one is the angle that the reflected wave has as it leaves the interface and the angle 

that the transmitted wave takes as it propagate into the new region. The second is the 

percentage of intensity power that is reflected at the boundary. The amplitude of the 

reflected and transmitted waves depends on the change in acoustic impedance. The 

reflection can be considered as a special case of scattering which occurs on smooth 

surfaces on which the irregularities are very much smaller than a wavelength [1, 28]. The 

acoustic impedance z of the tissue can be defined as the ratio of the wave pressure over 

the particles velocity *�/,�. The acoustic impedance of the medium represented by the 

following equation: 

 

                                                 - = 	���                                                                        (2.4) 

 

Where �� is the average density and c is the velocity.   

The acoustic impedance of the tissue differs from each other according to the density. 

The higher the density or stiffness of a tissue, the higher is its acoustic impedance.  

For normal incidence the pressure reflection coefficient given by: 

 

                                     �	 = ./0.1.12./                                                                                (2.5) 

 



 

z1 and z2 are the acoustic impedance of the first and second medium respectiv

case of oblique incidence as shown in figure 2

 

                                      �	 = ..
 

Where 34 and 3� are the angles of incidence and transmitted waves respectively. The 

angle of the reflected wave is equal to the angle of incidence wave.  

 

Figure 2-1. Reflection and transmission of ultrasound wave

 

2.1.4 Attenuation  

When an ultrasound propagates through soft tissue, the energy associated with the 

wave is gradually lost so that its intensity reduces with distance travelled, an effect 

known as attenuation. Because of the absorption and scattering the ultrasound 

propagate tissue will attenuate

and is increased by increasing frequency [2]. The attenuation of ultrasound wave 

measured in dB cm
-1

 MHz
-1

 when Doppler techniques considered. The attenuation in 

blood is lower compared to other human tissues, the attenuation of different human tissue 

illustrated in table 2.1. Since the Doppler ultrasound wave contains more than one 

specific frequency, the mean frequency of the received echo is lower than the mean 

frequency of the emitted ultrasound pulses. As the mean frequency is proportional to the 

velocity, then the blood velocity can be estimated by considering the frequency shift.
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case of oblique incidence as shown in figure 2-1, the reflection coefficient represented as:
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8                                                         

are the angles of incidence and transmitted waves respectively. The 

angle of the reflected wave is equal to the angle of incidence wave.   

 

1. Reflection and transmission of ultrasound wave 

When an ultrasound propagates through soft tissue, the energy associated with the 

wave is gradually lost so that its intensity reduces with distance travelled, an effect 

known as attenuation. Because of the absorption and scattering the ultrasound 

sue will attenuate. The attenuation in the tissue depends on the frequency, 

and is increased by increasing frequency [2]. The attenuation of ultrasound wave 

when Doppler techniques considered. The attenuation in 

to other human tissues, the attenuation of different human tissue 

illustrated in table 2.1. Since the Doppler ultrasound wave contains more than one 

specific frequency, the mean frequency of the received echo is lower than the mean 

quency of the emitted ultrasound pulses. As the mean frequency is proportional to the 

velocity, then the blood velocity can be estimated by considering the frequency shift.

are the acoustic impedance of the first and second medium respectively. In 

1, the reflection coefficient represented as: 

                        (2.6) 

are the angles of incidence and transmitted waves respectively. The 

When an ultrasound propagates through soft tissue, the energy associated with the 

wave is gradually lost so that its intensity reduces with distance travelled, an effect 

known as attenuation. Because of the absorption and scattering the ultrasound waves 

. The attenuation in the tissue depends on the frequency, 

and is increased by increasing frequency [2]. The attenuation of ultrasound wave 

when Doppler techniques considered. The attenuation in the 

to other human tissues, the attenuation of different human tissue 

illustrated in table 2.1. Since the Doppler ultrasound wave contains more than one 

specific frequency, the mean frequency of the received echo is lower than the mean 

quency of the emitted ultrasound pulses. As the mean frequency is proportional to the 

velocity, then the blood velocity can be estimated by considering the frequency shift. 
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There are numbers of phenomena cause attenuation of ultrasound in tissue. The most 

important phenomena are absorption, in which the ultrasound energy is converted into 

heat [29].  The attenuation of practical interest is the rate at which ultrasound intensity in 

the beam decreases with distance. As well as absorption, the intensity of the beam may be 

reduced due to scattering of ultrasound out of the beam and to divergence or spreading of 

the beam with distance. Both frequency and magnitude were changed according to the 

spectrum of the emitted pulse when travelling through human tissue. These effects 

depend on the bandwidth of the emitted signal, the transducer center frequency and type 

of tissue investigated.   

 

                                   Table 2.1 attenuation values for different human tissue [1] 

Tissue 
Attenuation 

dB/MHz cm 

Liver 0.6 – 0.9 

Kidney 0.8 – 1.0 

Spleen 0.5 – 1.0 

Fat 1.0 – 2.0 

Blood 0.17 – 0.24 

Plasma 0.01 

Bone 16.0 – 23.0 

 

2.2 The Doppler Effect  

The Doppler Effect is the change observed in the wavelength of ultrasound wave due to 

relative motion between a wave source and wave reflected. The wave received from 

moving target (reflected wave) has a frequency differ from that transmitted from the 

source. The difference between received and transmitted frequency is known as Doppler 

shift. The frequency increased and decreased according to the speed of motion, the 

frequency of waves emitted by the source and the angle between the wave direction and 
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the motion direction. The Doppler Effect enables ultrasound system to be used to detect 

the motion of blood and tissue. Most Doppler ultrasound systems provide both Doppler 

spectrogram and color Doppler image [1, 29].  

   

2.2.1 The Doppler Equation  

When an ultrasound wave transmitted into a human body containing blood vessels, the 

emitted energy will be received by either same transducer used for transmitting the wave 

in case of pulsed wave or by another transducer in case of continuous wave. The 

frequency shift occurs due to the motion of either the source or observer. The resulting 

Doppler shift used to calculate the velocity of the scatterers. When the observer moves 

towards the source, the increased frequency, fr, due to passing more wave cycles per 

seconds, is given by:  

 

                                       �� = �� 52;5                                                                                (2.7) 

 

Where ft is the transmitted frequency, c is the velocity of sound in tissue and v is the 

velocity of the observer (blood).     

The velocity is replaced by the component of velocity in the wave direction, v cosθ, if 

the velocity of the observer is at an angle θ to the direction of the wave propagation.  

    

                                      �� =	�� 52;	56�75                                                                         (2.8) 

 

If the observer is at rest and the source move with the velocity in the direction of wave 

travel, the wavelengths are compressed. The resulting observed frequency is: 

 

                                      �� =	�� 550;                                                                               (2.9) 

 

Taking the angle into account: 
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                                  �� =	�� 550;	56�7                                                                          (2.10) 

 

In application of ultrasound, an ultrasonic beam is backscattered from the moving 

blood cells and tissue. Both of the above effects combine to give the transmitted Doppler 

shift in frequency. The observed frequency is then given by: 

 

                                  �� =	�� 52;	56�75 . 550;	56�7 = �� 52;	56�750;	56�7                                       (2.11) 

 

As mentioned the Doppler shift frequency is the difference between incident frequency �� and reflected frequency ��, is therefore given by: 

 

                                        �� = �� −	��                                                                        (2.12) 

 

                                        �� =	�� 52;	56�750;	56�7 − ��                                                            (2.13) 

Since c >> v 

 

                                       �� =	 �	.		>9	.		;5 	� ?3                                                                (2.14) 

 

From the relation (2.14), the Doppler shift depends on the angle θ to the direction of 

the wave propagation and the transmitted frequency. The best reflection takes place when 

the transducer position at 90
o
 to the surface [30].  

 

2.3 Flow and tissue motion in the human body  

The human circulatory system is very complicated, where non-stationary flow patterns 

arise. The human circulatory system is responsible for carrying oxygen and nourishment 

to the organs and also for the disposal of the waste products resulting from metabolism 

[31]. The pumping action is carried out by the heart. Basically two different systems can 
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be distinguished: the arterial and the venous systems. Flow towards the heart is referred 

to as being venous flow and flow away from the heart as arterial flow. The arterial walls 

are very flexible and contract and expand in response to the pulsation of the blood. The 

veins have thinner and less elastic walls, but also have a larger diameter than the 

corresponding arteries [31]. Therefore the veins function as a blood reservoir. It must be 

stressed that the flow is pulsating, so very complex flow patterns are encountered. A very 

common effect that arises with age in humans is the formation of plaque within the 

vessels. Atherosclerotic plaque hardens the arterial walls which lead to less wall-

flexibility and different sometimes harmful flow profiles [2]. This is one of many 

conditions which influence the flow profiles and the wall-motion properties of the 

vessels. Since the human body is a very complex system with many different types of 

tissue, motion can arise due to various sources, e.g: breathing, muscle contraction, etc. As 

long as the tissue motion velocity is slow compared to the blood flow velocity, it is 

possible to separate both components. Measuring venous blood flow under slow-flow 

conditions reduces the possibility of separate tissue motion from blood flow because the 

blood flow velocity and the tissue motion velocity overlap in the Doppler frequency 

bands [10]. To measure this low blood velocity, clutter rejection filters are necessary. 

 

2.4 Doppler Ultrasound Systems  

Increasing in the number of non-invasive blood velocity investigation in all areas of 

medicine carried out because of development in Doppler ultrasound technology. Doppler 

ultrasound used for detecting, measuring and imaging blood flow and other movement 

within the body. The simplest Doppler systems are stand-alone systems that produce and 

output signal related to the velocity of the targets in a single sample volume [1]. The 

transducers in the systems are hand-hold. Such system may be very basic and produce a 

non-directional audio output or may be quite sophisticated, producing directional signals 

sampled from predetermined depth in the tissue; they may also derive various types of 

information from the Doppler signal and output one or more Doppler envelope signals.    



 

The non-invasive measurements of blood flow, is a very useful investigation and quite 

a large number of systems hav

common Doppler systems used, continuous wave system (CW) and pulse wave system 

(PW). They differ in transducer design and operational

procedure and in the types of information provided and also duplex ultrasound Doppler 

has been used.     

 

2.4.1 Continuous wave system

Continuous Wave Doppler system is the system that sends and received a continuous 

ultrasound wave, by using two separate transducer crystal, housed in the same probe. 

Because transmission and reception

except in the sense that signals originating from close to the transducer experience less 

attenuation than those from distance target.

in a Doppler sample volume some distance from the transducer face [2], as shown in the 

figure 2-2.  

 

Figure 2-

 

The region over which Doppler information can be acquired (sample volume) is the 

region of transmitting and receiving beam overlap. Because there is 

transducer transmission and reception, echoes from all depths within the area arrive at the 

transducer simultaneously [32].
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transducer transmission and reception, echoes from all depths within the area arrive at the 
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In Doppler system the master Oscillator generates a frequency between 2 – 10 MHz. 

The frequency chosen depend on the depth of interest; since the ultrasonic attenuation 

highly depends on the frequency. The oscillation amplified by transmitting amplifier and 

the output used to drive the transmitting crystal. The electrical energy converted into 

acoustic energy by crystal, which propagates as a longitudinal wave into the body. The 

ultrasound energy is reflected and scattered by both moving and stationary particles 

within the ultrasound beam, and small portion finds its way back to the receiving crystal, 

which re-converts the acoustic energy into electric energy. The signal amplified by the 

radio frequency amplifier and mixed with a reference signal from master oscillator. The 

process of mixing produces both the sum of the transmitted and received frequency, and 

required the difference frequency or Doppler shift frequency. Low and high pass filter 

applied to the signal, with low pass filter to remove all signals outside the audio range 

and live Doppler difference frequency, and high pass filter to remove high-amplitude 

low-frequency signals from stationary and nearly stationary target, and then amplified 

signal is processed. The process of the Doppler shift signal is known as demodulation.   

The CW Doppler system can determine the direction of follow, it cannot discriminate 

the difference depths where the motion originates [1]. The usefulness of CW Doppler 

devices is limited, but they are used clinically to confirm blood flow in superficial 

vessels, as they are good at detecting low velocities.  

 

2.4.2 Pulsed wave system  

Since CW Doppler system cannot be used to study deep structure, particularly the heart 

and vascular organs. Even for superficial vessel it is sometimes difficult to separate the 

signal from arteries and veins with CW Doppler. Pulse wave Doppler system overcomes 

these problems by transmitting a short burst of ultrasound at regular intervals, and 

receiving only for a short period of time following an operator adjustable delay. The time 

interval between transmitted and received echo can be used to determine the depth from 

where the echo arises. The emitted pulse typically consists of bursts of sinusoidal 

oscillations, as given in complex form by 



 

                                      @��� =
 

Figure 2-3 shows the PW Doppler transducer and the depth from where the echo signal 

generated.  

 

Figure 2

 

The transmitted pulse from single element illustrated in figure 2

generated using Field II simulation package.    

 

Figure 2-4. Transmitted pulse by PW system (generate using Field II 

PW Doppler system emits a short burst of ultrasound several times every second, 

usually at regular intervals. After each pulse has been transmitted, there is a delay before 

one or more gates in the receiving circuit are opened for a sho
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3 shows the PW Doppler transducer and the depth from where the echo signal 

 

Figure 2-3. Pulsed wave Doppler transducer 

The transmitted pulse from single element illustrated in figure 2-4, the pulse signal 

using Field II simulation package.     

 

4. Transmitted pulse by PW system (generate using Field II simulation package)

PW Doppler system emits a short burst of ultrasound several times every second, 

usually at regular intervals. After each pulse has been transmitted, there is a delay before 

one or more gates in the receiving circuit are opened for a short period of time to admit 

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

time, microseconds

                                                                (2.15) 

3 shows the PW Doppler transducer and the depth from where the echo signal 

4, the pulse signal 

simulation package) 

PW Doppler system emits a short burst of ultrasound several times every second, 

usually at regular intervals. After each pulse has been transmitted, there is a delay before 

rt period of time to admit 
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signals returning from a small volume of tissue [2]. The time for which the gate is left 

open, taken together with the length of transmitted pulse, determine the length the sample 

volume. Specifically, the distances from the transducer to the beginning of the range cell, 

Z1, given by 

 

                                D� = ���� − �
�/2                                                                      (2.16) 

 

Where c is the velocity of ultrasound in tissue, tp is the pulse length and td is the time 

delay between the start of transmission and the moment at which the receiver gate opens. 

The distance from the transducer to the end of the range cell, Z2, given by 

 

                                  D� = ���� + �F�/2                                                                     (2.17) 

 

Where tg is the period for which the gate is open. The length of the range cell may 

therefore be written as 

 

                                D� = D� − D� = ���F + �
�/2                                                     (2.18) 

 

The number of pulses transmitted by the system within a second is referred to as the 

pulse repetition frequency (PRF). The greater the sample-volume depth, the longer the 

time before the echoes are returned, and the longer the delay between pulse transmission.  

 

2.4.3 Duplex System  

Duplex systems are devices that combine a pulse echo B-mode and a Doppler system 

so that the Doppler shift signal can be recorded from known anatomical locations. The 

combination of the two modalities can be made in different ways, they all share certain 

characteristics; direction of obtaining Doppler information all lie within the scan of the 
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pulse-echo Imager, and the direction of the Doppler beam at any instant is indicated by 

cursor superimposed on the image. 

The early duplex system combined mechanical sector scanners for imaging with a 

separate Doppler transducer, but now all the duplex systems use same array transducers 

for both imaging and Doppler measurements. Using the same transducer for imaging and 

Doppler purpose has advantages, but it has a number of drawbacks which stem from the 

compromises necessary in order to use the same element for two purposes. Firstly, it is 

necessary to use very short pulse to achieve good axial resolution with pulse-echo system 

which generated by heavily damped transducer element. A second area of compromise 

with dual purpose transducer is that is the out-of-plane width of the ultrasound beam. For 

imaging purpose a narrow beam was produce to get the best resolution; in Doppler 

applications it is often advantaged to insonate an entire blood vessel.  

To operate the duplex system, the operator first find the blood vessel in the region of 

interest using the imaging facilities, and then place the Doppler sample volume at the 

required anatomical location. The scanner then switch to duplex mode to make the 

require measurement. The duplex Doppler ultrasound enables precise location of Doppler 

sample volume. To get an accurate estimation of flow it’s required repeatedly 

transmitting of ultrasound pulses to acquire data from a region of interest [33]. 

Transmitting pulses to the same location for a long time to collect much data may cause 

increasing the heat in the body beyond the safety limit. Figure 2-5 show the placement of 

sample volume and the record of the blood flow velocity spectrum. 
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Figure 2-5. Placement of sampling volume (left) and the record of blood flow velocity spectrum 

(right) [29] 

 

For example if we consider mixed B-mode and M-mode, the beam former rapidly 

switches back and forth between B-mode and M-mode integration. After every two lines 

of B-mode integration the beam is made to jump to select M-mode scan line for one 

transmission and echo acquisition sequence. It then jumps back to continue the B-mode 

scan for another two lines; then jumps back to M-mode line, ect [29]. This process 

illustrated in figure 2-6.   

 

 

Figure 2-6. Mixed M-mode and B-mode scanning [29] 
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2.5 Spectral Doppler acquisition  

Doppler data acquisition relies on repeatedly transmitting of ultrasound pulses to 

acquire data from a region of interest. Such acquisition must be extremely precise in its 

periodicity to ensure that the Doppler signal is uniformly sampled for further spectrogram 

processing. The speed is essential in Doppler systems in both acquisitions the echo data 

and in processing and displays it. Fast acquisition of data a chivied by using either small 

number of pulses for each line of signal or collecting echo information from many range 

gate at the same samples.  

   

 

Figure 2-7. The sample volume, gate depth and sensitive region [29]   

 

In order to detect the signal from a specific depth in the tissue, a range gate is used. 

This enables the system to only receive the returning signal at a given time after the pulse 

has been transmitted, and then for limited time. The Doppler signal is, therefore, detected 

from a specific volume within the body, known as the sample volume, at an identified 

range, as shown in figure 2-7. The length of time over which the range gate is open is 

known as the gate length or sampling volume length. The depth and the length of sample 

volume can be controlled by varying the gate range and length.  
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Transmitting short pulses for a long time in the same region of interest may cause a 

problem to the patient during the examination.  

 

2.6 Doppler display 

Doppler signal can be displayed either as spectral Doppler or 2 D color flow imaging. 

In this work we will consider only the spectral Doppler. In a real time spectral Doppler 

all the velocity information detected from a single location within the blood vessel is 

displayed in the form of frequency shift-time plot. This displays time along the horizontal 

axis and Doppler frequency shift or calculated velocity along the vertical axis. The flow 

toward the transducer is displayed as information above the baseline [30]. 

The most important clinical information is the maximum Doppler shift, which 

correspond to a spatial maximum in the velocity field. When the ultrasonic beam is 

directed along the jet stream, the maximum Doppler shift gives the central velocity in the 

jet, which is related to the pressure drop along the blood stream line [2, 34]. The 

maximum Doppler shift as a function of time is known as spectrum envelope.   

  

2.6.1 Doppler Spectrogram   

The Doppler shift frequency is proportional to velocity, and under ideal uniform 

sampling conditions the power in a particular frequency band of the Doppler spectrum is 

proportional to the volume of blood moving with velocities that produce frequencies in 

that band, and therefore the power Doppler spectrum should have the same shape as the 

velocity distribution plot for the flow in the vessel. The variation in the shape of the 

Doppler power spectrum as a function of time is usually presented in the form of 

sonograms shown in figure 2-8 [1, 35]. Spectral Doppler ultrasound velocimetry involves 

systematic analysis of the spectrum of frequencies that constitute the Doppler signal. The 

Doppler frequency shift signal represents the summation of multiple Doppler frequency 

shifts backscattered by millions of red blood cells. The Doppler signal is processed in 

sequential steps, consisting of reception and amplification, demodulation and 
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determination of directionality of flow, and spectral processing [1, 36, 37]. The returning 

signals are first received and amplified by radio frequency (RF) receiving device. The 

amplified signals contain of Doppler-shifted frequencies and carrier frequency, extracting 

carrier frequency from Doppler-shifted frequencies known as demodulation. There are 

various methods of demodulation [1, 36]. Quadrature sampling is needed to differentiate 

between flow toward the transducers (positive Doppler shift) and flow away from 

transducers (negative Doppler shift). The resulting signal consists of not only Doppler 

frequency shift, but also low-frequency/high-amplitude signal and high-frequency noise. 

Applying high-pass filter will eliminate the extrinsic low-frequency component of 

Doppler signals, and low-pass filter allows frequencies only below a certain threshold to 

pass, thereby removing any frequencies higher than that level. A spectral analysis applied 

to the resulting data. A full spectral processing that provides comprehensive information 

on both the frequency and its average power content is called then power-spectrum 

analysis. Various approaches are used for spectral processing proposed in [38, 39]. 

 

 

Figure 2-8 Doppler sonogram (generated using MATLAB) 

 

 2.7 Compressed Sensing 

Compressed sensing is a new technique for signals and images compression and 

reconstruction. The novel theory of compressed sensing provides a fundamentally new 

approach to data acquisition, which is overcome all the problems of signals and images 

reconstruction and compression. Compressed sensing (CS) also known as compressive 

sensing, compressive sampling and sparse sampling. Is a technique for finding sparse 

solution to the sampled signal and present compressible signals and images at a rate 

significantly below the Nyquist sampling. This new sampling theory goes against the 
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wisdom in data acquisition, and states that one can reconstruct certain signals and images 

from far fewer samples or measurements than what is usually used in traditional methods. 

CS has played and continues to play a fundamental role in many fields of science. 

Sparsity leads to efficient estimations, efficient compression and dimensionality 

reduction and efficient modeling.   

CS first was introduced in mathematics by B. Kashin and E. Gluskin in 1970s, then its 

potential in signal processing brought into focus after 2004, the revolution of this theory 

start when [5, 40, 41] introduced that, it is possible to reconstruct the signal or image with 

the minimum number of data, even though the number of data would be insufficient for 

reconstruct the signal by the Nyquist sampling theory.  

CS uses the basic principle that almost every signal is sparse when linearly transformed 

to some mathematical space. A number of transformations can be used to obtain these 

sparse representations, such as wavelets or curvelets. The sparse signals themselves have 

the property that when multiplied by a random matrix, the resulting set of data can later 

be reconstructed via one of the recovering algorithms to obtain the original data of length 

N. This random matrix is called measurement sampling matrix which has to hold to 

mathematical properties like incoherence or restricted isometry, it has been proven that 

these properties are present in random matrices, which can vary depending on the 

application [5]. 

 

2.8 Parallel Computation  

Parallel computing is a form, which enable users to carry out many calculations at the 

same time.  The large problems in parallel algorithms can be divided into smaller ones, 

which can be solved in parallel. Distributing the tasks in parallel computation leads to 

shorten the process time [42, 43]. 

MATLAB is a programming language that’s used in different research area. With 

Matlab it is possible to achieve high efficiency because one line of Matlab code can 

typically replace multiple lines of C or FORTRAN code. In addition, Matlab supports a 
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range of operating systems and processor structural design, providing probability and 

flexibility [44]. Thus Matlab allows users to create an accessible parallel computing 

framework.  There are several matlab libraries have been developed to allow the user to 

run multiple instance of matlab to speed up their program. The most common used 

programs are parallel Matlab (pMatlab) and Matlab message passing interface 

(MatlabMPI). Parallelize achieved by using either different computers connected with the 

network or mutlicore CPUs, the most common used is multicore CPU. Using 

multiprocessors to accelerate the reconstruction proposed in [45 - 48]. We want to make 

use of this algorithm so as to accelerate the reconstruction of Doppler ultrasound 

spectrogram, especially when reconstruction performed using ℓ1-minimization.   

 

2.9 Clutter Rejection  

Blood flow signal separation is an important topic in Doppler ultrasound systems. The 

signals from surrounding tissue and slowly moving target vessels walls and other tissue 

structure gives an additive low frequency noise (clutter noise) which is much stronger 

than the signals from blood flow. The signal-to-clutter level can be as low as 100 dB [10]. 

Clutter signals are normally suppressed using high pass filter, which is designed with 

sufficient stop-band so as to minimize the error in the velocity parameter estimator. 

Without sufficient cluttering it not possible to estimates the flow within the human body. 

The most common used filters for separation are standard linear time invariant filters; 

finite impulse response (FIR) and infinite impulse response (IIR), and also polynomial 

regression (PR) filter have been used [10].  

A FIR filter with narrower bandwidth, narrower stop-band and the narrower transition 

band is a possible solution; the number of output sample is then reduced according to the 

filter order. IIR filter also be used, if special precaution is taken to initialize the filter, in 

order to reduce the ring down time. The IIR filter initialization described in [15]. PR filter 

proposed in [49], where the clutter signal estimated by linear regression, and then 
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subtracted from the input signal. The advantage of this technique is that the number of 

output samples in not reduced.  

The FIR, IIR and PR filters were considered as non-adaptive filters. When the non-

adaptive filter used for clutters unwanted signal it’s required to select a design parameters 

that allow us to remove the clutter signal without affecting the blood flow signal, which is 

not possible sometimes. Also these filters reduce the length of the signal. We proposed 

adaptive filters that can remove the clutter with high performance, principal component 

analysis (PCA) and independent component analysis (ICA).   

 

2.10 Principal Component Analysis 

Principal component analysis (PCA) is a mathematical tool form applied linear algebra, 

which transforms a number of correlated variables into a smaller number of uncorrelated 

variables known as principal component (PC). PCA is the simple methods of extracting 

relevant information from confusing data set [19]. PCA is a very important tool for data 

analysis and identifying the most meaning full basis to re-express the data set. The main 

advantages of PCA can be used to find patterns in a high dimensional data, where the 

luxury of graphical representation is not available. Once PCA found the patterns in the 

data, the data can be compressed by reducing the dimension without much loss of 

information [50]. Since the Doppler signal originated from different sources, it’s possible 

to use PCA to subtract the clutter from the Doppler signal.      

 

2.11 Independent Component Analysis 

Independent component analyses (ICA) is a signal processing technique whose goal is 

to express a set of random variable as a linear combination statistically independent 

component variables. ICA belongs to a class of techniques that are commonly termed 

blind source separation. ICA considered as an extension of PCA where higher order 

statistic order used to determine the basis vectors that are statistically independent as 
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possible rather than second order [20]. This is a reason some are selecting the ICA rather 

than PCA for data analysis.  
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Chapter 3 

Compressed Sensing Theory & Parallel Computation 

 

In this chapter we intended to address the novel theory of signals and image 

reconstruction, compressed sensing theory (CS), which is providing a fundamentally new 

approach to data acquisitions. First we will give a general introduction about the novel 

theory, its application in different fields and show how this new sampling theory will 

probably lead to a revolution in signal and image processing theory. This lead us to 

discuss compressed sensing theory, then go through the reconstruction algorithm and 

discuss the application of CS in signals and image reconstruction, especially in the field 

of biomedical engineering (medical imaging), then I will conclude with application of CS 

in Medical Doppler Ultrasound. The parallel computing algorithm, which is used for 

parallelizing computation so as to reduce the reconstruction time also discussed.  

 

3.1 Introduction to CS  

To convert a signal from a continuous time to discrete time, a process called sampling 

is used. Sampling theorem also known as Shannon’s / Nyquist sampling theorem [51 - 

53], states that if a continuous time signal f(t) is band-limited with its highest frequency 

component less than ω, then f(t) can be completely recovered from its sample values if 

the sampling frequency is equal to or greater than 2ω [52, 53]. This principle underlies 

nearly all signal acquisition protocols used in medical imaging devices, radio receivers 

and analog to digital conversion. Although there are some systems and devices that are 

not naturally band-limited, their construction usually involves using band-limiting filters 

before sampling, and so can also be dictated by Shannon’s theorem [51]. Sampling at 

rates below the highest frequency component causes a phenomenon known as aliasing. In 

applications of imaging and video recording for example, the Nyquist rate is set so high 

that too many samples or measurement result, making compression necessary prior to 
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storage or transmission. In medical imaging (MRI, CT,.., ect), in order to get a good 

image, which translates to keeping the patient in the machine for a long time [54]. The 

above limitation of Shannon sampling theory has triggered researchers to think about new 

methods to overcome these problems. In the last few years, an alternative theory of 

“Compressive Sensing (CS)” also known as compressive sampling, compressed sampling 

or sparse reconstruction, offers an essentially new approach to data acquisition which 

transcends the common wisdom. CS theory shows that certain signals and images can be 

recovered from what was in the past supposed to be highly incomplete measurements [5, 

55 - 59]. In CS, sampling and compression now performed in one step.  

CS was first introduced by Donoho in 2006, when he published his first paper [5] with 

an explanation of its properties. He stated that CS reduced the measurement time, the 

sampling rate and reduced the use of Analog-to-Digital Converter resources. Then in 

2008, Candes [57] stated that CS relies on two principles: sparsity, which pertains to the 

signal of interest, and incoherence, which pertains to the sensing modality. These 

principles will be discussed later. 

 

3.2 Compressed Sensing 

Compressed sensing is a technique for finding sparse solution to the underdetermined 

linear system. In signal processing, CS defined as the process for acquiring and 

reconstructing a signal that is supposed to be sparse or compressible.  

CS potentially is useful in applications where one cannot afford to collect or transmit a 

lot of measurements such as medical imaging, data compression and data acquisition (for 

more detail view [57, 60]). There are rapidly growing in application of CS in the field of 

medical imaging and image processing. 

CS methods provide a robust framework for reducing the numbers of measurements 

require to summarize the sparse signals [55, 61]. For this reason CS methods are useful in 

areas where analog-to-digital costs are high.  

Research in this area has two major components [62]. 
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1- Sampling: how many samples are necessary to reconstruct signals to a specified 

precision? What type of sample? How can these sample schemes to be 

implemented in practices? 

2- Reconstruction: given the compressive samples, what an algorithm can efficiently 

construct a signal approximation?       

CS uses the basic principle that almost every signal is sparse (or nearly sparse) when 

linearly transformed to some mathematical space. A number of transformations can be 

used to obtain sparse representations, such as wavelets [56, 57]. The sparse signals 

themselves have the property that when multiplied by a random matrix the resulting set of 

data can later be reconstructed via one of the recovering algorithms to obtain the original 

data of length N. This random matrix is known as a measurement sampling matrix, which 

have to hold to mathematical properties like incoherence or restricted isometry, it has 

been proven that these properties are present in random matrices, which can vary 

depending on the application [5]. The whole theory can be described as: 

 

                                       G = 	H	� = 	HI	��                                                                  (3.1) 

 

This means that the sample y of the signal f is a linear function of f. The sensing matrix 

Φ is in term of M x N where M << N, implying that sampling and compression are now 

performed in one step. So, y represented in term of M x 1 vector, while f is in N x 1. Due 

to sparsity-inducing matrix Ψ the vector �� is k-sparse, meaning that it has at most k non-

zero entries. Figure 3-1 schematically shows the matrix and vector dimensions that is 

dimension reduction and so the compression after the sampling process. 

 



 

Figure 3-1: Schematic description of matrix dimension with a 3

 

The standard procedure for compressive sparse signals, known as transform coding (as 

indicated in [66]) is to (i) acquire the full 

complete set of transform coefficients 

the small coefficients; (iv) encode the values and locations of the largest coefficients. The 

important features of compressive sampling are that many types of s

can be well-approximated by a sparse expansion in term of a 

only a small number of non

reconstruction can be achieved

discuss the sensing matrices (compressive sensing problem), principles of CS (Sparsity 

and incoherence) and restricted isometry properties (RIP). 

 

3.2.1 Sensing Matrices 

In CS signals acquired directly without going through the 

N samples. Considering a general linear measurement process that computes 

products between x and a collection of vectors 

measurements yj in an M x 1 vector 

M x N matrix Φ. Then, by substituting 

 

                                  y = Φ x = Φ Ψ s = θ s
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1: Schematic description of matrix dimension with a 3-sparse vector 

The standard procedure for compressive sparse signals, known as transform coding (as 

indicated in [66]) is to (i) acquire the full N-samples of signal y; (ii) compute the

complete set of transform coefficients x; (iii) locate the k largest, significant and discard 

the small coefficients; (iv) encode the values and locations of the largest coefficients. The 

important features of compressive sampling are that many types of signals and images 

approximated by a sparse expansion in term of a appropriate 

only a small number of non-zero coefficients. Another feature is that 

reconstruction can be achieved by using efficient algorithms [56, 65]. In this part we will 

discuss the sensing matrices (compressive sensing problem), principles of CS (Sparsity 

and incoherence) and restricted isometry properties (RIP).  

3.2.1 Sensing Matrices  

directly without going through the transitional stage of acquiring 

samples. Considering a general linear measurement process that computes 

and a collection of vectors JHKLKM= 1 as in yj = (x, Φ

vector y and the measurement vectors HKN as rows in term of 

matrix Φ. Then, by substituting Ψ from x = Ψs, y can be written as:

y = Φ x = Φ Ψ s = θ s                                                                 

sparse vector �� [63] 

The standard procedure for compressive sparse signals, known as transform coding (as 

; (ii) compute the 

largest, significant and discard 

the small coefficients; (iv) encode the values and locations of the largest coefficients. The 

ignals and images 

 basis that is by 

zero coefficients. Another feature is that useful 

by using efficient algorithms [56, 65]. In this part we will 

discuss the sensing matrices (compressive sensing problem), principles of CS (Sparsity 

stage of acquiring 

samples. Considering a general linear measurement process that computes M < N inner 

= (x, Φj). Arrange 

as rows in term of 

 

                                                                 (3.2) 
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Where θ = Φ Ψ is a matrix in term of M x N. The measurement process is not adaptive, 

meaning that Φ is fixed and does not depend on the signal x.  

There are two main theoretical questions in CS, first, how should we design the sensing 

matrix Φ to ensure that it preserves the information in the signal x? Second, how can we 

recover the original signal x from measurements y [63, 65]? In the case where our data 

are sparse or compressible, we will see that we can design matrices Φ with M << N that 

ensure that we will be able to recover the original signal accurately and efficiently using a 

variety of practical algorithms. 

We begin establishing conditions on Φ in the context of designing a sensing matrix by 

considering the null space property (NSP) of Φ, denoted in [66]. 

  

                                     N (Φ) = O-:	H	� = 1R                                                                (3.3) 

 

If we wish to be able to recover all sparse signals x from the measurements Φ x, then it 

is immediately clear that for any pair of vectors x, x' Є ∑T, we must have Φ x = Φ x', 

since it would be impossible to distinguish x from x' based on the measurements y. More 

formally, by observing that if Φ x = Φ x' then Φ (x - x') = 0 with x - x' Є ∑2T, we see that 

Φ uniquely represents all x Є ∑T if and only if N(Φ) contains no vectors in ∑T. There 

are many equivalent ways of characterizing this property; one of the most common is 

known as the spark .The spark of a given matrix Φ is the smallest number of columns of 

Φ that are linearly dependent. 

When dealing with exactly sparse vectors, the spark provides a complete 

characterization when sparse recovery is possible. However, when dealing with 

approximately sparse signals we must introduce somewhat more restrictive conditions on 

the null space of Φ [67]. We must also ensure that N(Φ) does not contain any vectors that 

are too compressible in addition to vectors that are sparse. 
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3.2.2 Sparsity (Compressible Signal) 

Signals can often be well-approximated as a linear combination of just a few elements 

from a known basis or dictionary. When this representation is exact we say that the signal 

is sparse. Sparse signal models provide a mathematical framework for capturing the fact 

that in many cases these high-dimensional signals contain relatively little information 

compared to their ambient dimension [59, 65, 68, 69]. 

Compressive sampling based on the experiential observation that many types of real-

world signals and images have a sparse expansion in terms of a suitable basis or frame, 

for instance a wavelet expansion. If the expansion of the original signal or image as a 

linear combination of the selected basis functions has many zero coefficients, then it’s 

often possible to reconstruct the signal or image exactly.   

Let us consider a finite-length, one-dimensional, discrete-time signal f, which can be 

viewed in term of N x 1 column vector in ℝV with elements f[n], n = 1,2,…,N. Any 

signal in ℝV can be represented in terms of a basis of N x 1 vectors �I4�4V = 1. Using N x 

N basis matrix Ψ = [Ψ1| Ψ2| . . .| ΨN] with the vector (Ψi) as a column, a signal f can be 

expressed as: f = Ψ x where, x is N x 1 column vector of weighting coefficients xi = (f, Ψi) 

= I4N x. Clearly f and x are equivalent representations of the signal, with f in the time or 

space domain and x in the Ψ domain. The signal f is k-sparse if it is a linear combination 

of only k of the xi coefficient in f = Ψ x are nonzero and (N - k) are zero. The case of 

interest is when k << N. The signal f is sparse (compressible) if the representation f = Ψ x 

has just a few large coefficients and many small coefficients. The signal f can be 

efficiently approximated from only a few significant coefficients. Sparsity is important in 

compressive sensing as it determines how efficiently one can acquire signals non-

adaptively.  

Figure 3-2 shows a typical transformation of the signal from time domain to frequency 

domain. The signal is a combination of sinusoids with 18 Hz and 36 Hz frequency. In the 

time domain, the representation of the signal reached a high density. After Fourier 
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transformation, the signal can be represented by two Fourier transform coefficients, 

which is obviously in a sparse way. 

 

 

Figure 3-2: Signal represented in time domain and frequency domain [generated with Matlab] 

 

Megapixel photo also has a concise representation. Signals with this structure are 

known to be very nearly sparse when represented using a wavelet transform. The wavelet 

transform consists of recursively dividing the image into its low and high-frequency 

components. The lowest frequency components provide a coarse scale approximation of 

the image, while the higher frequency components fill in the detail and resolve edges. 

Figure 3-3 shows the natural image and it’s a wavelet transform, which shows that the 

most coefficients are very small. Hence, we can obtain a good approximation of the 

signal by setting the small coefficients to zero, to obtain a k-sparse representation.  
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Figure 3-3: Natural picture and its wavelet coefficients [59] 

 

3.2.3 Incoherence 

Incoherence is an important feature in compressive sampling, and was defined in [55 – 

57, 59, 62, 65, 67]. By considering the pair of orthobasis (Φ, Ψ) of ℝV, the coherence 

between the sensing basis Φ and the representation basis Ψ is   

 

                            W�H,I� = 	√!.Z��1 ≤ T, \ ≤ !]〈H_ , IK〉]                                     (3.4) 

 

From the linear algebra, µ(Φ, Ψ)  [1, √!]   

The coherence measures the largest correlation between any two elements Φ and Ψ. If 

Φ and Ψ contain correlated elements, the coherence is large, otherwise, is small. From an 

experimental point of view, the incoherence of Φ and Ψ means that the information 

carried by a few entries of S is spread all over the M entries of y = Φ Ψ S. Each sample G_ 

is likely to contain a piece of information about each significant entry of x.  

CS is mainly concerned with low coherence pairs. The incoherence properties hold for 

many pairs of bases, including for example, delta spikes and the sin waves of a Fourier 

basis, or the Fourier basis and wavelets significantly, this incoherence also holds with 

high probability between an arbitrary fixed bases and randomly generated one.  

Figure 3-4 shows a narrow rect(t) function in the time domain corresponds to the wide-
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spared sinc(t) function in the frequency domain. Sampling in the time domain can be 

done with spike basis, say φk(t) = δ(t – k). Representing the signal of interest in the 

Fourier domain with Ψj(t) = n
-1/2

e
i2πjt/n 

lead to coherence of µ(φ, Ψ) = 1. 

 

 

Figure 3-4 plot of rect(t) (blue) and corresponding frequency representation sinc(f) (red) 

 

The incoherence between Φ and Ψ also indicates how many samples we will need at 

least in order to be able to reconstruct our signal from our measurements [57].  

 

                                              Z ≥ b. W��ф, I�. T. log !                                                (3.5) 

 

Where m is the number of samples, k the number of nonzero entries of our signal in Ψ 

and C is some positive constant. If our signal is truly sparse (k << n) and the coherence 

value is close to one, we need far less samples than that in the time domain. 

 

3.2.4 Restricted Isometries Property    

When the size of data infected with noise or have been corrupted by some error, it will 

be valuable to consider somewhat stronger conditions. In [40, 70, 71], Candes, Tao and 

others introduced the isometry condition on matrices Φ and established its important role 

in CS theory. It says that “if a sampling matrix satisfies the RIP of a certain order 
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proportional to the sparsity of the signal, then the original signal can be reconstructed 

even if the sampling matrix provides a sample vector, which is much smaller in size than 

the original signal”. 

Definition 3.1: A matrix Φ satisfies the restricted isometry property (RIP) of the order k 

if there exists a δk Є (0, 1) such that  

 

                              �1 −	f_�‖�‖�� ≤ ‖H�‖�� ≤ �1 +	f_�‖�‖��                                    (3.6)     

   

    Hold for all x Є ∑T. 

If a matrix Φ satisfies the RIP of order 2k, then we can interpret (3.6) as saying that Φ 

approximately preserves the distance between any pair of k-sparse vectors.  

If Φ satisfies the RIP of order k with constant f_, then for any k’< k we automatically 

have that Φ satisfies the RIP of order k’ with constant f_′ ≤	f_. Moreover, in [72] it is 

shown that if Φ satisfies the RIP of order k with a sufficiently small constant, then it will 

also automatically satisfy the RIP of order γk for certain γ, albeit with a somewhat worse 

constant. 

The stability of RIP addresses that if a matrix Φ satisfies the RIP, then this is sufficient 

for a variety of algorithms to be able to successfully recover a sparse signal from noisy 

measurements.   

We can also consider how many measurements are necessary to achieve the RIP. If we 

ignore the impact of δ and focus only on the dimensions of the problem (n, m, and k) then 

we can establish a simple lower bound. 

Theorem 3.1 [73] let Φ be an m x n matrix that satisfy the RIP of order 2k with constant δ 

Є (0, 1/2) then 

 

                                                Z ≥ �T log h_                                                                  (3.7) 

 

         where        � ≥ �� log √24 + 1 	≈ 0.28       
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One can establish a similar result by examining the Gelfand width of the ℓ1 ball. Both 

fail to capture the precise dependence of m on the desired RIP constant δ. Also, [74] 

shown that if a matrix A satisfies the RIP of order k = c1 log(p) with constant δ, then Φ 

can be used to construct a distance-preserving embedding for p points with ε = δ4. 

For application purposes, one often needs to analyze the RIP constants of the products 

of a matrix Φ with known RIP constant δ and other matrices. For example, if the size of 

Φ is n x N with n < N one would like to extend Φ to AΦB of size m x q with m < n < N < 

q if possible to give a further reduction one the number of measurements one need to 

collect: for Φ the number of measurements is n; while for AΦB, the number of 

measurements is m.  

 

3.3 Reconstruction Algorithms  

The basic theory of CS consists of two components: recoverability and stability [75]. 

Recoverability answer the following question: what types of measurement matrices and 

recovery procedures ensure exact recovery of all k-sparse signals and what is the best 

order m for the sparsity k? Reconstruction algorithms are amazing. Collecting a few 

samples (less than that used in Shannon-Nyquist sampling theory) randomly can perfectly 

reconstruct the signal.  

Given noisy compressive measurements y = Φ x + e of a signal x, a core problem in 

compressive sensing is to recover a sparse signal x from a set of measurements y. The 

most difficult part of signal reconstruction is to identify the location of the largest 

component in the target signal. The signal recovery algorithm must take a few number of 

measurements M in the vector y, the random measurement matrix Φ, and the basis Ψ and 

reconstruct the length-N signal x, or equivalently, its sparse coefficient vector s. In order 

to recover a good estimate of x from the M compressive measurements, the measurement 

matrix Φ should satisfy the restricted isometry property (RIP). In CS signals recovery 

achieved by; using nonlinear and relatively expensive optimization-based and iterative 

algorithms [5, 69].  
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Designing of sparse recovery algorithms is guided by various criteria. Some important 

ones are: 

� Minimal number of measurements: Sparse recovery algorithms must require 

approximately the same number of measurements (up to a small constant) required 

for the stable embedding of k-sparse signals. 

� Robustness to measurement noise and model mismatch: Sparse recovery 

algorithms must be stable in regard to perturbations of the input signal, as well as 

noise added to the measurements; both types of errors arise naturally in practical 

systems. 

� Speed: Sparse recovery algorithms must strive towards expending minimal 

computational resources, keeping in mind that a lot of applications in CS deal with 

very high-dimensional signals. 

� Performance guarantees: Focus on algorithm performance for the recovery of 

exactly k-sparse signals x.  

 Most of the CS literature has focused on improving the speed and accuracy of the 

process [76]. 

Several methods for recovering sparse x from a limited number of measurements have 

been proposed [57, 59, 63, 65, 77 - 83]. In some cases the goal is to solve some kind of 

interface problem such as signal detection, classification, or parameter estimation, in 

which case a full reconstruction may not be necessary [69, 84 - 86] Most of proposed 

algorithms have the same process idea (for example orthogonal matching pursuit and 

matching pursuit). For simplicity we categorized them in groups, and we restrict our 

attention to the algorithms that reconstruct the signal x.  

The reconstruction methods categorized into the following groups: 

� Convex optimization based approaches,  

� Greedy methods and 

� Combinatorial methods. 

Before discussing those algorithms let us give a general overview of a natural first 

approach to recover sparse signals, this approach is known as the ℓ1-norm.  
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Consider a measurement y and the original signal x is sparse or compressible, it is 

natural to attempt to recover x using ℓ0-norm by solving an optimization problem of the 

form 

 

                                 �� 	= �"Aminp‖�‖� 				?. �.					G = q�                                           (3.8) 

 

Where y = Ax ensures that �� is consistent with the measurements y. This is the case 

where the measurements are exact noise-free. When the measurements have been 

contaminated with a small amount of noise, we solve an optimization problem of the 

form 

 

                                 �� 	= �"Aminp‖�‖� 		?. �.		‖q� − G‖� 	≤ 	r                                (3.9) 

 

In both cases, find the sparsest x that is consistent with measurements y. 

In (3.8, 3.9) we assume that x itself is sparse. In the common setting where f = Φ c we 

can easily modify the approach and instead consider  

 

                                 �̂ 	= �"Aminp‖�‖� 			?. �.			G = qH�                                         (3.10) 

 

This is by noise-free measurements, when considering the noise measurements the form 

is  

 

                                 �̂ 	= �"Aminp‖�‖� 	?. �. ‖qH� − G‖� 	≤ 	r                              (3.11) 

 

By considering qt = qH we see that (3.8) and (3.10) are essentially identical. Moreover, 

in many cases the introduction of Φ does not significantly complicate the construction of 

matrices A such that qt will satisfy the desired properties [59, 65]. 

One avenue for translating this problem into something more trustable is to replace ‖. ‖� (ℓ0-norm) with it is convex approximation ‖. ‖� (ℓ1-norm). Specifically we consider  
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                              �� 	= �"Aminp‖�‖� 			?. �.					G = q�                                             (3.12)  

 

Provided that y is convex, (3.12) is computationally feasible. In fact, the resulting 

problem can be posed as a linear program [94]. While it is clear that replacing (3.8) with 

(3.12) transforms a computationally intractable problem into a tractable one, it may not 

be immediately obvious that the solution to (3.12) will be at all similar to the solution to 

(3.8). As an example, the solutions to the ℓ1 minimization problem coincided exactly 

with the solution to the ℓp minimization problem for any p < 1, and notably, was sparse. 

Moreover, the use of ℓ1 minimization to promote or exploit sparsity has a long history. 

Finally, there was renewed interest in ℓ1 minimization approaches within the signal 

processing community for the purpose of finding sparse approximations to signals and 

images when represented in overcomplete dictionaries or unions of bases [87]. ℓ1 

minimization received significant attention in the statistics literature as a method for 

variable selection in regression, known as the Lasso. 

Thus, there is a variety of reasons to suspect that ℓ1 minimization will provide an 

accurate method for sparse signal recovery. More importantly, this also constitutes a 

computationally tractable approach to sparse signal recovery. 

 

3.3.1 Convex Optimization Based-Approaches  

Using convex optimization algorithms to recover sparse signals has been proposed in 

different articles [40, 57, 63, 70, 88, 89], it is also known as basis pursuit. An important 

class of sparse recovery algorithms falls under the purview of convex optimization. This 

algorithms seeks to optimize the convex function f (·) of the unknown variable x over a 

convex subset of ℝV.  

Assume that J (x) be a convex sparsity-promoting cost function (i.e., J (x) is small for 

sparse x.) to recover a sparse signal representation �� from measurements y = Ф x, Ф Є ℝMpV, we may either solve 
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                                                minx{J (x) : y = Ф x };                                                 (3.13) 

 

When there is no noise, or solve 

 

                                                minx{J (x) : H(Ф x, y) ≤ ε};                                         (3.14) 

 

When there is noise in the measurements. Here, H is a cost function that penalizes the 

distance between the vectors Ф x and y.  

For convex programming algorithms, the most common choices of J and H are usually 

chosen as follows: 

J (x) = ||x||1, the ℓ1-norm of x and H (Ф x, y) = ‖Ф	� − G‖��, the ℓ2-norm of the error 

between the observed measurement and the linear projection of the target vector x. In 

statistics, minimizing H subject to ||x||1 ≤ δ is known as the Lasso problem [90]. More 

generally, J (·) acts as a regularization term and can be replaced by other, more complex 

functions. 

We can conclude that (3.13, 3.14) can exactly recover signal with high possibility using 

only M ≥ ck log(N/k) independent and identically distributed Gaussian measurements [63, 

68]. Then, the numbers of measurements depend on the length of signal and nonzero 

coefficient. Also M. Wakin [91] theorem 2 shows that more than k + 1 measurement are 

required to recover the sparse signal.  

Figure 3-5 shows the recovered signal by using convex optimization. 136 numbers of 

measurements were used for the reconstruction. The length of the signal is 1024 and the 

numbers of nonzero are 17.  
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Figure 3-5. Reconstructed signal via convex optimization 

 

Convex optimization methods (ℓ1 minimization) will recover the underlying signal x. 

In addition, convex relaxation methods also guarantee stable recovery by reformulating 

the recovery problem as unconstrained formulation. 

The advantages of using convex optimization method provide uniform guarantee for 

sparse reconstruction and it’s stable. The convex optimization method based on linear 

programming. 

 

3.3.2 Greedy Algorithm 

While convex optimization techniques are powerful methods for computing sparse 

representations, there are also a variety of greedy/iterative methods (matching pursuit, 

orthogonal matching pursuit, stagewise orthogonal matching pursuit, compressive 

sampling matching pursuit and regularized orthogonal matching pursuit) for solving such 

problems [62, 76, 92 - 70]. Greedy algorithms rely on iterative approximation of the 

signal coefficients and support, either by iteratively identifying the support of the signal 

until a convergence criterion is met, or alternatively by obtaining an improved estimate of 

the sparse signal at each iteration that attempts to account for the mismatch to the 

measured data. Some greedy methods can actually be shown to have performance 
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guarantees that match those obtained for convex optimization approaches. Greedy 

algorithms are very simple and fast to implement. 

 

3.3.2.1 Matching Pursuit 

Matching Pursuit (MP) is an iterative greedy algorithm that decomposes a signal into a 

linear combination of elements from a dictionary.  

The concept of MP is very simple. A key quantity in MP is the initial residual r Є ℝM 

equal to the input signal x, which is representing the portion of measurements. At each 

iteration of the algorithm, we select a vector from the dictionary that is maximally 

correlated with the residual r:  

 

                                          u_ = �"AZ��v w�x0	yz{yz‖yz‖/                                                 (3.15) 

 

Once this column is selected, we possess a “better” representation of the signal, since a 

new coefficient indexed by λk has been added to our signal approximation. Thus, we 

update both the residual and the approximation as follows: 

 

                                        "_ =	"_0� −	 〈�x|1,y 〉yzx‖yzx‖/                                                     (3.16) 

                                       ��v_ =	��v_ +	〈"_0�, Hv_〉                                                     (3.17) 

and repeat the iteration. A suitable stopping criterion is when the norm of r becomes 

smaller than some quantity. Although MP is intuitive and can find an accurate 

approximation of the signal, it possesses major Drawbacks are: 

� It offers no guarantees in terms of recovery error; indeed, it does not exploit the 

special structure present in the dictionary. 

� The required number of iterations required can be quite large. The complexity of 

MP for CS recovery is O(MNT) [69], where T is the number of MP iterations 
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3.3.2.2 Orthogonal Matching Pursuit  

Orthogonal matching pursuit (OMP) algorithm combines the simplicity and the fastness 

for high-dimensional sparse signal recovery. Hence, it is easy to implement in practice 

[80, 70]. OMP algorithm begins by finding the column of A most related with the 

measurements. The algorithm then repeats this step by correlating the columns with the 

signal residual, which is obtained by subtracting the contribution of a partial estimate of 

the signal from the original measurement vector. 

Tropp and Gilbert [62] proved that OMP can be used to recover a sparse signal with 

high probability using CS measurements. Suppose that x is an arbitrary k-spares in ℝM, 

and let O}�, … . , }VR be a family of � measurement vectors. From an N x M matrix Ф 

whose rows are the measurement vectors, and observe that the N measurement of the 

signal can be collected in N-dimensional data vector: 

 

                                              y = Ф x                                                                          (3.18) 

 

We refer to Ф as the measurement matrix and denote its columns by ��, …… , �M.     

It is natural to think of signal recovery as a problem dual to sparse approximation. 

Since x has only k nonzero components, the data vector (3.18) is a nonlinear computation 

of k columns from Ф. In this language of approximation, we say x has k-term 

representation over the dictionary Ф.  

Therefore, sparse approximation algorithms can be used for recovering sparse signal. 

To identify the ideal signal x, we need to determine which columns of Ф participate in 

measurement vector x. The idea behind the algorithm is to pick a column in a greedy 

fashion. At each iteration, we chose the column of Ф that is most strongly correlated with 

the remaining part of x. Then we subtract off it is a contribution to x and iterate on the 

residual. After k iteration, the algorithms suppose to identify the correct set of columns. 

Tropp and Gilbert show that, if we let Ф be a m x N subgaussian matrix and fix a k-

spares signal �	 ∈ ℝM. Then, OMP recovers signal x from measurements (3.18) correctly 

with high probability, provided the number of measurements is Z	~	T log�.     
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The steps of OMP for signal recovery [80] are  

Let M x N measurement matrix Ф, M-dimensional vector y and the sparsity level k of 

the ideal signal.  

Output: 

• An estimate �� in ℝV for the signal 

• A set q_ containing k element from {1, . . ., N}  

• An M-dimensional approximation ak of the data y.  

• An M-dimensional residual "_ = G −	�_ 

Procedure: 

1- Initialize the residual r0 = y, the index set A0 = θ, and the iteration counter t = 1. 

2- Find the index λt that solves the easy optimization problem 

                                 u� = �"AmaxK��,…,V]〈"�0�, �K〉]                                   
           If the maximum occurs for multiple indices, break the tie deterministically.  

3- Augment the index set and matrix of chosen atom s:  q� =	q�0� ∪ Ou�R and 

Ф� = [Ф�0�	, �v�] we use the convention that Ф0 is empty matrix. 

4- Solve a least squares problem to obtain a new signal estimate: 

                      �� = �"Aminp‖G − Ф��‖�                                         

5- Calculate the new approximation of the data and the new residual. 

                        �� = Ф���,           "� = G − �� 
6- Increment t, and return to step 2 if t < k. 

7- The estimate �� for the signal has nonzero indices at the components listed in Ak. 

The value of the estimate �� in component λj equals the jth component of xt.  

Figure 3-6 shows the signal recovered by OMP using signal length 256 and 64 

measurements. The recovered signal is the same as the original signal (We plot only 50 

samples so as to give a clear signal). 
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Figure 3-6. Reconstructed signals via OMP 

 

This algorithm is quite fast. The speed of the OMP is a great advantage, but it lacks the 

strong guarantee that ℓ� provides [90].  

 

3.3.2.3 Stagewise Orthogonal Matching Pursuit  

Orthogonal matching pursuit is not effective when the signal is not very sparse as the 

computational cost increases quadratically with the number of nonzero k. In this setting 

StOMP proposed in [96] is a better choice for approximately sparse signals in a large-

scale setting.  

StOMP offers considerable computational advantages over ℓ1 minimization and 

Orthogonal Matching Pursuit for large scale problems with sparse solutions. The 

algorithm starts with an initial residual r0 = y and calculates the set of all projections Ф
T
 

rk-1 at the k
th

 stage (as in OMP). However, instead of picking a single dictionary element, 

it uses a threshold parameter τ to determine the next best set of columns of Ф whose 

correlations with the current residual exceed τ. The new residual is calculated using a 

least squares estimate of the signal using this expanded set of columns, just as before. 

Unlike OMP, the number of iterations in StOMP is fixed. In general, the complexity of 

StOMP is O(KNlogN) , a significant improvement over OMP. However, StOMP does not 
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bring in its work any reconstruction guarantees. StOMP also has moderate memory 

requirements compared to OMP. 

 

3.3.2.4 Compressive Sampling Matching Pursuit 

CoSaMP is an iterative recovery algorithm that provides same guarantees as even the 

best optimization approaches [76]. This algorithm recovers signals using measurement 

matrices that satisfy the RIP. Thus, the observation vector G = 	Ф∗� serves as a good 

proxy for the signal x. With the largest coordinates, an approximation to the signal is 

formed at each iteration. After each new residual is formed, reflecting the missing portion 

of the signal, the measurements are updated. This is repeated until all the recoverable 

portion of the signal is found. CoSaMP algorithm is similar to the OMP, but does a 

limited search at each step, in the sense that it adds more than one coordinate.  

CoSaMP reconstructions steps  a cording to M. Fazel & M. Meila [101] are as: 

Initialize residual      "� = G,      Support   �	 = 	3,    Counter      � = 1  

       Repeat 

1- Find the 2s columns most correlated with   " ∶ 	 u� = �"Amin|N|��� ∑ ]〈"�0�,ФK〉]K∈N  

2- Add them to the index set         � = 	� ∪ �  

3- Re-evaluate the solution �� = �"Aminp‖Ф�� − G‖� by least square  

4- Prune: Ω = the k largest coefficient of ��, �� 	← 	 �� 

5- "� = G −	Ф��� (note �� 	 ∈ 	��) 
Until stopping criterion  

In the above, the s ≤ k and in the standard setting s = k. 

The most expensive step is, that is, finding the column (s) most aligned with the 

residual. The step takes ��!�� multiplication.   

Under certain general assumptions, the computational cost of CoSaMP can be shown to 

be O(MN), which is independent of the sparsity of the original signal. This represents an 

improvement over both greedy algorithms as well as convex methods. The drawback of 
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this algorithm is the algorithm requires prior knowledge of the sparsity k of the target 

signal. An incorrect choice of input sparsity may lead to a worse guarantee than the actual 

error incurred by a weaker algorithm such as an MP.    

 

3.3.2.5 Regularized Orthogonal Matching Pursuit 

Regularized orthogonal matching pursuit (ROMP) is one of the greedy algorithms with 

strong guarantees similar to those of convex optimization methods. The ROMP algorithm 

was proposed in [99] for sparse recoveries that achieved properly for all measurement 

matrices that satisfy the restricted isometry condition (RIC), and requires no prior 

knowledge about the error vector [79]. The sparsity of the signal is required for 

reconstruction, several ways proposed to estimate the parameters [99]. Consider the 

signal represented in equation 3.18.  

We want to recover the signal x, which has a few non-zero coefficient from the linear 

measurements, using only numbers of measurements fewer than N the length of the signal 

[102, 103].  

Considering the observation u = Φ
*
 y as a local approximation of the signal x. the 

observation vector u encodes correlation of the measurement vector y with the columns 

of Φ. Φ is a dictionary, and so since the signal x is sparse, y has a sparse representation 

with respect to the dictionary. By the RIC, every M columns form approximately an 

orthonormal system. Thus, every M coordinates of the observation vector u look like 

correlations of the measurement vector y with orthogonal basis and there for being close 

in the Euclidean norm to the corresponding M coefficient of x.  

The coordinates are selected to be more regular by selecting only coordinates with 

comparable size, this lead us to use only the M biggest coordinate of the observation 

vector u instead of using one biggest coordinate as in OMP [102]. Lastly a new 

regularization step needed to make sure that each of these coordinates gets constant share 

information. The algorithm for sparse signal recovery by using ROMP as proposed in 

[99] is as follows: 

Input  
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� Sensing matrix Φ in N-by-M 

� Measurement vector y 

� The signal x and its support T 

Output 

� Index set It in {1, …, M} 

� Residual vector Rt in N-by-1 

� Reconstructed signal �� in M-by-1  

Procedure 

1- Initialize: let the residual vector Rt = y, the index set It = θ, and start the 

iteration with counter t = 1.  

2- Identify: choose a set J of a biggest absolute values of the observation vector u 

= Φ
*
 Rt, or all of its non-zero coordinate.   

3- Regularize: divide the set J into subset Jk which satisfies  

                              |����| ≤ 2. |��\�|     for all    �. \ ∈ 	 �_   

And chose the subset J0 with the maximum energy ‖�|��‖   

4- Update: set �� = ��0� ∪ ��  

Calculate the new output approximation by solving the least square equation 

                                  �� = �"AZ�!5‖G − H���‖�  

Update the residual: �� = G − H����    
5- Stopping: Check the stopping criterion, it not, then keep increasing � = � + 1       

The difference between this algorithm and OMP algorithm is in the second and third 

steps. Instead of choosing only one biggest correlation between the residual and columns 

of the matrix at each iteration, we choose a set of |��| coefficient form � biggest absolute 

coefficients of q∗��. By this the signal can be recovered perfectly without going through 

all iterations.     
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3.3.3 Combinatorial Optimization Algorithm 

In addition to convex optimization and greedy algorithms, there is another important 

class of sparse recovery algorithms that we will refer to as combinatorial algorithms. 

These algorithms mostly developed by the theoretical computer science community, it’s 

highly relevant to the sparse signal recovery problem. Combinatorial algorithms were 

developed in the context of group testing. In the group testing problem, we suppose that 

there are N total items, of which an unknown subset of k elements are anomalous and 

need to be identified. The goal is to design a collection of tests that allows the user to 

identify the support of x while also minimizing the number of test performed. There were 

several combinatorial optimization algorithms has been developed in literature to 

reconstruct the sparse signal, (e.g. A non-exhaustive list includes Random Fourier 

Sampling, HHS Pursuit, Sparse Sequential Matching Pursuit, count-min and count-

median [104, 105]).   

If we consider the signal x, which is recovered by solving combinatorial optimization 

problem, more than k measurement must be taken to avoid ambiguity. Some authors [63, 

91, 106] show that k + 1 random measurement will be sufficient to recover the signal. If 

we know that the measurement x has very few non-zeros components (high sparse 

signal), then a reasonable decoding model is to look for sparsest signal among all those 

that produce the measurement x by using ℓ0 minimization.   

 

                                      �� 	= 	�"AZ�!	‖�‖�				?��\#��	� 			G = Ф��                       (3.19) 

 

Where ψ Є ℝV is an orthogonal basis, Ф is M x N measurement matrix. 

The signal with the length of 700, the numbers of spikes is 70 and using numbers of 

measurements equal to 210, is shown in figure 3-7. The signal was reconstructed by using 

a combinatorial algorithm (ℓ0 minimization). A cording to the theory we have to used 

number of measurement M ≥ k + 1 to recover the sparse signal.  
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Figure 3-7. Reconstructed signals via combinatorial algorithm 

 

The algorithm based on  ℓ� optimization, which is both numerically unstable and NP-

hard, requiring an exhaustive enumeration of all possible locations of the non-zero entries 

in x.  

 

3.3.4 Total variation minimization  

The total variation (TV) based on filtering was introduced by Rudin, Osher, and Fatemi 

[107], TV have been used in many applications in image processing, ever since, in 

particular for image reconstruction, blind deconvolution, resolution enhancement and 

decompression. In all the application mentioned above, TV is used as a regularization 

term that permits to select, among several competing solutions. TV of an image is the 

total length of its level sets. It is computed as the ℓ1 norm of the gradient, viewed as a 

complex operator, which is the sum of the length of the all gradient vectors. The main 

idea of the algorithm is to minimize numerically TV + L
2
 norm via dual problem.    

TV minimization is closely related to ℓ1 minimization; it considers as a recovery 

method. If we minimize the total variation and take the total variation minimizer, we 

choose the one possibility with the least amount of oscillation to reconstruct the original 

image. Thus, the image, which is reconstructed with total variation minimizer will be less 

noisy and it is smooth. This result is exactly what is expected.  
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We can recover an approximate image �� from measurements y = Ф Ψ�� by solving: 

 

                               �∗ = �"AZ�!	||I��||N�  s. t.   y = Ф Ψ��                                     (3.20) 

 

Where ‖�‖N� =	∑ ����? + 1, �� − 	��?, ���� +	���?, � + 1� − 	��?, �����,� , y is m x 1 

vector of sub-sampled measurements, ф in form of m x n sensing matrix, Ψ is n x n 

orthogonal basis, �� is n x 1 coefficient vector and ||f|| is the sum of the magnitudes of the 

gradient of f(s, t). From the mathematical expression of total variation, we see that there 

will be several signals that fulfill the equality constraints. 

 

3.4 Robust Compressive Sensing 

In reality, signals do not have an exact sparse representation. Such signals are modeled 

as compressive signals; with a threshold such that any values above the threshold are 

considered non-zeros and values below are treated as zeros. This approximates the 

sparsity model. Signals also have inherent noise, in the form of measurement noise or 

instrument noise.   

In all sensor applications, one should not expect to measure signal without any error. 

As we know one can recover sparse signals from just a few measurements, but in order to 

be really powerful, CS needs to be able to deal with both sparse signals and noise. The 

issue here is whether or not it’s possible to obtain accurate reconstructions of such objects 

from highly under-sampled measurements. In a real application measured data will 

invariably be corrupted by small amount of noise as sensing devices do not have infinite 

precision. It is, therefore, imperative that CS be robust in relation to such nonidealities. 

Suppose the observations are not inaccurate and consider the model 

                                        y = 	Фx + e                                                                        (3.21)     
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Where Ф is an M x N sensing matrix giving us information about x and e is a stochastic 

or deterministic unknown error with bounded energy ‖e‖� 	≤ 	ε. The (3.21) reconstructed 

program given as 

 

                                     min‖x�‖ℓ�   subject to 	‖Фx� − 	y‖ℓ� 	≤ 	ε                               (3.22) 

 

The reconstruction is within the noise level. 

 

3.5 Application of Compressed Sensing 

Compressive sensing can be potentially used in all applications where the task is the 

reconstruction of a signal or an image from linear measurements, while taking many of 

those measurements in particular, a complete set of measurements is costly, lengthy, 

difficult, dangerous, impossible or otherwise undesired procedure. Compressed sensing 

appears to be promising for a number of applications in signal acquisition and 

compression. CS has been applied in various areas [108, 109], which is categorized as the 

following: 

� Compressive medical imaging. 

� Group testing and data stream algorithm.  

� Analog-to-information conversion.  

� Single pixel camera. 

� Hyperspectral imaging. 

� Compressive processing of manifold-modeled data 

� Compressive sensing network. 

� Genomic sensing. 

� Inference using compressive measurements.   

There is a widespread body of literature on image compression, but the essential 

concept is straightforward; we transform images into a suitable basis and then code only 
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the important expansion coefficients. A problem of finding a good transform has been 

studied extensively from both theoretical and practical standpoint.  

Image compression algorithms convert high-resolution image into relatively small bit 

streams, in effect turning a large digital data set into a substantially smaller one. But is 

there a way to avoid the large digital data set to begin with? Is there a way we can build 

the data compression directly into the acquisition? The answer is yes; by using CS it is 

possible to reduce the number of data used to reconstruct the image. In this part we want 

to concentrate on the application of CS in imaging, particularly medical imaging.  

In our research we applied CS theory into Doppler ultrasound imaging system data, 

which is used to measure and imaging the blood flow within the body so as to overcome 

the current data acquisition limitation, such as processing time reduction, reduction of the 

data used for the reconstruction and increasing the patient safety level. 

 

3.5.1 Application of CS in Medical Imaging  

Compressed sensing becomes popular and increasing rapidly in various fields of 

biomedical signal and image processing. CS has been applied to different medical 

imaging systems such as Magnetic resonance imaging (MRI), computed tomography 

(CT), electroencephalogram (EEG), Ultrasound RF echoes, Doppler ultrasound signal 

and … ect. More information regarding application of CS in medical imaging can be 

viewed at [56, 110 - 117].  

Increasing in biomedical measurement’s techniques for diagnosis and follow-up of 

human disease strongly requires compression in order to keep the data-flow tractable. 

 

3.5.1.1 Application of CS in computerized tomography 

For example, in computerized tomography, for instance, one would like to obtain an 

image of inside a human body by taking X-ray images from different angles. Taking an 

almost complete set of images would expose the patient to a large and dangerous dose of 

radiation, so the amount of measurements should be as small as possible, and 
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nevertheless guarantee a good enough image quality. Such images are usually nearly 

piecewise constant and therefore nearly sparse in the gradient, so there is a good reason to 

believe that compressive sensing is well applicable. 

 

3.5.1.2 Application of CS in Magnetic Resonance Imaging 

Also, Compressed Sensing applied to magnetic resonance imaging (MRI). MRI is an 

essential medical imaging tool with an inherently slow data acquisition process. Applying 

CS to MR offers potentially significant scan time reductions, with benefits for patients 

and health care economics. MRI scanners have traditionally been limited to imaging 

static structures over a short period of time, and the patient has been instructed to hold his 

or her breath. But now, by treating the image as a sparse signal in space and time, MRI 

scanners have begun to overcome these limitations, for example, produce images of a 

beating heart. Example of MR reconstruction was shown in figure 3-8; 2-D frequency 

measurements were used. Figure 3-8 (a) describes such a sampling set of a 2-D Fourier 

transform. Since a length scanning procedure is very uncomfortable for the patient it is 

desired to take only minimal amount of measurements. A total variation, considered as 

the recovery algorithm. Figure 3-8 (b) shows the recovered image by a traditional 

backprojection algorithm. Figure 3-8 (c, d) shows the recovered image by using TV 

algorithm, (c) represents the image after 26 iterations and (d) after 126 iterations, it’s 

exact.   
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Figure 3-8.  (a) Sampling data of MR image in the Fourier domain which correspond to only 

0.11% of all samples. (b) Reconstructed by back-projection. (c) Intermediate iteration of an 

efficient algorithm for large scale TV minimization. (d) The exact reconstruction [56]. 

 

3.5.1.3 Application of CS in Doppler Ultrasound Signals 

Finally we will give a brief introduction about our work on the application of 

compressed sensing on Medical Doppler Ultrasound Signal which is demonstrated in 

[117, 118]. Ultrasound imaging is arguably the most widely used cross-sectional medical 

imaging modality worldwide. Indeed, ultrasound has a number of potential advantages 

over other medical imaging modalities because it is non-invasive, portable and versatile, 

it does not use ionizing radiation and it is relatively low-cost [1]. 

The acquisition of Doppler ultrasound data relies on repeatedly transmitting ultrasound 

pulses to acquire data from a particular region of interest selected by the sonographer. 

Such acquisition must be extremely precise in its periodicity to ensure that the Doppler 

signal is uniformly sampled for further spectrogram processing. This can be a major 

constraint to ultrasound imaging systems when this Doppler signal acquisition is done in 
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such modes as Duplex or Triplex imaging where B-mode or color flow signals are 

acquired concurrently.  

Doppler ultrasound signal was nonuniformly sampled in a random fashion and then 

reconstructed using CS via ℓ1 minimization to regenerate the Doppler ultrasound 

spectrogram from much fewer samples. The measurement model is         

    

                                        f = A x                                                                                  (3.23)  

 

Where f is the M x 1 vector containing the compressive measurements, and A is the M x 

N measurement matrix. Using the M measurement in the first basis given the sparsity 

property on the other basis, the original signal was recovered by using convex 

optimization recovery algorithm (ℓ1 minimization) expressed as 

 

                                  min‖�‖ℓ�  s. t.   ‖q� − 	�‖ℓ� 	≤ 	r                                           (3.24) 

 

Software programs written in Matlab (Mathworks, MA) were developed and used to 

generate an original Doppler spectrogram. Then, the same signal was undersampled in a 

random manner to reduce the length of the signal to either different lengths (here, we 

show lengths of 128 or 256 points). The Optimization based on ℓ1-norm was used to 

recover exactly the Doppler signal.  

The recovered signals were used to regenerate the Doppler ultrasound spectrograms as 

shown in figure 3-9. The sonogram was recovered exactly. Different reconstruction 

algorithms applied to Doppler ultrasound signal will be discussed in more details in the 

next chapter 
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Figure 3-9. Reconstructed Doppler sonograms using two different numbers of measurements 

 

3.6 Parallel Computing  

The goal of parallel computing is speed up computation by using multiprocessor and 

utilize more memory than available on a single machine, using one of the parallel 

programs such as massage passing interface (MPI), which is used to exchange the data 

and control information between the processors.    

Several authors show that the parallel computational algorithms can be used for 

reconstruction time reduction [42, 119]. In this part of our work we to want to make use 

of CS and parallel algorithms, by integrating the CS reconstruction algorithms used for 

Doppler ultrasound spectrogram reconstruction spatially convex optimization (ℓ1-norm) 

algorithm and parallel algorithms so as to reduce the relative recovery time. The 

combination has done using systems widely available, multicore CPUs. 

The reconstruction time depends on the number of measurements used for 

reconstruction and the reconstruction algorithm. CS reconstructions involve nonlinear 

optimization, which can be time consuming even for a few numbers of measurements. 

This problem can be overcome by using the novel performance of the central processing 

unit (CPU). Unfortunately, the power consumption and physical layer size were limiting 

the computation power growth using higher CPU clock frequency. Modern process 
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design is moving toward multicore architecture. The availability of duo-core, quad-core 

central processing unit and graphical processing unit (GPU) offer new platforms for 

implementing parallel computation algorithms to speed up the reconstruction of the 

Doppler ultrasound spectrogram. Matlab and Parallel computing toolbox provides a 

useful code that can work well in a multicore system enabling the user to select the most 

appropriate program to the application. In this work we will use MPI to achieve the 

reduction.  

The parallel computing toolbox (PCT) and long with Matlab distributed computing 

server (MDCS) are commercial products offered by MathWorks Inc. The PCT provides 

functionality to run Matlab code on multicore system and cluster, besides providing 

functions in parallel for-loop execution, creation/manipulation of distributed array as well 

as message passing functions for implementing fine gained parallel algorithms.   

The MDCS gives the capability to scale parallel algorithms to larger cluster sizes. The 

MDCS consist of Matlab worker processes that run on a cluster and is responsible for 

parallel code execution and process control [119]. Figure 3-10 illustrates the architecture 

of PCT and MDCS. 

 

 

Figure 3-10. The PCT and MDCS [119] 



62 

 

 

In this work we will consider only PCT because its easily experiment with explicit 

parallelism in multicore machines, rapidly develop parallel applications on local 

computer, take full advantage of desktop power and separate computer cluster not 

required. Figure 3-11 illustrates the multicore system with parallel computing toolbox. 

 

 

Figure 3-11. Multicore system and PCT 

 

The combination of CS and parallel computing to reduce the reconstruction time has 

been applied in different areas such as real-time MRI reconstruction [120]. We want to 

make use of this combination to reduce the recovery time in the Doppler ultrasound 

spectrogram, using duo-core systems and Matlab PCT.   

 

 

 

 

 

 

 

 

  



 

Application of CS & Parallel Algorithm in Doppler Signal

 

In this chapter we want to discuss the proposed data acquisition by showing how 

different CS algorithms from sparse approximation applied to the Doppler ultrasound 

data so as to reconstruct the Doppler ultrasound sonogram using a few numbers of 

measurements. Doppler ultrasound signal was sampled randomly and constructed by 

using CS via one the reconstruction algorithms to regenerate a reconstructed Doppler 

signal, which is used to generate a Doppler ultrasound spectrogram using a much fewer 

number of measurements M. Figure 4

and the new methods. Also we will discuss application of parallel methods for 

reconstruction time reduction.  

 

Figure 4-1. Comparison of present method vs new methods
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Chapter 4 

Application of CS & Parallel Algorithm in Doppler Signal

In this chapter we want to discuss the proposed data acquisition by showing how 

different CS algorithms from sparse approximation applied to the Doppler ultrasound 

data so as to reconstruct the Doppler ultrasound sonogram using a few numbers of 

s. Doppler ultrasound signal was sampled randomly and constructed by 

using CS via one the reconstruction algorithms to regenerate a reconstructed Doppler 

signal, which is used to generate a Doppler ultrasound spectrogram using a much fewer 

. Figure 4-1 illustrated the block diagram of present methods 

and the new methods. Also we will discuss application of parallel methods for 

reconstruction time reduction.   

 

1. Comparison of present method vs new methods 

Application of CS & Parallel Algorithm in Doppler Signal 

In this chapter we want to discuss the proposed data acquisition by showing how 

different CS algorithms from sparse approximation applied to the Doppler ultrasound 

data so as to reconstruct the Doppler ultrasound sonogram using a few numbers of 

s. Doppler ultrasound signal was sampled randomly and constructed by 

using CS via one the reconstruction algorithms to regenerate a reconstructed Doppler 

signal, which is used to generate a Doppler ultrasound spectrogram using a much fewer 

1 illustrated the block diagram of present methods 

and the new methods. Also we will discuss application of parallel methods for 
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4.1 The Doppler Data 

    The proposed Doppler data acquisition performed by using a real Doppler ultrasound 

data (heart data). The data downloaded from the H. Torp group website. The length of the 

Doppler data was 2032 point and the numbers of measurement used for reconstruction 

are, 5%, 20%, 40%, 60% and 80%. Software programs written in MATLAB 

(MathWorks, Inc., Natick, MA) were developed and used to generate the Doppler 

ultrasound spectrogram, before and after applying the CS theory. Also all the 

reconstruction algorithm developed in MATLAB program.   

 

4.2 Doppler Signal Reconstruction 

Different reconstruction algorithms proposed for signal and image reconstruction via 

CS theory. In the work four different algorithms were used to reconstruct the Doppler 

ultrasound signal, the algorithms are 

1- Reconstruction via ℓ1 Minimization (ℓ1-norm) 

2- Reconstruction via Orthogonal Matching Pursuit (OMP) 

3- Reconstruction via Compressive sampling Matching Pursuit (CoSaMP) 

4- Reconstruction via Regularized Orthogonal Matching Pursuit (ROMP) 

 

4.2.1 Reconstruction via ℓ1 Minimization 

The Doppler ultrasound data were loaded into Matlab, The coefficient matrix A in term 

of M x N have been selected non uniformly at random, which is done with normalized 

vectors sampled independently and uniformly using the sparse model, the Doppler signal 

represented linearly as  follows:  

 

                                                        � = q�                                                                   (4.1) 
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The basis A selected to suit the discrete cosine transform and assume that most of the 

coefficients x are zero, so x is sparse. In real signal it’s not possible to collect signal 

without noise, thus the noise z added to the signal, the linear signal described as:  

 

                                                       � = q� + -                                                             (4.2) 

 

Where the vector f is M x 1, z in an M-dimensional measurement noise vector and M << 

N 

For solving the Doppler signal (4.2), another linear operator is needed. The linear 

operator chosen to be as follows: 

 

                                                    @ = A	�	                                                                     (4.3) 

 

Where, @ is a random sample from � and A is the subset of the rows of the identity 

operator. 

To recover the signal we need to recover the coefficient by solving D	�� = @ where D = A	q.  

Then solving 

 

                                                    � = q	��                                                                      (4.4)   

 

By using ℓ1-norm  

 

                                             min‖�‖�  subject to ‖I� − G‖� < f  

 

Recover the sparse signal. The recovered signal �̅ applied into the Matlab code to 

generate the recovered Doppler spectrum. 
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4.2.2 Orthogonal Matching Pursuit 

Orthogonal matching pursuit algorithm from sparse approximation used to reconstruct 

the Doppler ultrasound signal. Doppler ultrasound signal was sampled randomly and 

constructed by using CS via OMP algorithm to create a reconstructed Doppler signal, 

which is used to generate a Doppler ultrasound spectrogram using a much fewer number 

of measurements M. The data constructed by using OMP begins by finding the column of 

A most related to the measurements. The algorithm then repeats this step by correlating 

the columns with the signal residual, which is obtained by subtracting the contribution of 

a partial estimate of the signal from the original measurement vector. The measurement 

model is: 

 

                                               G = q	�                                                                           (4.5) 

 

Where A is a measurement matrix in N x M, y is an M-dimensional and x is a sparse 

signal with k nonzero. 

The signal x reconstructs by solving the relation (4.5) with the OMP algorithm as 

follows: 

Input: Loaded Doppler signal vector A 

Output: sparse signal vector x 

Initialize the residual r0 = y. At each iteration, the observation vector is set, y =  A
*
r, 

and add the index to the coordinate of its the largest coefficient in the magnitude. By 

solving the least square problem, the residual is updated r = u - Ay. Repeating this m = 

2*k times give the recovered Doppler signal x. The recovered signal used to generate 

Doppler spectrogram by using MATLAB. 

 

4.2.3 Compressive Sampling Matching Pursuit  

To reconstruct the Doppler signal using CoSaMP algorithms we first need to generate 

the measurement matrix A, later we generate the sparse coefficient, which have a problem 
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specific structure. We intend to reconstruct a vector x, the Doppler ultrasound signal in 

our case, with a few numbers of non-zero components, that is, with a CoSaMP recovery 

algorithm. Many others algorithms exist for signal recovery proposed in [76].  

The Doppler signal with a length of 2032 was sampled randomly and constructed by 

CoSaMP using a few numbers of measurements M. To reconstruct the signal as 

mentioned before the measurement matrix A was selected randomly and then reconstruct 

the signal by solving the measurement vector y. The measurement vector is given in 

equation (4.5).   

Applying CoSaMP to reconstruct the Doppler data by solving the measurement vector 

(4.5), lead to a good approximation of Doppler signal x. By using the largest coordinates, 

an approximation of the signal is found at each iteration. After each new residual is 

formed, reflecting the missing part of the signal, the measurements are updated. This is 

repeated until all the recoverable portion of the signal is found. The whole CoSaMP 

algorithm for reconstructing the signal described below: 

Initialize  

                   Residual       "� = G 

                   Support        � = 	3 

                   Counter        t = 1 

Repeat  

1- Find the 2s column most correlated with " ∶ 	 u� =	�"AZ�!|N|��� ∑ ]〈"�0�, 3K〉]K∈N  

2- Add them to the index set � = 	� ∪ � 

3- Re-evaluate the solution �� =	argminp‖q�� − 	G‖� by least square 

4- Prune: Ω = the k  largest coefficients of ��  �� ← �� 

5- "� = G − q��� (note �� ∈ ℝ�) 
Until stopping creation       
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4.2.4 Regularized Orthogonal Matching Pursuit 

ROMP algorithm used to reconstruct Doppler ultrasound signal using a few numbers of 

points. The reconstruction performed using the Doppler signal of length 2032 and five 

different numbers of measurements.  

Doppler ultrasound signal with a length of 2032 was sampled randomly and 

constructed by ROMP using a few numbers of measurements M and sparsity level n. To 

reconstruct the signal, an N x M Gaussian measurement matrix A was selected randomly 

and then reconstructs the signal with ROMP by solving the measurement vector y. The 

measurement model was given in relation (4.5).  

The reconstructed signal used later to generate the reconstructed Doppler spectrogram.   

 

4.3 Reconstruction Time 

The reconstruction time was calculated for each number of measurements in all the 

recovery algorithms used to reconstruct the Doppler signal. We have computed the 

process time by using Matlab program v. 7.0.1, which allow us to run the CS recovery 

algorithms. The recovery algorithms run on a TOSHIBA laptop model 2008 with Intel® 

Celeron @ 2.6 GHz, 3.0 GB of main memory and 512 MB RAM. The operating system 

of the laptop was Windows XP Home Edition Service Pack 2. 

Each algorithm with specific numbers of measurements runs several times, the average 

relative time was calculated and compared for each.   

The number of iterations for ℓ1-norm algorithm only was evaluated at each numbers of 

measurements used. The process was repeated several times and the average was 

calculated at each measurements. The result shows that there is no significant difference 

in the number of iterations by using different numbers of measurements. 

 

4.4 Reconstructed Image Evaluation 

Root mean Square Error (RMSE) and Peak Signal-to-Noise Ratio (PSNR) expressed in 

dB were used to evaluate the quality, accuracy of the reconstructed images and compared 
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between the resulting images. Those methods are widely used for evaluating the 

recovered images using random sampling. 

 

4.4.1 Root Mean Square Error (RMSE)  

The efficient of reconstructed images evaluated by using the root mean square error 

(RMSE) which is widely-used quantitative measurement. The RMSE calculated for two 

images I and II with dimension of (m-by-n), where I is the original image and II is the 

reconstructed image. The RMSE measurement is easily computed by the square root of 

(mean square error MSE) the average squared difference between every pixel in 

recovering image and the original image. The RMSE calculated as follows:  
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                              MSERMSE =                                                                             (4.7) 

 

Where, I(i, j) and II(i, j) are the pixel values of the original and recovered image 

respectively and m, n are the size of an image. 

 

4.4.2 Peak Signal-to-Noise Ratio (PSNR) 

PSNR reflects the differences of the information contained between an original and 

recovered image. The PSNR numbers are reported in Decibels (dB) as a measure of the 

relative weight between two images. A higher number in dB indicates a higher 

correlation. The PSNR is directly proportional to the image quality. When PSNR is 

higher this indicates that the reconstruction is of higher quality. PSNR calculated as 

follows: 

 

                                     �@�� = 20 log�� �255 �� @�⁄   dB                                       (4.8) 



 

4.5 Applying Parallel Computing to the Doppler Signal

Parallel computing is an effective method proposed for process time reduction or 

analysis large set of data. During reconstruction the Doppler spectrogram it’s very 

important to keep the time of reconstruction very low so as to display the image in real

time. The use of parallel computing techniques can enable us to utilize the number of 

processors to run comprehensive analysis in a reasonable amount of time. 

The Matlab program for the reconstruction was run on serial implantation first, and 

then we run the same file in parallel implementation using Matlab parallel computing 

toolbox package in duo-core CPU. Parallelization techniques applied to the Doppler data 

after prepare the data for compressed sensing, before solving the CS algorithm the 

parallel algorithm was started as shown in figure 4

 

  

Figure 4-2 Serial and parallel methods for CS reconstruction 

 

The parallel initialized using the Matlab command as stated in [1

multiple Matlab processes run on parallel computer clusters or m
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Parallel Computing to the Doppler Signal

Parallel computing is an effective method proposed for process time reduction or 

analysis large set of data. During reconstruction the Doppler spectrogram it’s very 

important to keep the time of reconstruction very low so as to display the image in real

me. The use of parallel computing techniques can enable us to utilize the number of 

processors to run comprehensive analysis in a reasonable amount of time. 

The Matlab program for the reconstruction was run on serial implantation first, and 

e same file in parallel implementation using Matlab parallel computing 

core CPU. Parallelization techniques applied to the Doppler data 

after prepare the data for compressed sensing, before solving the CS algorithm the 

ithm was started as shown in figure 4-2. 

2 Serial and parallel methods for CS reconstruction  

The parallel initialized using the Matlab command as stated in [121], which allows 

multiple Matlab processes run on parallel computer clusters or multicores. In our case 

Parallel Computing to the Doppler Signal  

Parallel computing is an effective method proposed for process time reduction or 

analysis large set of data. During reconstruction the Doppler spectrogram it’s very 

important to keep the time of reconstruction very low so as to display the image in real-

me. The use of parallel computing techniques can enable us to utilize the number of 

processors to run comprehensive analysis in a reasonable amount of time.  

The Matlab program for the reconstruction was run on serial implantation first, and 

e same file in parallel implementation using Matlab parallel computing 

core CPU. Parallelization techniques applied to the Doppler data 

after prepare the data for compressed sensing, before solving the CS algorithm the 

 

 

], which allows 

ulticores. In our case 
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duo-core CPU, two Matlab started at the beginning of the initialization. The data 

separated between the channels, then the data on each channel reconstructed and then 

sum up to get the final recovered Doppler signal. 
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Chapter 5 

Clutter Rejection Filters (Wall Filters) 

 

In this chapter filters applied to Doppler signals to separate the blood flow from 

stationary or slow moving tissue will discussed. Two types of filters will be considered, 

Non adaptive filters and adaptive filters. In Non adaptive filters we will discuss in details 

the three types of filters, finite impulse response, infinite impulse response and 

polynomial regression filters. The frequency response of the filters will be compared. In 

adaptive filters the proposed filters for cluttering will be considered and discussed in 

details. All the clutter rejection filters discussed in this chapter were implemented in 

software, using MATLAB (MathWorks, Inc., Natick, MA) as a part of this thesis.   

  

5.1 Motivation  

Doppler ultrasound is widely used diagnostic tool for measuring and detecting blood 

flow. To get a Doppler ultrasound spectrum image with a good quality, the clutter signals 

generated from stationary and slowly moving tissue must be removed completely. The 

clutter signals originated from moving tissue and vessel walls are much stronger than the 

signal originated from blood cell; the clutter-to-signal ration may in some case exceed 

100 dB [122]. The signal scattered from the moving blood cells has stronger Doppler 

frequency shift than that reflected from slowly moving tissue and surrounding walls. 

Thus, a high pass filter is needed to separate the blood flow signal from the clutter signal. 

Figure 5-1 shows clutter filter, and power spectrum for clutter and blood cell signals. To 

achieve accurate cluttering or Doppler spectrum image with high quality, a clutter filter 

with high quality has to be developed. Thus, selection of a good clutter rejection filter 

method based on clutter characteristics is a challenging problem. 

 



 

Figure 5-1. The clutter filter and spectrum of clutter and flow signals

 

5.2 Clutter Rejection Filters 

Clutter rejection in Doppler ultrasound signals 

problem. The objective is to 

clutter signals (echoes from stationary slowly moving tissue). The clutter strength is 

typically 40 – 60 dB larger than the desired flow signal [123]. The velocities (clutter 

signal) from surrounding tissues and vessels are lower than that from blood flo

wide range of both velocities exists in the body. To acquire data with an ultrasound radio 

frequency lower than 20 MHz a clutter rejection filter must be applied to remove high 

amplitude, low frequency echoes from the Doppler signal, in order to e

flow velocity. The clutter rejection filter is known as stationary echo cancelling in 

literature [1, 2], also known as wall filter in some cases. Several approaches have been 

developed for separating the blood flow signal from the clutter

124, 125]. To select a better clutter rejection filter among different approaches, a list of 

important attribute for a good clutter rejection must be considered.

• Selectable cutoff frequency

filters selected either by user of adapted to the clutter or automatically. Body 

propagates various flow and tissue velocities yielding various Doppler flow and 
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The clutter filter and spectrum of clutter and flow signals

5.2 Clutter Rejection Filters  

Clutter rejection in Doppler ultrasound signals is a challenging signal processing 

is to suppress the signal from blood flow that summed wit

echoes from stationary slowly moving tissue). The clutter strength is 

60 dB larger than the desired flow signal [123]. The velocities (clutter 

signal) from surrounding tissues and vessels are lower than that from blood flo

wide range of both velocities exists in the body. To acquire data with an ultrasound radio 

frequency lower than 20 MHz a clutter rejection filter must be applied to remove high 

amplitude, low frequency echoes from the Doppler signal, in order to estimate the blood 

flow velocity. The clutter rejection filter is known as stationary echo cancelling in 

literature [1, 2], also known as wall filter in some cases. Several approaches have been 

developed for separating the blood flow signal from the clutter signals [7, 11, 14, 15, 49, 

124, 125]. To select a better clutter rejection filter among different approaches, a list of 

important attribute for a good clutter rejection must be considered. 

Selectable cutoff frequency: The Doppler frequency cutoff for clu

filters selected either by user of adapted to the clutter or automatically. Body 

propagates various flow and tissue velocities yielding various Doppler flow and 

 

The clutter filter and spectrum of clutter and flow signals 

is a challenging signal processing 

suppress the signal from blood flow that summed with 

echoes from stationary slowly moving tissue). The clutter strength is 

60 dB larger than the desired flow signal [123]. The velocities (clutter 

signal) from surrounding tissues and vessels are lower than that from blood flow, but a 

wide range of both velocities exists in the body. To acquire data with an ultrasound radio 

frequency lower than 20 MHz a clutter rejection filter must be applied to remove high 

stimate the blood 

flow velocity. The clutter rejection filter is known as stationary echo cancelling in 

literature [1, 2], also known as wall filter in some cases. Several approaches have been 

signals [7, 11, 14, 15, 49, 

124, 125]. To select a better clutter rejection filter among different approaches, a list of 

: The Doppler frequency cutoff for clutter rejection 

filters selected either by user of adapted to the clutter or automatically. Body 

propagates various flow and tissue velocities yielding various Doppler flow and 
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clutter frequency spectra. Therefore, it’s necessary to provide user interaction in 

designing systems. 

• High pass-band to stop-band attenuation ratio: The clutter signals need to be 

removed down the noise level, to ensure accurate blood flow estimation. 

• Narrow transition band: To suppress the clutter signal to the noise level, the low 

flow weakness should be maximized, thus narrow transition band is essential. 

Various types of clutter filters have been proposed to suppress the clutter from the 

backscattered signals, each with unique advantages and disadvantages. General clutter 

rejections filter design illustrated in figure 5-2. In this work we proposed new clutter 

rejection filter for Doppler ultrasound signals and compared the performance of the 

present clutter rejection filters with the proposed methods. The present (non adaptive) 

clutter rejection filters are:   

• Finite Impulse Response (FIR) 

• Infinite Impulse Response (IIR) 

• Polynomial Regression (PR) 

The proposed (adaptive) clutter rejections filters are: 

• Principal Component Analysis (PCA) 

• Independent Component Analysis (ICA) 

 

 

Figure 5-2. General clutter rejection filter 
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5.2.1 Finite Impulse Response (FIR) Filter 

One of the challenges in filter design problem is to find a filter meet the design 

specification. Finite impulse response (FIR) filters are usually implemented in a non-

recursive way which guarantees a stable filter, and are mainly useful for applications 

where exact linear phase response is required [126]. The designed filers should have 

minimum stop band attenuation or a maximum pass band ripple. One of the challenges in 

an FIR filters design, it is necessary to use a large order to meet the design specifications. 

The FIR has a difference equation of  

 

                                      G�!� = 	∑ �_��! − T�M0�_��                                                      (5.1)         

    

If the package size is N, and filter order of k, the number of valid output is N – k. The z-

transform of an M-point FIR filter (the frequency response of the system) is given by 

 

                              ¡�-� = 	�� + ��-0� +⋯+ �M0�-�0M = ∑ �_-0_M0�_��                  (5.2)   

                  

The parameters used for designing different types of filters are shown in table 5.1.  

 

 

 

 

 

 

 

 

 

 

 



76 

 

                                    Table 5.1. FIR and IIR Filters design parameters 

Filters Parameters  Values 

Finite Impulse Response Filter 

Stop-band frequency (Fstop, wstop) 0.02 Hz 

Pass-band frequency (Fpass, wpass)    0.5 Hz 

Stop-band weight (Wstop)    -80dB 

Pass-band weight (Wpass)    -0.5 dB 

Infinite Impulse Response  Filter 

Pass-band frequency (Fpass) 0.2 Hz 

Transition width (Fstop) 0.02 Hz 

Pass-band ripple (Apass) -3 dB 

Stop-band attenuation (Astop) -80 dB 

 

All types of FIR filters were tested and compared between them using the parameters in 

table 5.1 and different orders. The FIR filters with a transition width and maximum pass-

band / stop-band ripple that do not exceed the allowable value will compare with other 

types of filters. The results illustrated in figure 5-3, we show in the figure only six types 

of filters for simplicity.  
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         (a) Constrained Equirippl                                      (b) Least-Square FIR  

 

          (c)  Window (Kaiser)                                           (d) Window (hanning) 

 

           (e) Linear-phase                                                  (f) Minimum-phase 

Figure 5-3. The frequency response of FIR filters designed with using same parameters and three 

different orders (a) Constrained Equirippl (b) Least-Square FIR (c) Window (Kaiser) (d) 

Window (Hanning) (e) Linear-phase (f) Minimum-phase  
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The result shows that most FIR filters types designed using the same parameters gives 

very low minimum stop band (higher than – 30 dB), only three types give lower 

minimum stop band reach up to – 60 dB. Those are linear phase FIR, minimum phase 

FIR and equiripple FIR filters.     

 

5.2.1.1 Linear Phase FIR Filter  

The most suitable FIR filters to be compared with each others are linear phase, 

minimum phase and equiripple filters. The filter with narrower bandwidth, narrower stop-

band and narrower transition band [7, 9, 126], will be used to be compared with IIR, PR 

and our adaptive filters for clutter rejection.  

The linear phase response filter is attractive in many applications, especially in image 

processing and data transmission [126]. The filters were designed by using fixed stop 

band cut off frequency, pass band ripple (the same parameters used for FIR filter design) 

and four different orders 4, 6, 8 and 10. Linear-phase FIR filters have impulse response 

that is either symmetric or asymmetric. The frequency response of the linear-phase FIR 

filters illustrated in figure 5-4. At each time the minimum cut off frequency (ωpas) was 

estimated.    

The result shows that the transition width of the linear phase filter decreased with 

increasing the filter order. The pass band cut off frequency of 0.44π was obtained when 

order 4 filters used, when order 10 used the pass band cut off frequency decreased to 

0.37π. The minimum dS decreased from -57 dB to -83 dB when filter of order 4 and 10 

were used respectively. Table 5.2 shows pass-band cutoff frequency and minimum ds for 

different orders.   

 

 

 

 

 



79 

 

 

          (a) Linear phase FIR filter using order 4            (b) Linear phase FIR filter using order 6 

 

 

         (c) Linear phase FIR filter using order 8               (d) Linear phase FIR filter using order 10 

 

Figure 5-4. The frequency response of the linear-phase FIR filters using different orders (a) 

Linear phase FIR filter using order 4 (b) Linear phase FIR filter using order 6 (c) Linear phase 

FIR filter using order 8 (d) Linear phase FIR filter using order 10    

 

To suppress the clutter from Doppler signal it’s necessary to design a high pass filter 

with a suitable cutoff frequency, which is given high stop-band attenuation, short 

transition region and flat pass-band so as to avoid any loss of blood flow information. 
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Thus, from the compression we found that for cluttering the unwanted signal originated 

from surrounding and slowly moving tissue, the clutter filters with order 6 is the best for 

clutter suppression. The frequency response of linear-phase FIR filters using different 

orders shown in figure 5-5. 

 

 

Figure 5-5. Linear phase FIR filter designed using different orders 

 

5.2.1.2 Minimum Phase FIR filter 

Same procedures used for designing the linear phase FIR filters were used to design the 

minimum phase FIR filters. The frequency response illustrated in figures 5-6. Different 

orders were used, at each the minimum cut off frequency (ωpas) and minimum ds were 

estimated. 
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        (a) Min. phase FIR filter using order 4                  (b) Min. phase FIR filter using order 6 

 

 

          (c) Min. phase FIR filter using order 8               (d) Min. phase FIR filter using order 10 

 

Figure 5-6.  The frequency response of the minimum-phase FIR filters using different orders (a) 

Min. phase FIR filter using order 4 (b) Min. phase FIR filter using order 6 (c) Min. phase FIR 

filter using order 8 (d) Min. phase FIR filter using order 10   

 

Different order has been used for designing the minimum phase FIR filters; the result 

shows that lower orders have higher pass band cutoff frequency. When the filter with 
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orders 4 design the minimum pass band cut off frequency was 0.36π, but when orders 10 

used the minimum pass band cutoff frequency decreased to 0.30π. Moreover the result 

shows that Minimum ds improved when higher order filter used. The pass-band cutoff 

frequency and minimum ds for different orders of the minimum phase FIR filters 

illustrated in table 5.2. 

The minimum phase filter by order 6 will be used for designing the clutter rejection 

filter to avoid loss of Doppler signals and be sure to reject all the clutter level of the 

Doppler signal. Minimum phase FIR filter by order 6 will be used for comparison with 

other types of FIR filters. The comparison of the frequency response for minimum phase 

FIR filters using different orders was shown in figure 5-7.  

 

 

Figure 5-7.Min. phase FIR filter designed using different orders 

 

5.2.1.3 Equiripple FIR Filter 
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with parameters in table 5.1 and the result illustrated in figure 5-8. 
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          (a) Equiripple filter using order 4                           (b) Equiripple filter using order 6 

 

  

          (c) Equiripple filter using order 8                          (d) Equiripple filter using order 10 

 

Figure 5-8. The frequency response of the equiripple FIR filters using different orders (a) 

Equiripple filter using order 4 (b) Equiripple filter using order 6 (c) Equiripple filter using order 

8  (d) Equiripple filter using order 10  

 

The equiripple FIR filters with order 4 gives pass-band cut off frequency of 0.44 π and 

order 10 gives 0.36 π. The pass-band cutoff frequency and minimum ds for equiripple 
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FIR filters using different orders shown in table 5.2. The comparison of the frequency 

response for equiripple FIR filters using different orders shown in figure 5-9. 

 

    Table 5.2. Pass-band cut off frequency and Minimum ds for the filters using different order        

Filter type Orders  4 6 8 10 

Linear phase 

FIR filter  

Passband cut off frequency ωpas 0.44 π 0.43 π 0.40 π 0.37 π 

Minimum ds (dB) -57.0 -62.0 -70.5 -82.9 

Minimum 

phase filter 

Passband cut off frequency ωpas 0.36 π 0.35 π 0.314 π 0.30 π 

Minimum ds (dB) -56.0 -61.2 -69 -78.5 

Equiripple 

FIR filter  

Passband cut off frequency ωpas 0.44 π 0.43 π 0.40 π 0.364 π 

Minimum ds (dB) -59.4 -62.9 -71 -83 

 

 

Figure 5-9. Frequency response of different orders equiripple filters  
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Three types of FIR filter considered in the comparison, equiripple, linear phase and 
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response (measure the pass-band cut off frequency Wpass and minimum ds). The results 

of the frequency response illustrated in figure 5-10. The result shows that the minimum 

phase filter has a much smaller transition region compared to the others FIR filters types 

moreover; the minimum phase filter has flatter pass-band and higher stop-band 

attenuation. Equiripple and linear phase filters gives an equal frequency response. The 

minimum phase filter gives pass-band cutoff frequency of about 0.35π when designed 

using order 6, but equiripple and linear phase filters with same order give the pass band 

cutoff frequency of 0.43π. To get equiripple or linear phase filter with same minimum 

phase filter transient, we need to increase the order. Thus, the two filters are not 

comparable with minimum phase filter. In order to compare them we need to increase the 

order in equiripple or linear phase filter until we get the same frequency response that the 

minimum phase filter gives. We have got the same pass band cut off frequency that gene 

from minimum phase by using equiripple and linear phase filters when the filters 

designed using order 10.  Increasing in filter order increased the delay of the filter. Thus 

when comparing the FIR filter with others classes of filters, the minimum phase FIR filter 

will be used.   

 

 

Figure 5-10. Frequency response of minimum phase, linear phase and equiripple FIR filters 
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5.2.2 Infinite Impulse Response (IIR) Filter 

An infinite impulse response (IIR) filter designed by using the bilinear transformation 

approach. The IIR filter computed by using the basic formula that combines the input and 

output as following 

 

                               G[!] = 	∑ �_�[! − T]M_�� − ∑ �_G[! − T]V_��                                (5.3) 

 

The coefficient �_ act only with the input signal x[n], thus it is known as “feedforward” 

coefficient, and the coefficient �_ act with output y[n], is known as feedback coefficient. 

The transfer function of IIR filter is  

 

                                ¡�-� = £�.���.� = ∑ ¤x.|x¥x¦C∑ ¤x.|x§x¦C =	 ¤C2¤1.|12⋯2¤¥.|¥�2	1.|12⋯2	§.|§                             (5.4) 

 

There are different types of IIR filters, all types of IIR filters were compared with each 

other’s. The filter with best and suitable frequency response will be used for comparison 

with the other types of filters. The IIR filters were designed using the parameters in table 

5.1 and different orders.  

There are about seven different types of IIR filters, their design based on steady-state 

magnitude response. The most common types filter used are Butterworth, Elliptic and 

Chebyshev type I and II filters, more detail about IIR filter design can be found in [126, 

127]. The filters were designed using the parameters in table 5.1 and different orders, all 

types of IIR filter were compared, the filter with the best transition region will be 

compared with FIR and PR filters. Figure 5-11 shows the effect of a different order in the 

frequency response for different types of IIR filters, only four types (Elliptic, Butterworth 

and Chebyshev type I, and II filters) ware shown.   
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           (a) Butterworth                                                       (b) Chebyshev type I 

 

  

           (c) Chebyshev type II                                          (d) Elliptic   

Figure 5-11. The frequency response of different IIR filters using four different orders 

 

The result shows that the frequency response of the filters improved by increasing the 

filter orders. To compare different types of IIR filters, order 3 was used. The filter with 

better transient response will be used for clutter rejection, and compared with other types 

of filters. However, several studies showed that IIR filters can be used for separating the 

blood flow signal from clutter signal [7, 11, 14].  
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5.2.2.1 IIR Filters Comparison  

All types of IIR filters designed using order 3 and the parameters in table 5.1, so as to 

select a filter with better performance for clutter rejection and compared with other 

classes of filters. The frequency response of different types of IIR filters was illustrated in 

figure 5-12. The result shows that the Butterworth and chebyshev type I filters gives the 

smaller transient region, but Butterworth filter gives better stop-band.  

 

 

Figure 5-12. IIR filter comparison designed with order 3 

 

For IIR filter transient response improvement [15, 128] initialization of the inner states 

of the filters suggested. Initialization of IIR filter reduces the time the transient responses 

dominates the output of the IIR filter and yield a suppression of the transient response.   

The most widely used techniques for reducing the IIR filter’s frequency response is a 

state space formulation [15]. The state space formulation used to investigates different 

ways of minimizing the transient response. The three different initialization techniques 

used to minimize the transient are examined in [7]. 

• Zero initialization: The state vector of the filter set to zero. Zero initialization gives 

insufficient stop-band rejection.    
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• Step initialization: The state vector of the filter is set to constant determined by filter 

coefficients and data values. Step initialization gives zero at zero frequency and very 

narrow stop-band.  

• Projection initialization: The filtered signal is decomposed into steady-state and 

transient components. Projection initialization gives stop-band equal to steady state 

and wider transient rejoin.    

 The projection initialization gives response equal to the steady-state and wider 

transition region [7]. Among all different types of IIR filters, projection initialization 

Chebyshev type I IIR filters is the best, because of his a steep transition. Therefore, 

Chebyshev type I filter with projection initialization will be used when comparing IIR 

filters with other filter classes. The stop-bandwidth of the projection initialization 

Chebyshev IIR filters can be increased with either increasing order or the cutoff 

frequency of the steady-state response. The frequency response for Chebyshev IIR filters 

with different initialization illustrated in figure 5-13. 

 

 

Figure 5-13. The frequency response for Chebyshev IIR with different initialization [7] 

 

5.2.3 Polynomial Regression (PR) Filter 

Regression filter works on different concept to FIR and IIR, which are based on 

theories that signals are superposition of sinusoids. It operates on the assumption that the 
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slowly varying component can be approximated by polynomial [11, 122]. Regression 

filter approximates the input signal with polynomial function in the time domain, and the 

filter design is not based on impulse of frequency response [129, 130]. Regression filter 

calculates the beast least square fit of the input signal to set of curves from modeling the 

clutter signal and then subtracts this clutter estimate of the original signal. The linear 

filtering can be expressed as: 

 

                                          G = q�                                                                                 (5.5) 

 

Where x is complex input signal, y is complex output signal and A is an N x N matrix 

given by: 

 

                                      q = � −	∑ �_�_∗¨0�_��	                                                                 (5.6)            

 

The frequency response of this relation given by 

 

                                    ¡��©� = � −	 �V∑ |ª_�©�|�¨0�_��                                                 (5.7)    

 

Where bk is a set of orthogonal basis in k-dimensional clutter space, I is the identity 

matrix and Bk(ω) is the Fourier transform of orthonormal basis vector k. In order to 

design high pass filters, k must be small compare to the length of signal N.   

The filter matrix in relation (5.6) depends only on P and k-dimensional clutter so it can 

be recomputed for real-time application and the recompilation is not required if the 

sampling does not change. Figure 5-14 illustrated the block diagram of polynomial 

regression filters. 
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Figure 5-14 Polynomial regression filter block diagram 

 

The frequency response for polynomial regression filters with different dimensions of 

the clutter space shown in figure 5-15. The figure shows that the polynomial regression 

filters have a smooth frequency response, which will be used to when regression filter 

compared with other filter classes. The frequency response of polynomial regression 

filters changes in discrete steps with space dimension (clutter order) as shown in the 

figure. A better frequency response obtains with low clutter order. Also the frequency 

response varies with the package size, as shown in figure 5-16. To obtain the same stop 

bandwidth with the large package size, the clutter order has to be increased. 

 

 

Figure 5-15. Frequency response of PR filters using different clutter space dimension. 
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 Figure 5-16. Frequency response for PR filters with different package size and order P = 1. (a) 

With package size 8. (b) With package size 16.  

 

The polynomial regression filter matrix in relation (5.6), multiplied by a constant factor 

to test the behaviors of the filter.  The result matrix given by: 

 

                                       q = � −	∑ b_ . �_�_∗¨0�_��                                                          (5.8)        

 

Where Ck is the real constant  

The filter was tested by multiplying the function with constant factors Ck, for clutter 

order equal to three and package size 8, the factor used are as follows: C0 = C1 = 1 and C2 

= 0.25, 0.5 and 0.75 [7]. Figure 5-17 shows the frequency response of polynomial 

regression filters from relation (5.6) (conventional polynomial regression filters) with 

clutter dimension one and the frequency response from the relation (5.8) with clutter 

dimension equal to three. The conventional polynomial regression filters give wider 

transition rejoins and best performance. There is no significant difference for both at – 80 

dB stop-bandwidth. Thus for comparison with other clutter rejection filters (FIR, IIR) the 

conventional polynomial regression filters will be considered.    
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Figure 5-17. Frequency responses of conventional PR filters and filter from relation 5.6 using 

package size 8 

 

5.2.4 Filters Comparison 

The filter with the best frequency response within the three types of filters FIR, IIR and 

PR filters were found in the previous subsections.  The frequency response of projection 

initialization Chebyshev IIR filters, Minimum phase FIR filter and polynomial regression 

filters were compared. The filters were designed with parameters given in table 5.3 

proposed in [7], to achieve filters with equal frequency responses. These parameters were 

chosen to achieve filters with a comparable frequency response. 

The projection initialization Chebyshev IIR filters has frequency responses almost 

identical to that in the polynomial regression filters. Minimum phase FIR filters have 

largest transition region, which is not preferable in Doppler clutter rejection. The FIR 

filter requires a higher order in order to have a same narrow transition band given when 

IIR filter used, which is one of the requirements of a good wall filter. The comparison of 

the frequency response of projection initialization Chebyshev IIR filters, minimum phase 

FIR filters and polynomial regression filters illustrated in figure 5-18.  
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                                                 Table 5.3.Filter design parameters  

Parameters values 

Projection initialization IIR Chebyshev 

order 4 

ωp  0.2 π 

dp  0.5 dB 

Minimum phase FIR  

Order  6 

Minimum ωs 0.02 π 

Maximum dp 0.5 dB 

Minmum ds - 80 dB 

Polynomial regression  

Clutter space dimension  2 

 

  

 

Figure 5-18. The frequency response of IIR and FIR (left), and PR (right) 
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5.2.5 Principal Component Analysis  

Principal component analysis (PCA) is a tool used to analyze the data because it is 

simple, non-parametric methods for extracting relative information from confusing data 

set. The idea behind PCA is the dimensionality reduction of a data set which has a large 

number of uncorrelated variables, in the other words identifies most meaningful basis to 

re-express the data set. For reducing the dimensionality of large data set, PCA uses a 

vector to transforms [131]. The hope is that this new basis filters out the noise and reveals 

hidden structure. This achieved by transforming the data set to a new data set of the 

principal components (PCs), which are uncorrelated. The PCs are calculated as the 

eigenvectors of the matrix covariance of the data [19, 132, 133]. It is easier to handle a 

small set of uncorrelated variables and use for further analysis than a large set of 

correlated variables.   

PCA tools are very important tools for data analysis this importance comes from, it’s 

optimal linear scheme for data reduction from high dimensional vector to a low 

dimensional vectors and then reconstruct the original set, the model parameters can be 

computed from the data directly and it is need only matrix multiplication for compression 

and decompression.  

A multi dimensional data are often difficult to visualize. Thus, data reduction is 

essential. PCA has been applied in different field, because it reveals simples underlying 

structures in complex data sets using analytical solutions from linear algebra.   

Extracting the PCs in PCA can be made using either original data set or using 

covariance matrix. In some cases for deriving PCs, the correlation matrix is used instead 

of the covariance matrix.  

Assuming that the data set represented as a matrix, X in terms of an m x n, where the n 

columns represent the samples (observations) and m are the variables. If the new 

representation of the data set represented as a matrix, Y in terms of a m x n matrix and a 

linear transformation is P, then the PCA model can be represented by 
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                                           « = ��                                                                              (5.9) 

 

This relation represents changes in basis. Considering the row of P to be a row vector *�, *�, … , *¬, and the columns of X to be column vectors ��, ��, … , �h then the relation 

(5.9) can be written as follows: 

 

                                   �� =  *�. �� *�. ��*�. �� *�. �� ⋯ *�. �h*�. �h⋮							⋮ ⋱ ⋮*¬. �� *¬. �� ⋯ *¬ . �h° 	= «                            (5.10) 

 

The common approach in analysis of noisy data is to use data averaging strategies. 

Hoping that errors due to noise canceled out when a data mean is calculated. Thus, the 

first step of the analysis is to express each attribute as a difference between an original 

data set and the mean of all such values. The mean of the original data computed as 

follows 

 

                                   �̅4 =	 �h∑ �4�_�h_��       i = 1, 2, …, m                                          (5.11) 

 

Then the data matrix entries replaced by its difference with mean, this generate a data 

set whose mean is zero. 

Then the covariance of the matrix calculated. A large positive value indicates positive 

correlation and large negative value indicate negative correlations. Since the resulting 

matrix from subtracting the mean of the data consist of a row vector for each variable, 

each vector contains all samples for one particular variable. The data set covariance 

matrix can be calculated using the following relation 

 

                                    @ = 	 �h0�∑ �� − �̅��� −	 �̅�Nh4��                                               (5.12) 
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The result S is a square symmetric matrix in term of the M x M. The diagonal terms of 

the resulting matrix are the variance of exacting measurement. The off diagonal terms of 

the matrix are the covariance between the measurements.  

Since the covariance matrix is a square in term of the M x M, this matrix can be used to 

calculate the eigenvector and eigenvalue. The eigenvector and eigenvalue give quite 

different values for eigenvalues. So the eigenvector #�, #�, … , #¬ of the data sets with 

highest eigenvalue u�, u�, … , u¬ represent the principal components of the data set. 

The eigenvectors #4 calculated by solving the set of the following relations  

 

                                   �@ −	u4��#4 = 0     i = 1, 2, …, d                                            (5.13)     

       

After the calculation, the eigenvectors are sorted by magnitude of corresponding 

eigenvalues. Then the largest values of the eigenvalues are chosen. The projection matrix 

of the PCA then calculated as: 

 

                                   $ =	 N                                                                                  (5.14)   

 

Where W is a matrix in term of m x d and column of E has the m eigenvectors.  

One of the most important advantages for selecting the PCA for clutter rejection does 

not need to transform the data into another space (e.g. self-learning techniques [134]), it 

is working on the input data vector space directly. The dimensional reduction in PCA 

achieved by calculating first PCs of the input data vectors that have a higher variance, 

without the need to perform any transformations in the input space.  

 

5.2.6 Independent component analysis 

Independent component analysis (ICA) is a technique for instructive hidden factors that 

underlies set of measurements or signals. There are several transformation methods 

proposed for data analysis and finding a suitable representation of the multivariable data 



 

such as PCA. A recent developed transform method is independent component analysis 

(ICA), which is used to minimize the statistical dependent of the component of the 

representation. The used ICA to estimate the original data set of mixed data. In oth

words separate the noise from original signals. This is referred to as the blind source 
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Let X represents the observed data vector, which is modeled by 

 

                                  � = q@ = 	∑ �K?KhK��                j = 1, …, n                                 (5.15) 

 

Where A is a matrix with column vector �K and S is n-dimensional vector consist of 

source signals ?�, ?�, … , ?h. The signals are assumed statistically independents. The ICA 

approach used to estimate a matrix P such that  

 

                                   « = 	��                                                                                    (5.16) 

 

are statistically independent using the observed data.  

There are five assumptions must be meet, in the ICA process. 

• The source vector S assumed to be statistically independent. 

• The matrix A (mixing matrix) must be square. 

• The source matrix S is the only source of stochasticity in the model 

• The data centered (zero mean) and the vectors must be whitened  

• The source signal must not have a Gaussian probability density function (pdf)  

The first step in ICA after removing the means of the row vectors of the data, is the 

whitening (sphere) of the data set. Whiten is a process used to remove any correlation in 

the data and mathematically similar to PCA. The new data set is whitened via a linear 

transformation. Whitening is very important that make the subsequent separation task 

easier. Also whitening help in estimating the independent component from the first larges 

PCs. After whitening, only the first most significant terms are preserved in a fast fixed-

point algorithm (FastICA) calculation. FastICA process used to implement ICA, FastICA 

process proposed by Hyvarinen and Oja in [141]. The next step is to search for non-

mixing matrix mutually independent. Mutual information or kurtosis (forth order 

moment) measure the non-Gaussianity, can be used to find the ICA information.  
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If the random variables are ��, ��, … , �¬ with pdf ����, ��, … , �¬�, the variables �4 is 

mutually independent if  

 

                                   ����, ��, … , �¬� = 	������������, … , �¬��¬�                         (5.17) 

 

Considering the random centered variables, uncorrelatedness is represented by the 

following equation 

 

                                    ±�4�K² − 	 [�4] ±�K² 	= 0     for i ≠ j                                     (5.18) 

 

Where E[.] is the expectation 

Then the Kurtosis principle is maximized by applying the FastICA algorithm, to 

estimate the independent component. 
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Chapter 6 

Cluttering Doppler Data 

 

In this chapter we will discuss the types of the data used in this work, to validate and 

compare different types of clutter rejection filters discussed in chapter 5, two types of 

data were used, the real Doppler data and simulated data. The simulated data generation 

and signal models were also discussed.  

 

 6.1 The Data 

Two types of data were used, real Doppler data and simulated data to validate and 

compare different types of clutter rejection filters.   

 

6.1.1 Real Data 

The real data used to validate the clutter rejection filters are the same data used for 

Doppler ultrasound signal reconstruction, discussed in chapter 4.   

 

6.1.2 Simulated Data 

    To quantify the performance of a new clutter for rejecting the clutter, the Doppler data 

from URI downloaded and generate Doppler IQ using MATLAB (MathWorks, Inc., 

Natick, MA). Ultrasound research interface (URI) and Ultrasound research interface 

offline processing tools (URI-OPT) are software and sample data. In this work we will 

concentrate on URI-OPT.  URI-OPT are a Matlab based program for reading and 

processing the RF data acquired from a URI-equipped Antares system. URI-OPT can be 

used to display different Doppler imaging mode. One of the most important modes that 

we are interested in is spectral Doppler mode, which is used to display the Doppler 
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spectrum of RF data. The speed of flow information within the Doppler range gate is 

displayed as gray scale intensities at a time versus velocity plot.  

    The data used are data of Doppler spectrum collected from URIDmode. The data tested 

first on the program to display the spectrum, and then the data extracted and stored in 

Matlab. Matlab program was developed to read the saved data and then generate Doppler 

In-phase/Quadrature (IQ) data, which is used to test our proposed clutter rejection filters 

and comparisons between different types of clutter filters. The parameters used to 

generate the Doppler IQ data illustrated in table 6.1. The generated Doppler IQ data is a 

complex matrix X in 100 x 7923. 

 

                                 Table 6.1. Parameters used to generate Doppler IQ 

Data Parameters Values 

First value 1 

Last value 7923 

Range gate start 1100 

Range gate size 100 

Vector group 0 

Real group 1000 

Frequency 7.2727 

PRF 2441 

 

The complex data matrix X obtained can be expressed as: 

 

                                             � = 	  ��� ������ ��� ⋯ ��V��V⋮										⋮ ⋱ ⋮�M� �M� ⋯ �MV
°                                          (6.1) 

 

Where M is the number of pulses and N is the axial sample volume. Each column in the 

matrix X represents a vector with length M. 
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The input sample vector to clutter rejection filter with index depth equal to n, can be 

represented by the following expression: 

 

                                �h = ±��,h, ��,h, … , �M,h²N  , n = 1, …, N                                      (6.2) 

 

6.2 Signal Model  

    The generated Doppler signal data originated not only from blood flow, but also it 

originated from different tissue regions with different motion patterns, the clutter Doppler 

signal is a sum of contributions from different regions, and figure 6-1 shows the Doppler 

signal from blood. We assume that the resulting signal consists of a blood signal 

component b originated from the reflected echo from the moving red blood cells, a clutter 

component c originated from surrounding and moving tissue and white noise n originated 

from electronics or any other component. The signal can be modeled as: 

 

                                                 � = � + � + !                                                             (6.3) 

 

The signal characterized by the correlation matrix [3]. The correlation matrix Rx given 

by: 

 

                                                 �p =  O��∗NR                                                               (6.4) 

 

In our case the correlation matrix expressed as 

 

                                              �p = �5 + 'h� + �¤                                                        (6.5) 

 

Where, Rc is the clutter correlation matrix, σn is the noise variance, Rb is the blood 

correlation matrix and I is the identity matrix.  



 

    The three components originated from different source and are statistically 

independent. Thus with the proposed methods we can easily determine the basis vectors 

that are statistically independent [142].

 

Figure 6

 

    The Doppler IQ data prepared to satisfy our proposed clutter rejection method based 

on ICA and PCA by doing some preprocess steps, such as applying discrete Fourier 

transform (FFT) and the absolute value to the data so as to remove the imaginary values

Assume that our input signal f(x,y)

The two-dimensional FFT takes a complex array and expressed by using the following 

form: 

 

                            ���, ,� = 	 �MV
 

A small window has taken for testing our clutter rejection filters. The result Doppler IQ 

signal illustrated in figure 6-2, only 8 signals were shown for simplicity.
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The three components originated from different source and are statistically 

independent. Thus with the proposed methods we can easily determine the basis vectors 

independent [142].    

Figure 6-1 Doppler signal spectrums 

The Doppler IQ data prepared to satisfy our proposed clutter rejection method based 

on ICA and PCA by doing some preprocess steps, such as applying discrete Fourier 

transform (FFT) and the absolute value to the data so as to remove the imaginary values

Assume that our input signal f(x,y) is a function of 2-D space define over an x

takes a complex array and expressed by using the following 

�MV∑ ∑ ���, G�#0�KB�³p M⁄ 2;´ V⁄ �VK��M4��                            

A small window has taken for testing our clutter rejection filters. The result Doppler IQ 

2, only 8 signals were shown for simplicity. 

 

The three components originated from different source and are statistically 

independent. Thus with the proposed methods we can easily determine the basis vectors 

 

The Doppler IQ data prepared to satisfy our proposed clutter rejection method based 

on ICA and PCA by doing some preprocess steps, such as applying discrete Fourier 

transform (FFT) and the absolute value to the data so as to remove the imaginary values. 

D space define over an x-y plane. 

takes a complex array and expressed by using the following 

                           (6.6) 

A small window has taken for testing our clutter rejection filters. The result Doppler IQ 
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Figure 6-2. The generated Doppler IQ signal for simulation 

 

The Doppler data preparation and cluttering process illustrated in figure 6-3, in data 

preparation the Doppler data generated and prepared for cluttering, in cluttering steps the 

Doppler signal with two peaks (clutter and flow peak) applied to the filter, and then the 

spectrum of the filtered signal calculated to give the blood flow signal spectrum only. 

   

 

Figure 6-3 Pre-preparation and cluttering process with different filters 
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6.3 Cluttering with PCA  

    Principal component analysis (PCA) is the techniques that based on sophisticated 

mathematical principle to transform correlated variables into smaller numbers of 

variables known as principle components (PCs). The PCs are calculated as the 

eigenvectors of the covariance matrix of the data [26]. The variance corresponding to 

these eigenvectors are denoted as the eigenvalues. PCA is one of the most useful tools in 

modern data analysis, because it is simple and non-parametric methods for extracting 

useful information from perplexing data set. PCA uses a vector space transform to 

achieve the reduction and de-noising of the large number of data set. This is particularly 

useful in application of PCA if a set of data used has many variables lies in actuality, 

close to two-dimensional plane [19, 131]. Using PCA will help to identify the most 

meaning full basis to re-represent the desired data set. This new basis filters out the noise 

and reveals hidden structure.   

The input data X is a matrix represented in term of the M-by-N with observation 

(samples) in columns and variables in its rows. The main approach to analysis the data is 

to use the data averaging strategies to expose the hidden input intrinsic nature of the data. 

The error due to noise will be canceled out when a mean of data is calculated. The mean 

of the data matrix calculated by: 

 

                                             �µ = �h0�∑ �4¬h¬��                                                            (6.7) 

 

The mean of each of the measurements, subtracted from original input data matrix X, 

each entry in the matrix is replaced by its difference with mean. This produces a data 

with zero mean. Then the covariance was calculated from the resulting matrix, so as to 

measure the degree of linear relationship between a pair of variables. A large positive 

value indicates positive correlation and large negative value indicate negative 

correlations. Since the resulting matrix from subtracting the mean of the data consist of a 
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row vector for each variable, each vector contains all samples for one particular variable. 

The covariance expressed as a dot product matrix [50], and given by:   

 

                                          b� = �h0�¶¶N                                                                     (6.8) 

 

Where, D is the matrix resulting from subtracting the mean from the original data and T 

is transposed. 

The result is a square symmetric matrix in term of the M-by-M. The diagonal terms of 

the resulting matrix are the variance of exacting measurement. The off diagonal terms of 

the matrix are the covariance between the measurements.   

Since the covariance matrix is a square in term of the M-by-M, this matrix can be used 

to calculate the eigenvector and eigenvalue. The eigenvector and eigenvalue give quite 

different values for eigenvalues. So the eigenvector with highest eigenvalue represent the 

principal components of the data set.  

After getting the eigenvectors of the covariance matrix, they ordered by eigenvalues, 

highest to lowest. If the lesser significant component ignored this lead to losing some 

information, but if the eigenvalues are small, there have not much lost in information. 

Leave out some information lead to reduction in data set dimension.  

Considering some of eigenvectors from the list of eigenvectors, and forming a matrix 

with these eigenvectors in term of columns, gives a matrix of vector (feature vector). 

Finally to get the PCA filtered of the data set X, the data mean-adjusted matrix of each 

axial line was projected onto the selected basis function, as described by  

 

                                                    « = � ∗ �                                                                  (6.9) 

 

Where, Y represent the final filtered data set, P is the matrix with eigenvectors in 

columns transposed so that the eigenvectors are now in the rows, with the most 

significant eigenvector at the top and X is the mean-adjusted data transposed.   
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6.4 Cluttering with ICA 

There are several transformation methods proposed for data analysis and finding a 

suitable representation of the multivariable data such as PCA. A recent developed 

transform method is independent component analysis (ICA), which is used to minimize 

the statistical dependent of the component of the representation. Our goal is to use ICA to 

estimate the original data set of mixed data with clutter noise. In other words separate the 

clutter from the blood flow data. This is referred to as the blind source separation (BSS) 

problem [20, 136, 137].  

ICA technique based on non-Gaussinanity and use higher order statistics rather than 

second order to separate the signal from the clutter [20, 138]. Beside the non-Gaussian, 

ICA assumes the components to be independent [139]. This is powerful and attractive set 

of assumption that make ICA very aggressive tasks, however, ICA treat the observed 

signal as a set of random variables without considering the dependency of adjacent time 

point.        

Since ICA uses higher order statistics rather than second order moments to determine 

the basis vectors that are statistically independent as possible, ICA can consider as an 

extension of PCA [138, 140]. This made ICA gives a better separation result in most 

applications. A fast fixed-point algorithm (FastICA) for Matlab is a program package 

used for implementing ICA [20, 140]. The first step in ICA is whitening (sphere) the 

data. Before applying the ICA to the data and after centering, the observed vector 

transformed linearly so as to obtain a new vector that is white, its component un-

correlated and their variance equal to unity (the covariance of a new vector equals the 

identity matrix). The covariance matrix expressed as: 

 

                                             O����NR = �                                                                     (6.10)      

 

Several methods proposed for whitening, the most popular used is eigenvalue 

decomposition (EVD) of the covariance matrix    
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                                        O��NR =  ¶ N                                                                  (6.11)   

  

Where, x is the observed vector, �� is a new vector, E is the orthogonal matrix of 

eigenvectors of  O��NR and D are the diagonal matrix of its eigenvalues. The whitening 

expressed by: 

 

                                      �̅ =  ¶0� �%  N�                                                                    (6.12)    

  

Dimension reduction was performed, besides whitening the data, the reduction done by 

discarding the small eigenvalues, which perform in statistical technique of PCA. Three 

conventional methods can be used for utilizing higher-order information. The projection 

pursuit technique was used to find linear combinations of maximum non-Gaussianity. 

The central limit theory shows that the distribution of a sum of independent random 

variables tends toward a Gaussian distribution. Thus, a sum of two independent random 

variables usually has a distribution that is closer to Gaussian than any of the two original 

random variables. The non-Gaussianity was measured for solving the ICA problem, 

several methods proposed for measuring non-Gaussianity. The classical measure of non-

Gaussianity is kurtosis or fourth-order cumulant. Kurtosis is zero for Gaussian random 

vector and nonzero for non-Gaussian random vector. Kurtosis can be positive or negative. 

The Kurtosis principle is maximized by applying the FastICA algorithm, to estimate the 

independent component.               

 

6.5 Cluttering with Non-adaptive Filters 

The non-adaptive filters FIR, IIR and PR used for cluttering the Doppler signals ware 

designed using the parameters presented in table 6.2. The filter designed to give same 

characteristics.  
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                  Table 6.2. FIR, IIR and PR filters design parameters 

Filter Type Order Cutoff frequency Maximum dp Minimum ds 

FIR 5 0.09 π -0.5 - 80  

IIR 3 0.2 π -0.5 - 

PR 2 - - - 

 

6.6 Clutters Evaluation  

The proposed methods for Doppler signal clutter compared with present clutter 

rejection methods. The present filters designed using the parameters illustrated in table 

6.2 to achieve filters with the same characteristics. Root mean square deviation (RMSD) 

or root mean square error (RMSE) and error are commonly used to measure the 

differences between values predicted by a model or an estimator and the values truly 

observed. RMSE and error are a good measure of accuracy. The accuracy of each method 

was computed, the result from the proposed methods compared with the result from 

present cluttering methods. 

The error was calculated by subtracting the output signal from clutter filter with the 

input signal to the clutter filter. The error calculated using the following expression: 

 

                                               E"" " = ���, \� − A��, \�	                                                      (6.13) 

 

RMSE was computed using the following expression:  

 

                                      �@ ��, A� = �¬h∑ ∑ [���, \�, A��, \�]�h0�K��¬0�4��                       (6.14) 

 

                                      ��@ ��, A� = ��@ ��, A�                                                (6.15) 

 

Where, f is the reference matrix signal, g is the output signal from the clutter filter and 

mean square error (MSE) is the square of the difference. 
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Beside the error also the performance used to evaluate the clutter rejection filters. The 

performance categorized from 1 to 5, the clutter with highest performance gives lower 

error and the clutter with lower performance gives highest error value. 
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Chapter 7 

Experimental Results and Discussions 

 

We will discuss the result of the reconstruction using different CS reconstruction 

algorithms, parallel computing algorithm and the cluttering using different clutters types. 

The performance of each algorithm is analyzed. At the end of section one the result from 

the algorithms used for Doppler signal reconstruction were compared. In section two 

filters are investigated to suppress the clutter from real and simulation Doppler ultrasound 

signal. The performance of each clutter was evaluated. The result of present clutter 

methods was compared with the proposed clutter methods. Parts of the experimental 

results shown in this thesis are already published [117, 118] and others are submitted for 

publication in [143 - 145].  

 

7.1 Reconstructions Results  

The reconstruction performs using four different reconstruction algorithms, ℓ1 

Minimization, OMP, CoSaMP and ROMP, their result is as follows. 

  

7.1.1 ℓ1 Minimization 

Doppler ultrasound signal was nonuniformly sampled in a random and then 

reconstructed using CS via ℓ1 minimization to regenerate the Doppler ultrasound 

spectrogram from much fewer samples. The measurement model is:  f = A x, where f is 

the M x 1 vector containing the compressive measurements, and A is the M x N 

measurement matrix. Using the M measurement in the first basis given the sparsity 

property on the other basis, the original signal was recovered by using convex 

optimization recovery algorithm (ℓ1 minimization) expressed as min‖�‖ℓ� subject to 
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‖q� − 	�‖ℓ� 	≤ 	r. |. The numbers of measurements used for reconstruction are 5%, 20%, 

40%, 60% and 80%.  

Solving the linear system by using ℓ1-norm minimization, gives the reconstructed 

signal ��, which is used to generate the recovered Doppler sonograms. Both reconstruction 

and Doppler spectrogram were performed with software program written in Matlab 

(Mathworks, MA). 

The resulting signal �� used to generate the Doppler ultrasound spectrograms shown is 

figure 7-1. The result shows that the Doppler spectrogram has been reconstructed 

successfully by using a few numbers of measurements with compressed sensing theory 

using convex optimization (ℓ1-norm minimization) algorithm with a good quality. 

 

 

Figure 7-1. Reconstructed Doppler spectrogram via ℓ1-norm using different number of 

measurements (a) using 5% points (b) using 20% points (c) using 40% points (d) using 60% 

points (e) using 80% points 
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The recovered images were evaluated by calculating the error between each 

reconstructed and original image, peak signal-to-noise ratio, root mean square error and 

the reconstruction time.  

The error between the original and the recovered image was calculated, the results 

shown in figure 7-2. The result shows that the error decreased by increasing the numbers 

of measurements, the reconstructed image with 5% of the data gives error higher than 

that given when 80% of the data were used.  

 

 

Figure 7-2. The error of the reconstructed image via ℓ1-norm (a) using 80% (b) using 40% (c) 

using 5% 

 

The reconstruction time calculated by running the program several times, for each 

number of measurements and then the average from each was calculated. The result 

shows that when a few numbers of measurements used the time was low, the 

reconstruction time increased by increasing the number of measurements. The higher 

number of measurements 80% gives higher recovery time about 9.044 second and 5% of 

the data gives 4.855 second. Figure 7-3 illustrated the reconstruction time for different 

numbers of measurements. 
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The number of iterations at each number of measurements used for reconstruction was 

registered. The process was repeated several times and the average was calculated at each 

measurement. The result shows that there is no significant difference in the number of 

iterations by using different numbers of measurements. The difference in the time is 

related to the time between iterations during the process, when we used few numbers of 

measurements the time interval during the process is low, but the large number 

measurements take longer time. The iteration was calculated for reconstruction with ℓ1 

minimization algorithm only. The result of iteration using different number of points 

illustrated in table 7.1.  

 

 

Figure 7-3. Number of measurements vs reconstruction time 

 

The accuracy of the recovered images evaluated by calculating peak signal-to-noise 

ratio for each recovered image, the PSNR result was shown in figure 7-4. The result 

shows that the PSNR increased by increasing the number of measurements, the PSNR 

reaches up to 30 dB when 80% of the data were used. The quality of the reconstructed 

images that gives high PSNR are better than that gives low PSNR.  
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Figure 7-4. Number of measurements versus PSNR 

 

The root mean square error is one of the most important measurements used for 

evaluating the accuracy of the recovered images. The RMSE calculated from the 

reconstructed image using different numbers of measurements sampled randomly, and 

was found that 80% point of the sample gives lower RMSE and for fewer number of 

point values increased and reach up-to 14.7 when 5% points were used. Figure 7-5 shows 

the RMSE using different numbers of measurements, the figure shows that the value 

decreased by increasing the number of points used for reconstructing. Table 7.1 shows 

the relation between the number of measurements versus recovery time, RMSE and 

PSNR.   
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Figure 7-5. Number of measurements versus RMSE 

 

Table 7.1. Number of points, Recovery time, MSE, number of iteration, RMSE and PSNR 

Number of measurements % 5 20 40 60 80 

Elapsed time (s) 4.855 5.619 6.494 7.377 9.044 

MSE  216.09 201.64 136.89 102.01 64 

RMSE 14.7 14.2 11.7 10.1 8 

PSNR 24.78 25.08 27.14 28.04 30.08 

Iteration  16 18 18 16 18 

 

7.1.2 Orthogonal Matching Pursuit  

The experiment conducted using Doppler ultrasound imaging RF data of length 2032 

points. Reconstruction of the Doppler ultrasound data was performed by using 

Orthogonal matching pursuit algorithm, which is used to identify the nonzero elements of 

the signal in an iteratively and reconstruct the signal using the pseudo-inverse. The 

Doppler data sampled randomly, different number of measurements M was used for 

reconstruction. Both reconstruction and Doppler spectrogram were performed with 

software program written in Matlab (Mathworks, MA).     
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The recovered signals via OMP were used to generate a Doppler ultrasound 

spectrogram, the result illustrated in figure 7-6. The result shows that the spectrum was 

reconstructed perfectly even by using a few numbers of measurements. 

 

 

Figure 7-6. Reconstructed Doppler spectrogram via OMP algorithm using different number of 

points (a) using 5% points (b) using 20% points (c) using 40% points (d) using 60% points (e) 

using 80% points 

 

The error from the recovered images was calculated to compare to the original image, 

the result shown in figure 7-7. The result shows that the error in the image decreased by 



 

increasing the number of measurements, the image reconstructed with 

measurements equal 80% point has a lower error. From the figure, comparing the images 

in figures (c) and figure (b), the result shows that there is no significant difference 

between them and comparing figure (a) and figure (c), the result shows a variation 

between the two images.     

 

Figure 7-7. The error of the reconstructed image via OMP algorithm (a) using 80% (b) using 

40% (c) using 5% 

 

The process time was calculated for different random samples of measurements, the 

elapsed time shown in figure 7

equal to 5% were used, the elapsed time was about 0.6 second

the elapsed time was about 1.8 second. This indicates that 

performed faster. At each number of

calculate the reconstructed time, and then the average was calculated. 
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increasing the number of measurements, the image reconstructed with 

surements equal 80% point has a lower error. From the figure, comparing the images 

(c) and figure (b), the result shows that there is no significant difference 

between them and comparing figure (a) and figure (c), the result shows a variation 

 

The error of the reconstructed image via OMP algorithm (a) using 80% (b) using 

The process time was calculated for different random samples of measurements, the 

elapsed time shown in figure 7-8. The result shows that when numbers of measurements 

the elapsed time was about 0.6 seconds and when 80% were used

the elapsed time was about 1.8 second. This indicates that the lower number of points 

performed faster. At each number of measurements the program runs several times

time, and then the average was calculated.  

increasing the number of measurements, the image reconstructed with the number of 

surements equal 80% point has a lower error. From the figure, comparing the images 

(c) and figure (b), the result shows that there is no significant difference 

between them and comparing figure (a) and figure (c), the result shows a variation 

 

The error of the reconstructed image via OMP algorithm (a) using 80% (b) using 

The process time was calculated for different random samples of measurements, the 

e result shows that when numbers of measurements 

and when 80% were used, 

lower number of points 

measurements the program runs several times to 
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Figure 7-8. Number of measurements vs reconstruction time 

 

The analysis of the results was performed by calculating the PSNR from each 

recovered image for different random sample measurements compared to the original 

spectrogram images, PSNR result shows that the reconstructed image with fewer number 

of measurements 5% has less PSNR and higher number of measurements 80% gives 

higher PSNR. This indicates that the quality of the image increased by increasing the 

number of measurements. Figure 7-9 shows the relation between the numbers of 

measurements and PSNR in dB. 

 

 

Figure 7-9. Number of measurements versus PSNR 
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The root mean square error is one of the most important measurements used for 

evaluating the accuracy of the recovered images. The RMSE calculated from the 

reconstructed image by using different numbers of measurements sampled randomly, and 

was found about 25.1 dB for 80 % (1600) point of sample and for fewer number of point 

values increased and reach up-to 23.84 for 5 % (101) point of the sample. Figure 7-10 

shows the RMSE for different numbers of measurements, the figure shows that the value 

decreased by increasing the number of points used for reconstructing. 

 

 

Figure 7-10. Number of measurements versus RMSE  

 

Table 7.2 shows the relation between the number of measurements versus recovered 

time and number of measurements versus NRMSE. 

 

Table 7.2. Number of points, Recovery time, MSE, RMSE and PSNR from OMP algorithm  

Number of measurements % 5 20 40 60 80 

Elapsed time (s) 0.575 0.865 1.131 1.453 1.807 

MSE  267.48 250.45 239.84 236.13 200.9 

RMSE 16.37 15.84 15.48 15.36 14.17 

PSNR dB 23.84 24.13 24.33 24.39 25.1 
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7.1.3 Compressive Sampling Matching Pursuit  

The experiment validates with using Doppler ultrasound RF data with a length of 2032 

points. Reconstruction of the Doppler ultrasound data performed by using compressive 

sampling matching pursuit algorithm, which is used to identify the nonzero elements of 

the signal in an iteratively and reconstruct the signal using the pseudo-inverse. The data 

with a length of 2032 sampled randomly, different number of measurements M was used 

for reconstruction. Both reconstructions and Doppler spectrum were performed with 

software program written in Matlab (Mathworks, MA). 

The recovered signal illustrated in Figure 7-11.  The Doppler ultrasound signal 

recovered using different number of measurements, which is used then to generate 

Doppler spectrum.  The recovered signal was performed via CoSaMP algorithm. The 

result shows that the spectrum was reconstructed with good performance even by using a 

few numbers of measurements.  
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Figure 7-11. Reconstructed Doppler spectrogram via CoSaMP algorithm using different number 

of points (a) using 5% points (b) using 20% points (c) using 40% points (d) using 60% points (e) 

using 80% points 

 

The error from the result images were calculated by subtracting the recovered image 

from the original image, the results were shown in figure 7-12. The result shows that the 

error in the image decreased with increasing the number of measurements. Image 

reconstructed with the number of measurements equal to the 80% point gives error lower 

than that reconstructed with the number of measurements equal to 5% points. This result 

will be judged by quantitative evaluation. 



 

Figure 7-12. The error of the reconstructed image via CoSaMP algorithm (a) using 80% (b) using 

40% (c) using 5% 

 

The process time was calculated for different random samples of measurements, the 

elapsed time shown in figure 7

measurements used the elapsed time was very low and when higher numbers of 

measurements used the elapsed time was becoming

number of points performed faster.

 

Figure 7-13. Number of measurements versus recovery time
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12. The error of the reconstructed image via CoSaMP algorithm (a) using 80% (b) using 

The process time was calculated for different random samples of measurements, the 

elapsed time shown in figure 7-13. The result shows that when the lower number of 

measurements used the elapsed time was very low and when higher numbers of 

the elapsed time was becoming higher. This indicates that

number of points performed faster. 

Number of measurements versus recovery time 
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Number of Measurements %

 

12. The error of the reconstructed image via CoSaMP algorithm (a) using 80% (b) using 

The process time was calculated for different random samples of measurements, the 

lower number of 

measurements used the elapsed time was very low and when higher numbers of 

higher. This indicates that the lower 
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Root mean square error (RMSE) is one of the most important measurements used for 

evaluating the accuracy of the recovered signals and images. The RMSE calculated from 

the reconstructed image by using different numbers of measurements sampled randomly, 

and was found that the RMSE when higher numbers of measurements were used gives 

lower error, when fewer numbers of points used for the reconstruction the images, the 

error increased by increasing the point numbers. Figure 7-14 shows the RMSE for 

different numbers of measurements, the figure shows that the value increased by 

decreasing the number of points used for reconstructing; so we can conclude that with 

compressed sensing we can a chive a comparable RMSE even with a very low number of 

points. 

 

 

Figure 7-14. Number of measurements versus RMSE 

 

The peak signal-to-noise for the reconstructed images was calculated for different 

random number of points compared to the original image. The results show that the 

reconstructed image with fewer numbers of measurements gives lower PSNR, and it 

increased by increasing the number of points used for reconstruction. This indicates that 

the quality of the image increased by increasing the number of measurements. Figure 7-

15 shows the PSNR uses different numbers of measurements.  
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Figure 7-15. Number of measurements versus PSNR 

 

Table 7.3. Shows the peak signal to noise ratio, process time, mean square error, root 

mean square error versus different numbers of measurements  

 

   Table 7.3. Number of points, Recovery time, MSE, RMSE and PSNR from CoSaMP algorithm  

Number of measurements % 5 20 40 60 80 

Elapse time (sec) 0.99 1.74 2.62 3.08 4.29 

MSE 148.2 147.4 146.0 146.0 137.4 

RMSE 12.174 12.142 12.084 12.084 11.725 

PSNR dB 26.422 26.445 26.487 26.487 26.748 

 

 

7.1.4 Regularized Orthogonal Matching Pursuit   

The experiment validated using Doppler ultrasound imaging spectrogram. ROMP 

algorithm used to identify the nonzero elements of the Doppler signal. The data of length 

2032 sampled randomly, different number of measurements M were used for 

reconstruction (128, 406, 812, 1219 and 1625 points). Both reconstructions and Doppler 

spectrum were performed with software program written in Matlab (Mathworks, MA). 
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Doppler ultrasound signal recovered using different number of measurements, the 

result signal then used to generate Doppler spectrogram.  The reconstruction performed 

via ROMP algorithm, the resulting spectrogram shown in figure 7-16. The result shows 

that the spectrum was reconstructed even with a few numbers of measurements.   

 

 

Figure 7-16. Reconstructed Doppler spectrogram via ROMP algorithm using different number of 

points (a) using 5% points (b) using 20% points (c) using 40% points (d) using 60% points (e) 

using 80% points  

 

The error from the recovered images was calculated to compare to the original image, 

the result shown in figure 7-17. The result shows that the error in the image decreased by 



 

increasing the number of measurements, the image reconstructed with 

measurements equal to the 80 % point has a lower error. 

 

Figure 7-17. The error of the reconstructed image via 

40 % (c) using 80 % 

 

The process time was calculated for different random samples of measurements, the 

result of elapsed time shown in table 7.4 and figure 7

few numbers of points were used, the reconstruction will be performed faster (take very 

low time) and when the higher numbers of points were used the reconstruction takes 

more time (the reconstruction time increased). In other word the recon

decreased by decreasing the number of reconstruction points.
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increasing the number of measurements, the image reconstructed with 

80 % point has a lower error.  

 

The error of the reconstructed image via ROMP algorithm (a) using 

The process time was calculated for different random samples of measurements, the 

result of elapsed time shown in table 7.4 and figure 7-18. The result sho

few numbers of points were used, the reconstruction will be performed faster (take very 

low time) and when the higher numbers of points were used the reconstruction takes 

more time (the reconstruction time increased). In other word the recon

decreased by decreasing the number of reconstruction points. 

increasing the number of measurements, the image reconstructed with the number of 

 

MP algorithm (a) using 5 % (b) using 

The process time was calculated for different random samples of measurements, the 

18. The result shows that when a 

few numbers of points were used, the reconstruction will be performed faster (take very 

low time) and when the higher numbers of points were used the reconstruction takes 

more time (the reconstruction time increased). In other word the reconstruction time 
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Figure 7-18. Number of measurements versus recovery time 

 

The recovered images evaluated by calculating the RMSE for each, the result shown in 

figure 7-19. The result shows that when data less than 40 % used for reconstruction, there 

is no variation in the error. Higher numbers of measurements give low error it reached up 

to 8 when 80 % of data were used.  

      

 

Figure 7-19. Number of measurements versus RMSE 
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reconstructed image with fewer numbers of measurements gives lower PSNR, and it 

increased by increasing the number of points used for reconstruction, figure 7-20 shows 

the results. This indicates that the quality of the image increased by increasing the 

number of measurements. The figure shows that when using less than 40 % of the data 

for reconstruction, the PSNR are same, in the other word give images with the same 

quality. The quality improved when more than 60 % of the data were used for 

reconstruction. Table 7.4 shows the relation between the number of measurements versus 

reconstruction time, MSE, RMSE and PSNR. All the measurement in the tables 

calculated by running the program at each number of measurements many times and then 

calculates the average for each measurement.      

 

 

Figure 7-20. Number of measurements versus PSNR 

 

 Table 7.4 Number of points, Recovery time, MSE, RMSE and PSNR from ROMP algorithm 

Number of measurements % 5 20 40 60 80 

Elapse time (sec) 0.02 0.02 0.04 0.05 0.09 
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Using compressed sensing theory for Doppler spectrogram reconstruction, lead to 

reduction in acquisition time, decreased the number of samples, which is lead to 

decreasing in the average power per unit area. The quality of the generated spectrograms 

were visually judged by an expert monographer to be very close to the original in 

diagnostic quality and to have no missing diagnostic features.  

From the performance evaluation, as a large number of measurements were used gives 

more information. However, using a large number of measurements is undesirable 

because increasing the number of measurements cause in increasing the process time and 

other acquisition problems. Thus compressed sensing can be considered as an effective 

tool for Doppler ultrasound data acquisition and can overcome all limitation of the 

present Doppler signal data acquisition.    

The reconstruction time from the four algorithms were compared, the result shown in 

figure 7-21. The result shows that ℓ1 minimization algorithms give higher reconstruction 

time among all the recovery algorithms considered in this thesis. The lowest 

reconstruction time obtained by regularized orthogonal matching pursuit algorithm. 

When a few numbers of measurements were used, compressive sampling matching 

pursuit gives reconstruction time closer to that from orthogonal matching pursuit. In 

general the reconstruction time increased with the amount of measurements, the fewer 

numbers of points reconstructed faster. 
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Figure 7-21. Number of measurements vs recovery time for different algorithms 

 

The root mean square error from all algorithms also compared, the result illustrated in 

figure 7-22. The result shows that the OMP algorithm gives higher RMSE among all the 

others algorithms. When a few numbers of points used for the reconstruction ROMP 

gives lower RMSE, but when higher numbers of measurements were used ℓ1 

minimization gives the lowest error. ℓ1-norm and ROMP gives same RMSE when the 

reconstruction measurements used were about 50 %.  There is no big variation in the 

error when a few numbers of measurements and higher numbers of measurements were 

used in CoSaMP algorithm.      
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Figure 7-22. Number of measurements vs RMSE for different algorithms 

 

Beside the time and RMSE also the quality of the reconstructed images was compared 

by comparing the PSNR from each reconstruction algorithm, the result shown in figure 

7.23. From the figure the worst image quality was obtained when OMP used. For a few 

numbers of measurements (less than 30 %), regularized orthogonal matching pursuit give 

higher PSNR (best quality images), when higher numbers of measurements were used 

(higher than 40 %) ℓ1-norm gives the best results (higher PSNR). When the Doppler 

signal reconstructed via CoSaMP, the result shows that there is no significant difference 

when the Doppler signal reconstructed using a few numbers of measurements and higher 

number of measurements. The PSNR difference between the higher and lower numbers 

of measurements when CoSaMP used is 0.32 dB. ℓ1-norm and ROMP gives an image 

with same quality when the number of measurements used for the reconstructions are 

about 40 %. The quality of the reconstructed images increased by increasing the numbers 

of measurements and decreased by decreasing the numbers of measurements used for the 

reconstructions.   
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Figure 7-23. Number of measurements vs PSNR for different algorithms 

 

7.2 Parallel Computing Results 

Table 7.5 shows the reconstruction time for the Doppler ultrasound spectrogram by 

applying parallel algorithms. The reconstructions perform using different numbers of 

measurements and ℓ1-minimization (ℓ1-norm) reconstruction algorithm. As shown, using 

two cores leads to significant reduction in the reconstruction time per core, with speed up 

of about 3.25 for a few numbers of measurements and 2.55 for higher numbers of points. 

This leads us to expect that when more cores used for example four cores gives shortest 

reconstruction time.  

Figure 7-24 shows the reconstruction time using serial parallel methods. The results show 

that the time reduced to less than half in all the numbers of measurements.   
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Table 7.5. The parallel reconstruction time and speed up for different number of measurements 

Number of measurements % 5 20 40 60 80 

Elapse time (s) 1.49 2.00 2.35 3.00 3.34 

Speed up 3.25 2.80 2.76 2.45 2.55 

 

 

Figure 7-24. The reconstruction time with serial and parallel algorithms  

 

7.3 Clutters Rejection Results  

 

7.3.1 Simulation Results 

   In this section we want to describe the simulation result of our proposed clutter 

rejection filter based on ICA and PCA, beside the present cluttering algorithms. The 

Doppler IQ data consist of blood flow signal and clutter signal used. The clutter filter 

applied to this signal as described in chapter 6 so as to remove unwanted signal and 

remains the blood flow signal only. Our proposed clutter method applied to the Doppler 

IQ data. The result of the simulation shows that, when the proposed clutter with ICA and 

PCA used, the clutter suppressed from the Doppler signal effectively, the result signal 
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illustrated in figure 7-25 and 7-26 respectively, and we only display the first four signals 

for simplicity. 

 

 

Figure 7-25. The filtered signal via ICA, in time domain. 

 

Figure 7-26. The filtered signal with PCA, in time domain. 

 

The spectrum of the signal calculated from the filtered signal by using both ICA and 

PCA, the signal spectrum shown in figure 7-27 and 7-28 respectively.  
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Figure 7-27. The spectrum of the signal filtered using ICA. 

 

Figure 7-28. The spectrum of the signal filtered using PCA.  

 

Beside our proposed method the Doppler IQ data filtered using present clutter rejection 

methods, FIR, IIR and PR filters. The result of present clutters illustrated in figures 7-29, 

7-30 and 7-31 respectively. The result shows that all types of clutter filters are able to 

remove the clutter from the Doppler IQ data.  
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Figure 7-29. The filtered signal via FIR, in time domain 

 

Figure 7-30. The filtered signal via IIR, in time domain 

 

Figure 7-31.The filtered signal via PR, in time domain 

 

The spectrum of the filtered signal was calculated from the output of the three types of 

filters, the result shown in figure 7-32, the result from FIR and PR only were shown.   

 



 

Figure 7-32. The spectrum of filtered signal

 

To make sure that the clutter signal was removed from our Doppler IQ data by using all 

five clutter rejection filters. The original Doppler IQ data was projected into the filter 

output data. The inner product results show the blood signal contaminated with

the result shown in figure 7-33. 

 

Figure 7-33
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(a) 

 

(b)  

The spectrum of filtered signal (a) Using FIR and (b) using PR.

To make sure that the clutter signal was removed from our Doppler IQ data by using all 

five clutter rejection filters. The original Doppler IQ data was projected into the filter 

output data. The inner product results show the blood signal contaminated with

33.  

 

33. Doppler signal contaminated with clutter 

(b) using PR. 

To make sure that the clutter signal was removed from our Doppler IQ data by using all 

five clutter rejection filters. The original Doppler IQ data was projected into the filter 

output data. The inner product results show the blood signal contaminated with clutter, 
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    To compare the propose clutter method using ICA and PCA with present clutter 

rejection methods, FIR, IIR and PR, root mean square deviation and error for each was 

computed. Since the clutter rejection characteristics differ from each other, performance 

of the clutter rejection methods also varies according to the clutter filter. The result shows 

that the proposed clutter based on ICA gives lower error values, while the proposed 

clutter based on PCA, gives error higher than that from ICA. The resulting error of PR 

using clutter space dimension given in table 6.2 is lower than FIR. FIR gives highest 

error value among all the clutters, the result of RMSE and error for different clutters 

illustrated in table 7.6. The table shows that there is an improvement on the error and the 

RMSE when the signal cluttered with the proposed clutter rejection filter.  The 

performance categorized from 1 to 5, the clutter filter with highest performance has lower 

error and the clutter filter with lower performance has highest error value. Figure 7-34 

shows the performance of the clutter filters, the better clutter rejection obtained by using 

ICA. PR clutter filter give the same performance as ICA when the filter designed with 

space dimension equal to 20, which is needed more calculations. When PCA used for 

filtering, the clutter was removed with performance lower than that obtained by using 

ICA. IIR give comparable clutter rejection. FIR gives a lower performance among all 

types of clutters. The propose clutter rejection method; suppress the clutter signal without 

altering the blood signal. The ICA and PCA give better performance when used for 

Doppler signal cluttering.  

 

                 Table 7.6. The error and RMED for different types of clutters 

Filter Types FIR IIR PR PCA ICA 

Error 22.76*10
8
 10.5*10

8
 4.97*10

8
 7.91*10

8
 4.97*10

8
 

RMSD 80142.7 49578.5 32038 43684.1 32038 

Categorization 1 3 5 4 5 
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Figure 7-34. The performance of different clutter rejection 

 

7.3.2 Real Doppler Data Results 

The experiments with the real Doppler data illustrated in figure 7-35. Figure 7-35 (a) 

demonstrates Doppler spectrogram image generated from Doppler data filtered by using 

minimum phase FIR filters. Wide clutter line presented down the center of resulting 

Doppler image, this indicates that FIR filter showed insufficient suppression of the 

clutter. Figure 7-35 (b) illustrates the Doppler spectrogram form data filtered via IIR filter 

where the clutter line is significantly reduced, this mean that the clutter removed with 

performance better than FIR. PCA gives an image with a clutter line down the center 

narrower than that from IIR filter; figure 7-35 (c) shows the result spectrogram image. 

When ICA and PR used for cluttering the result image illustrated in figure 7-35 (d, e), the 

resulting image has no clutter line around the image center. ICA, PR and PCA are able to 

eliminate all tissue motion clutter without significantly altering the blood flow estimation.   
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 7-35. The resulting Doppler sonogram images of heart for different types of clutter 

rejection filters (a) The Doppler sonogram using FIR clutter (b) The Doppler sonogram using IIR 

clutter (c) The Doppler sonogram using PR clutter (d) The Doppler sonogram using PCA clutter 

(e) The Doppler sonogram using ICA clutter 
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We can conclude that the proposed clutter rejection method can remove the clutter 

originated from stationary and slowly moving t

present clutter rejection filters, and gives the Doppler spectrum image without clutter line 

around the center. The proposed methods eliminate all the clutter without altering the 

flow signal.  

Beside the PSNR and RMSE used for clutter evaluation, the 

form each clutter was used. 

running the program several times and calculates the average. The filtering time

cluttering the real Doppler data

The result shows that the proposed clutter based on P

while the proposed clutter based on I

PR gives the highest cluttering time among all the clutters types and FIR gives lower time 

than PR. The IIR gives lower time among the present cluttering methods

figure 7-36. We can conclude that our proposed cluttering methods give l

time.  

 

                        Table 7.7 the process

Filter types  

Process time (S)

 

Figure 7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

T
im

e 
(S

)

143 

We can conclude that the proposed clutter rejection method can remove the clutter 

originated from stationary and slowly moving tissue with a performance better than 

present clutter rejection filters, and gives the Doppler spectrum image without clutter line 

around the center. The proposed methods eliminate all the clutter without altering the 

Beside the PSNR and RMSE used for clutter evaluation, the process time for cluttering 

form each clutter was used. The cluttering time from each filter was calculated by 

running the program several times and calculates the average. The filtering time

cluttering the real Doppler data using current and proposed filters illustrated in table 

the proposed clutter based on PCA gives lower 

the proposed clutter based on ICA gives process time higher than that 

PR gives the highest cluttering time among all the clutters types and FIR gives lower time 

than PR. The IIR gives lower time among the present cluttering methods

. We can conclude that our proposed cluttering methods give l

process time filtering for different clutters 

IIR FIR PR ICA PCA

time (S) 0.114 0.329 0.465 0.069 0.025

 

Figure 7-36. Cluttering time for different filter 

IIR FIR PR ICA PCA

Filters Type

We can conclude that the proposed clutter rejection method can remove the clutter 

issue with a performance better than 

present clutter rejection filters, and gives the Doppler spectrum image without clutter line 

around the center. The proposed methods eliminate all the clutter without altering the 

time for cluttering 

The cluttering time from each filter was calculated by 

running the program several times and calculates the average. The filtering time during 

filters illustrated in table 7.7. 

CA gives lower cluttering time, 

higher than that from PCA. 

PR gives the highest cluttering time among all the clutters types and FIR gives lower time 

than PR. The IIR gives lower time among the present cluttering methods as shown in 

. We can conclude that our proposed cluttering methods give lower cluttering 

PCA 

0.025 
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Chapter 8 

Conclusion and Recommendations for Future Work  

 

8.1 Conclusion  

Compressed sensing is a new sampling theory, states that it is possible to reconstruct 

signals and images using a few numbers of measurements. CS has been applied 

successfully in different fields such as medical image. The CS framework, used to 

reconstruct the Doppler ultrasound spectrogram, so as to overcome the current Doppler 

data acquisition limitation. The reconstruction performed using four different CS 

algorithms. It is shown that it is possible to use a very few number of measurements to 

reconstruct the signal keeping the diagnostic quality intact. This alleviates the major 

Doppler limitations by reducing the number of acquisitions and eliminating the sampling 

uniformity constraints. The quality and the reconstruction time form the algorithms 

compared with each. ℓ1- minimization gives higher reconstruction time and ROMP gives 

lower time. When a few numbers of measurements were used ROMP gives higher PSNR 

(best quality), for number of measurements more than 40 % were used, ℓ1 minimization 

gives the best quality. Among all the reconstruction algorithms, OMP gives higher error 

in other words the worst quality of image obtains by using OMP algorithm. When the 

number of measurements about 35 % was used ROMP and ℓ1-norm gives same quality. 

We can conclude that the CS framework can recover Doppler signal with a few numbers 

of measurements, within a unique time and with a good quality. This overcomes the 

current Doppler data acquisition.   

The recovered time can be reduced as illustrated from the result by combining the CS 

algorithms and parallel computation algorithms. From the result the process time was 

reduced to less than half by using duo-core system. When the more advance computer 

system used, the time will decrease and this enables us to achieve a very low 

reconstruction time and display the Doppler signal in real-time.   
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The frequency response of non-adaptive filters, FIR, IIR and PR compared. Three types 

of FIR filters were compared the results shows that minimum phase gives best frequency 

response among all types of FIR. A large performance can be obtained by using a 

minimum phase filter instead of linear phase filter and equirriple filter. All IIR filter types 

compared to select the best filter for cluttering. The comparison shows that Butterworth 

and Chebyshev filters give a better frequency response. We found the best frequency 

response for IIR filters is obtained when projection initialization is used. Within the class 

of regression filters, polynomial basis functions were shown to provide useful frequency 

responses. Projection initialization IIR filter and polynomial regression filter of the same 

design properties gives same frequency response. Among the three filter classes, 

polynomial regression and projection initialization IIR filters have the best frequency 

response. For equal stop bandwidth, the transition rejoins were narrower than for FIR 

filters.     

The adaptive clutter filter technique, based on ICA and PAC has been demonstrated. 

The results show that the clutter filters reduce the clutter signal originate from stationary 

and slowly moving tissue. The methods were tested in a simulation Doppler IQ data and 

real Doppler heart data. The simulation result shows that the clutter filters are able to 

reduce the clutter signal from the echo signal. When the result of our proposed clutter 

rejection filter compared with other cluttering filter methods, the result shows that the 

proposed methods based on ICA gives error less than FIR and IIR and comparable result 

with PR. When proposed methods based on PCA used the results show that ICA gives 

better clutter rejection than the PCA. PCA removes the clutter with better performance 

than FIR and IIR filters. For the real Doppler data, the result Doppler image shows that 

the Doppler spectrogram image, changed adaptively depending on the type and 

characteristics of clutter. The result shows that the proposed clutter suppress the clutter 

more effectively than other clutter rejection algorithms. The resulting images from our 

proposed clutters are more accurate than that from other clutter algorithms. The proposed 

methods eliminate all the clutter originated from stationary and slowly moving tissue 

without altering the blood flow signal. Thus, it can be stated that the adaptive approach 
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for clutter rejection provided excellent performance in discriminating flow and clutter 

signal components even if the velocities were low and roughly the same. The cluttering 

time shows that the proposed clutters give lower time compared to the present cluttering 

methods.  

 

8.2 Recommendations for Future Work 

Further work needed to be done in the application of CS to reconstruct Doppler 

ultrasound signal by considering different reconstruction algorithms and different 

Doppler data then compare the result with the reconstruction algorithms used in this 

work. More work needed for image enhancements to remove the noise within the 

reconstructed image.  

Use quad core or higher central processing unit so as to reduce the reconstruction time 

for different reconstruction algorithms.  

Proposed a new clutter filter to remove the clutter signal originated from stationary and 

slowly moving tissue to remove the clutter without altering the blood flow, and compare 

the result with the result given in this work. Use multiprocessor system for cluttering time 

reduction.        

 

 

 

 

 

 

 

 

  



147 

 

References 

 

1-  D. Evans, and W. McDicken, Doppler ultrasound: physics, instrumentation and 

signal processing second ed. John Wiley & Sons Ltd., New York, 2000. 

2- J. Jensen, Estimation of Blood flow velocities using ultrasound, Cambridge 

University Press, Cambridge, 1996. 

3- A. Macpherson, S. Meldrum and D. Tunstall, Angioscan: a spectrum analyzer for 

use with ultrasonic Doppler velocimeters, J. Med. Eng. Technology, 5, 84 - 89, 

1981. 

4- D. Cooley, and J. Tukey, An algorithm for the machine calculation of complex 

Fourier series, Math. Comp., 19, 297 - 301, 1985. 

5- D. Donoho, Compressed Sensing, IEEE Trans. Info. Theory, 52, 1289 - 1306, 

2006. 

6- S. Bjaerum and H. Torp, Statistical Evaluation of Clutter Filters in Color Flow 

Imaging, Elsevier Ultrasonics, 38, pp. 376 - 380, 2000. 

7- S. Bjaerum, H. Torp and K. Kristoffersen, Clutter Filter Rejection for Ultrasound 

Color Flow Imaging, IEEE Transaction on Ultrasonic, Ferroelectrics and 

Frequency Control, 49 (2), pp. 204 - 216, 2002. 

8- S. Bjaerum, H. Torp and K. Kristoffersen, Clutter Filter Adapted to Tissue Motion 

in Ultrasound Color Flow Imaging, IEEE Transaction on Ultrasonic, 

Ferroelectronics and Frequency Control, 49, pp. 693 - 704, 2002. 

9- Y. Yoo, R. Managuli, Y. Kim, Adaptive Clutter Filtering for Ultrasound Color 

Flow Imaging, Ultrasound in Med. & Bio., 29, pp. 1311 - 1320, 2003. 

10- H. Torp, Clutter Rejection Filter in Color Flow Imaging: A Theoretical Approach, 

IEEE Transaction on Ultrasonics, , Ferroelectronics and Frequency Control, 44, 

pp. 417 - 424, 1997. 

11- A. Kadi and T. Loupas, On the Performance of Regression Step-initialized IIR 

Clutter Filters for Color Doppler System in Diagnostic Medical Ultrasound, IEEE 



148 

 

Transaction on Ultrasonics, , Ferroelectronics and Frequency Control, 42, 927 - 

937, 1995. 

12- D. Zrnig, Gorund Clutter Canceling with a Regression Filter, Journal of 

Atmospheric and Oceanic Technology, 16, pp. 1364 - 1372, 1999. 

13- Y. Liu, H. Jianxin and H. Yang, A Study of Ground Clutter Suppression with a 

Regression Filter, IEEE ICSP 2006 proceedings, 1, 2006. 

14- R. Peterson, L. Atlas and K. Beach, A Comparison of IIR initialization Techniques 

for Improved Color Doppler Wall Filter Performance, IEEE International 

Ultrasonics Symposium Proceedings, 3, pp. 1705 - 1708, 1994. 

15- E. Chornoboy, Initialization for Improved IIR Filter Performance, IEEE 

Transaction on Signal Processing, 40, pp. 543 - 550, 1992. 

16- J. Mick, An Initialization Technique for Improved MTI Performance in Phase 

Array Radar, IEEE Proceedings, 60 (12), 1551 - 1552, 1972. 

17- F. Mauldin, D. Lin and J. Hossack, A Singular Value Filter for Rejection of 

Stationary Artifact in Medical Ultrasound, IEEE International Ultrasonics 

Symposium Proceedings, pp. 359 - 362, 2010. 

18- A. Yu and L. Lovestakken, Eigen-Based Clutter Filter Design for Ultrasound 

Color Flow Imaging: A Review, IEEE Transaction on Ultrasonic, Ferroelectronics 

and Frequency Control, 57, pp. 1096 - 1111, 2010. 

19- I. Jolliffe, Principal Component Analysis, 2
nd

 Edition, Springer, 2002. 

20- A. Hyvarinen and E. Oja, Independent Component Analysis: Algorithms and 

Application neural network, 13, pp. 411 - 430, 2000. 

21- J. Sarela and H. Valpola, Denoising Source Separation, Journal of machine leering 

research, 6, pp. 233 - 272, 2005. 

22- S. Makeig, A. Bell, T. Jung and T. Sejn owski, Independent Component Analysis 

of electroencephalographic data, Advance in Neural Information Processing 

Systems, vol. 8, pp. 145 - 151, 1996. 

23- S. Makeig and T. Jung, Independent Component Analysis of Simulated ERP data, 

Technical report INC-9606, 1996. 



149 

 

24- R. Viviani, G. Gron and M. Spitzer, Functional Principal Component Analysis of 

FMRI Data, Human Brain Mapping, 24, pp. 109 - 129, 2005. 

25- C. Chen, Spatial and Temporal Independent Component Analysis of Micro-

Doppler Feature, IEEE international Radar Conference, pp. 348 - 353, 2005. 

26- A. Elnokrashy, A. Youssef and Y. Kadah, Nonparametric clutter rejection in 

Doppler ultrasound using principal component analysis, Proc. SPIE Medical 

Imaging 2003, San Diego Fep 2003. 

27- H. Torp and L. Lovstakken, Short Course 6A: Estimation and Imaging of Blood 

Flow Velocity, IEEE ultrasonics symposium 2009. 

28- D. Christensen, Ultrasonic Bioinstrumentation, University of Utah. 

29- P. Hoskins, K. Martin and A. Thrush, Diagnostic Ultrasound Physics and 

Equipment, 2
nd

 Edition, Cambridge University Press, 2010. 

30- J. Baun, Physical Principle of General and Vascular Sonography, Chapter 10, the 

Doppler Effect, Available: http://www.jimbaun.com/jimbaun_may_07_007.htm. 

31- L. Formaggia, A. Quarleroni and A. Veneziani, Cardiovascular mathematics 

Modeling and Simulation of the Circularity System, Springer-Verlag, 2009. 

32- C. Deane, Doppler Ultrasound: Principle and Practice, Available, 

http://www.centrus.com.br/DiplomaFMF/SeriesFMF/doppler/capitulos-

html/chapter_01.htm. 

33- H. Torp, Signal Processing in Real-time, two Dimensional Doppler Color Flow 

Mapping, University of Trondheim, Norway, 1991. 

34- M. Priestly, Spectral Analysis and Time Series, London, Academic Press, 1981. 

35- G. Aldis and R. Thompson, Calculation of Doppler spectral power density 

functions, IEEE Trans Biomed Eng, 51, pp. 182 - 191, 1992. 

36- D. Maulik, Spectral Doppler: Basic principles and instrumentation, Chapter 3. 

Available:  https://woc.uc.pt/deec/getFile.do?tipo=2&id=7496. 

37- K. Ferrara and G. Deangelis, Color Flow Mapping, Ultrasound in Med. & Biol., 

23 (3), pp 321-345, 1997. 



150 

 

38- P. Macpherson, S. Meldrum and D. Tunstall, Angioscan: a spectrum analyzer for 

use with ultrasonic Doppler velocimeters, J. Med. Eng. Technology, 5, pp. 84 - 89, 

1981. 

39- J. Cooley, and J. Tukey, “An algorithm for the machine calculation of complex 

Fourier series,” Math. Comp., 19, pp. 297 - 301, 1985. 

40- E. Candes, T. Tao, “Decoding by Linear Programming,” IEEE Trans. Inf. Theory, 

51, pp. 4203 - 4212, 2005. 

41- E. Candes, J. Romberg, T. Tao, “Stable Signal Recovery from Incomplete and 

Inaccurate measurements,” Comm. Pure and Appl. Math, vol. 59, pp. 1207 - 1223, 

2005. 

42- MATLAB, Parallel Computing Toolbox User Guide, R2011b, MathWorks, Inc. 

2011. 

43- W. Wigbbgers, V. Bakker, A. Kokkeler and G. Smit, Implementation the 

Conjugated Gradient Algorithm on Multi-core Systems, IEEE Proceeding of 

International Symposium on system-on-Chip, pp. 11 - 14, 2007.  

44- H. Kim, J. Mullen and J. Kepner, Introduction to Parallel Programming and 

pMatlab v2.0, MIT Lincoln Laboratory.  

45- C. Chang and J. Ji, Compressed Sensing MRI with Multichannel Data Using 

Multicore Processors, Magnetic Resonance in Medicine, 64, 1135 - 1139, 2010. 

46- A. Broghi, J. Darbon, S. Peyronnet, T. Chan and S. Osher, A Simple Compressive 

Sensing Algorithm for Parallel Many-Core Architecture, CAM Report 8 - 64, 

UCLA, 2008. 

47- J. Cortial, C. Farhat, L. Guibas and M. Rajashekhar, Compressed Sensing and 

Time-Parallel Reduced-Order Modeling for Structural Health Monitoring using a 

DDDAS, In proceeding of the international conference on computational science, 

pp. 1171 - 1179, 2007.  

48- B. Liu, Y. Zou and L. Ying, Sparseness: Application of Compressed Sensing in 

Parallel MRI, International Conference on ITAB, pp. 127 - 130, 2008. 



151 

 

49- A. Hoeks, J. van-de-Vorst, A. Dabekaussen, P. Brands, and R. Reneman, An 

efficient algorithm to remove low frequency Doppler signals in digital Doppler 

systems, Ultrason. Imaging, 13 (2), pp. 135- 144, 1991. 

50- L. Smith, A Tutorial on Principal Component Analysis, 2002, available, 

http://www.sccg.sk/~haladova/principal_components.pdf. 

51- T. Zawistowski, P. Shah, An Introduction to Sampling Theory,   

http://www2.egr.uh.edu/~glover/applets/Sampling/Sampling.html. 

52- C. Shannon, Communication in the Presence of Noise, Proc. IRE, 37, pp. 10 - 21, 

1949. 

53- C. Shannon, Classic Paper: Communication in the Presence of Noise, Proc. IEEE, 

86 (2), pp. 447 - 457, 1998. 

54- E. Candes, T. Tao, Near-optimal Signal Recovery from Random Projections and 

Universal Encoding Strategies, IEEE Trans. Infom. Theory, 52 (12), pp. 5406 - 

5425, 2006. 

55- E. Candes, Compressive Sampling, International Congress of Mathematicians, 

Madrid, Spain, 2006. 

56- M. Fornasier, H. Rauhut, Compressive Sensing, Hand book of Mathematical 

Methods in Imaging Chapter in part 2, Available: http://dsp.rice.edu/cs. 

57- E. Candes, M. Wakin, An Introduction to Compressive Sampling, IEEE Signal 

Processing Magazine, 25, pp. 21 - 30, 2008. 

58- C. Chen, A Survey on Sub-Nyquist Sampling”, available: 

www.seas.ucla.edu/~chienchi/.../survey_sub_nyquist_sampling.pdf. 

59- R. Baraniuk, M. Davenport, M. Duarte, C. Hegde, An Introduction to Compressed 

Sensing, 2011. Available: http://cnx.org/content/col11133/1.5/. 

60- J. Pant, W. Lu, A. Antoniou, Reconstruction of Sparse Signal by Minimizing a Re-

weighted Approximate ℓ0-Norm in Null Space of the Measurement Matrix, IEEE 

International Midwest Symposium on Circuits-System, pp. 430 - 433, 2010. 

61- R. Gribonval, M. Nielsen, Sparse representation in unions of bases, IEEE Trans. 

on Information Theory, 49, pp. 3320 - 3325, 2003. 



152 

 

62- J. Tropp, A. Gilbert, Signal recovery from random measurements via orthogonal 

matching pursuit, IEEE Trans. Inform. Theory, 53 (12), pp. 4655 - 4666, 2007. 

63- R. Baraniuk, Compressive Sensing, IEEE Signal Processing Magazine, 24 (4), 118 

- 121, 2007. 

64- M. Elad, A. Bruckstein, A generalized uncertainty principle of sparse 

representation in pairs of R
N
 bases, IEEE Trans. on Information Theory, 48, pp. 

2558 - 2567, 2002. 

65- M. Davenport, M. Duarte, Y. Eldar, Introduction to compressive sensing, Chapter 

in Compressed Sensing: Theory and Application, Cambridge University Press, 

2011. Available: http://dsp.rice.edu/cs. 

66- R. Gribonval, M. Nielsen, Sparse signal representation in unions of bases, IEEE 

Trans. Inform. Theory, 49 (12), pp. 3320 - 3325, 2003. 

67- D. Donoho, M. Elad, Optimally sparse representation in general (nonorthogonal) 

dictionaries via ℓ1 minimization, Proc. Natl. Acad. Sci., 100 (5), 2003. 

68- E. Candes, J. Remberg, Sparsity and incoherence in compressive sampling, 

Inverse Problem, 23 (3), pp. 969 - 985, 2007. 

69- M. Davenport, P. Poufounos, M. wakin. R. Baraunik, Signal Processing with 

Compressive Measurements, IEEE Journal of Selected Topics in Signal 

Processing, 4 (2), pp. 445 - 460, 2010. 

70- E. Candes, J. Romberg, T. Tao, Robust Uncertainty Principles: Exact Signal 

Reconstruction from Highly Incomplete Frequency Information, IEEE Trans. Info. 

Theory, 52 (2), pp. 489 - 509, 2006. 

71- R. Baraniuk, M. Davenport, R. DeVore, M. Wakin, A Simple Proof of the 

Restricted Isometry Property for random matrices, Construction Approximation, 

28 (3), pp. 253 - 263, 2008. 

72- R. Baraniuk, P. Steeghs, Compressive Radar Imaging, IEEE Radar Conference, 

Waltham, Massachusetts, pp. 128 - 133, 2007. 

73- M. Davenport, Random observations on random observations: Sparse signal 

acquisition and processing, PhD thesis, Rice University, 2010. 



153 

 

74- F. Krahner, R. Ward, New and Improved Johnson-Lindenstrauss Embeddings via 

the Restricted Isometry Property, Preprint, 2010. 

75- Y. Zhang, Solution-Recovery in ℓ1-norm for non-square Linear System: 

Deterministic Condition and Open Questions, Technical Report, 2005. Available: 

www.caam.rice.edu/~zhang/reports/index. 

76- D. Needell, J. Tropp, COSAMP: Iterative Signal Recovery from Incomplete and 

Inaccurate Samples, 2008. Available:  http://dsp.rice.edu/cs. 

77- J. Tropp, Signal Recovery from Random Measurements Via Orthogonal Matching 

Pursuit, IEEE Trans. Inf. Theory, 52 (12), pp. 4655 - 4666, 2007. 

78- M. Figueiredo, R. Nowak, S. Wright, Gradient Projection for Spares 

Reconstruction: Application to Compressed Sensing and Other Inverse Problems, 

IEEE Selected Topic in Signal Processing, 1 (4), 586 - 597, 2007. 

79- D. Needell, J. Tropp, R. Vershynin, Greedy Signal Recovery Review, 2008. 

Available:  www.acm.caltech.edu/~jtropp/conf/NTV08-greedy-signal-

asilomar.pdf. 

80- T. Tony, L. Wang, Orthogonal Matching Pursuit for Sparse Signal Recovery, 

available: www.stat.wharton.upenn.edu/~tcai/paper/html/OMP.html. 

81- R. Berinde, A. Gilbert, P. Indyk, H. Karloff, M. Strauss, Combining Geometry and 

Combinatorics: A unified Approach to Sparse Signal Recovery, IEEE 

Communication, Control, and computing, 46
th

 Annual Allerton Conference, pp. 

798 - 805, 2008. 

82- S. Sra, J. Tropp, Row-Action Methods for Compressed Sensing, In Proc. 2006 

IEEE Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP), 3, pp. 868 - 

871, Toulouse, 2006. 

83- P. Boufounos, R.Baraniuk, Reconstruction Sparse Signal from their Zero 

Crossing, in Proc. of IEEE International Conference on Acoustics, speech and 

signal processing, pp. 3361 - 3364, 2008. 



154 

 

84- M. Duarte, M. Davenport, M. Wakin, R. Baraniuk, Sparse Signal Detection from 

Incoherent  Projection, In Proc. IEEE Int. Conf. Acoust., Speech, and Signal 

Processing (ICASSP), Toulouse, France, pp. III-872 - 875, 2006. 

85- J. Haupt, R. Castro, R. Nowak, G. Fudge, A. Yeh, Compressive Sampling for 

Signal Classification, In Proc. Asilomar Conf. Signals, Systems, and Computers, 

Pacific Grove, CA, pp. 1430 - 1434, 2006. 

86- J. Haupt, R. Nowak, Compressive Sampling for Signal Detection, In Proc. IEEE 

Int. Conf. Acoust., Speech, and Signal Processing (ICASSP), Honolulu, HI, 3, pp. 

1509 - 1512, 2007. 

87- S. Chen, D. Donoho, M. Saunders, Atomic Decomposition by Basis Pursuit, 

SIAM J. Sci. Comp., 20 (1), pp. 33 - 61, 1998. 

88- E. Candes, J. Romberg, Practical Signal Recovery from Random Projections, 

2005. Available:  http://dsp.rice.edu/cs. 

89- S. Auethavekiat, “Introduction to implementation of compressive sensing,” AU J. 

T., 14 (1), pp. 39 - 46, 2010. 

90- A. Carmi, P. Gurfil, Convex Feasibility Methods for Compressed Sensing, IEEE 

Journal of Selected Topics in Signal Processing, 1, pp. 586 - 597, 2010. 

91- M. Wakin, Compressed Sensing, available: http://cnx.org/content/m18733/latest. 

92- J. Tropp, Greedy is Good: Algorithmic Results for Sparse Approximation, IEEE 

Trans. Info. Theory, 50 (10), pp. 2231 - 2242, 2004. 

93- R. Berinde, P. Indyk, M. Ruzic, Practical Near-Optimal Sparse Recovery in the ℓ1 

norm, In Proc. Allerton Conf. Communication, Control, and Computing, 

Monticello, IL, pp. 198 - 205,2008. 

94- T. Blumensath, M. Davies, Gradient pursuits, IEEE Trans. Signal Processing, 56 

(6), pp. 2370 - 2382, 2008. 

95- W. Dai and O. Milenkovic, Subspace Pursuit for Compressive Sensing Signal 

Reconstruction, IEEE Trans. Inform. Theory, 55 (5), pp. 2230 - 2249, 2009. 

96- D. Donoho, I. Drori, Y. Tsaig, J. Stark, Sparse Solution of Underdetermined 

Linear Equations by Stagewise Orthogonal Matching Pursuit, Preprint, 2006. 



155 

 

97- D. Donoho, Y. Tsaig, Fast Solution of ℓ1 norm Minimization Problems when the 

Solution May be Sparse, IEEE Trans. Inform. Theory, 54 (11), pp. 4789 - 4812, 

2008. 

98- P. Indyk, M. Ruzic, “Near-Optimal Sparse Recovery in the ℓ1-norm”, In Proc. 49
th

 

Annu. Symp. Found. Comp. Science (FOCS), pp. 199 - 207, 2008. 

99- D. Needell, R. Vershynin, Signal Recovery from Incomplete and Inaccurate 

Measurements via Regularized Orthogonal Matching Pursuit, IEEE J. Select. Top. 

Signal Processing, 4 (2), pp. 310 - 316, 2010. 

100- G. Gui, A. Mehbodniya, Q. Wam, Sparse Signal Recovery with OMP 

Algorithm using Sensing Measurement Matrix, IEEE Electronic Express, 8 (5), 

pp. 285 - 290, 2011. 

101- M. Fazel, M. Meila, Greedy Recovery Algorithm, EE546/STAT593C 

Lecture 9, 2010. 

102- D. Needell and R. Vershynin, Uniform Uncertainty Principle and Signal 

Recovery via Regularized Orthogonal Matching Pursuit, Found. Comput. Math., 9 

(3), pp. 317 – 334, 2009. 

103- N. Nguyen and T. Tran, The Stability of Regularized Orthogonal Matching 

Pursuit Algorithm, Available: 

http://dsp.rice.edu/sites/dsp.rice.edu/files/cs/Stability_of_ROMP.pdf.     

104- R. Berinde, P. Indyk, Sequential Sparse Matching Pursuit, In 

Communication, Control and computing, IEEE 47
th

 Annual Allerton Conference, 

pp. 36 - 43, 2009. 

105- A. Gilbert, M. Strauss, J. Tropp, R. Vershynin, One Sketch for all: Fast 

Algorithms for Compressed Sensing, In Proceedings of the 39
th

 annual ACM 

symposium on Theory of computing, ACM, pp. 237 - 246, 2007. 

106- G. Cormode, S Muthukirshnen, Combinatorial Algorithms for CS, In proc. 

40
th

 Ann. conf. information science and systems, Princeton, pp. 198- 201, 2006. 

107- L. Rudin, S. Osher, E. Fatemi, Nonlinear Total Variation Based Noise 

Removal Algorithm, Physica D, 60, pp. 259 - 268, 1992. 



156 

 

108- C. Berger, Application of Compressive Sensing to Sparse Channel 

Estimation, IEEE communications magazine, 48, pp. 164 - 174, 2010. 

109- M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, R. 

Baraniuk, Single-Pixel Imaging via Compressive Sampling, IEEE Signal 

Processing Magazine, 25 (2), pp. 83 - 91, 2008. 

110- A. Skodras, C. Christopoulos, T. Ebrahimi, The JPEG2000 Still Image 

Compression Standard, IEEE Signal Processing Mag., 18, pp. 36 - 58, 2001. 

111- H. Yu, G. Wang, Compressed Sensing Based Interior Tomography, Physics 

in Medicine and Biology, 54, 2791 - 2805, 2009. 

112- M. Lusting, D. Donoho, J. Pauly, Sparse MR: The Application of 

Compressed Sensing For Rapid MR Imaging, Magnetic Resonance in Medicine, 

58 (6), pp. 1182 - 1182, 2007. 

113- S. Aviyente, Compressed Sensing Framework for EEG Compression, IEEE 

Statistical Signal Processing / SP 14
th

 Workshop, pp. 181 - 184, 2007. 

114- A. Achim, B. Buxton, G. Tzagkarakis, P. Tsakalids, Compressive Sensing 

for Ultrasound RF Echoes using α-Stable Distribution, Engineering in Medicine 

and Biological Society, Annual International Conference of the IEEE, pp. 4303 - 

4307, 2010. 

115- M. Iwen, A Deterministic Sub-Linear Time Sparse Fourier Algorithm via 

Non- Adaptive Compressed Sensing Methods, in Proceedings of the Nineteenth 

Annual ACM-SIAM symposium on Discrete algorithms, Society for Industrial and 

Applied Mathematics Philadelphia, PA, USA, pp. 20 - 29, 2008. 

116- M. Nishant, S. Ivana, S. Bahaa,T. Malvin, Compressed Sensing in Optical 

Coherence Tomography, Proceedings of the SPIE, 7570, pp. 75700L - 75700L - 5, 

2010. 

117- S. Zobly, Y. Kadah, Compressed Sensing: Doppler Ultrasound Signal 

Recovery by Using Non-uniform Sampling & Random Sampling, Proc. 28
th

 

National Radio Science conference IEEE Catalog Number CFP11427-PRT, 2011. 



157 

 

118- S. Zobly, Y. Kadah, Novel Doppler Ultrasound Data Acquisition 

Framework Based on Compressed Sensing, International Conference on: Advance 

in Biomedical Engineering, Tripoli – Lebanon, 2011. 

119- A. Krishnamurthy, S. Samsi and V. Gadepally, Parallel Matlab Techniques, 

Image Processing, 2009. 

120- D. Smith, J. Gore, T. Yankeelov and E. Welch, Real-Time Compressive 

Sensing MRI Reconstruction using GPU Computing and Split Bregman Methods, 

International Journal of Biomedical Imaging, vol. 2012, 2012. 

121- J. Kepner, Parallel Matlab for Multicore and Multinode Computers, 

Philadelphia: Society of Industry and Applied Mathematics, 2009. 

122- H. Torp, Clutter Rejection Filters in Color Flow Imaging: A Theoretical 

Approach, IEEE Transaction on Ultrasounics, Ferroelectrics, and frequency 

control, 44 (2), 417 - 424, 1996. 

123- W. Hedrick, D. Hykes and D. Starchman, Ultrasound Physics and 

Instrumentation, 3
rd

 edition. St. Louis: Mosby, 1995. 

124- M. Shariati, J. Dripps and W. MeDicken, Deadbeat IIR Based MTI 

Filtering for Color Flow Imaging System, IEEE Ultrasonic Symposium, 2, pp. 

1059 -1063, 1993. 

125- C. Kargel, G. Hobenreich, B. Trummer and M. Insana, Adaptive Clutter 

Rejection Filtering in Ultrasonic Strain-Flow Imaging, IEEE Transaction on 

Ultrasounics, Ferroelectrics, and frequency control, 50 (7), 824 - 835, 2003. 

126- R. Losada, Digital Filters with MATLABS, The MathWork, Inc, 2008. 

127- A. Johansson, Advance Filter Design, Reference Manual, 2004. 

128- R. Mick, An Initialization Technique for Improved MTI Performance in 

Phased Array Radar, Proceedings of the IEEE, 60 (12), pp. 1551 - 1552, 1972. 

129- S. Torres and D. Zrnic, Ground Clutter Cancelling with a Regression Filter, 

Journal of Atmospheric and Oceanic Technology, 16, 1364 - 1372, 1999. 

130- Y. Liu, H. Jianxin and H. Yang, A Study of Ground Clutter Suppression 

with Regression Filter, ICSP processing, 4, 2006. 



158 

 

131- M. Richardson, Principal Component Analysis, 2009, available, 

http://people.maths.ox.ac.uk/richardsonm/SignalProcPCA.pdf. 

132- L. Smith, A Tutorial on Principal Component Analysis, 2002, available, 

http://www.sccg.sk/~haladova/principal_components.pdf. 

133- J. Shelns, A Tutorial on Principal Component Analysis, 2009, available, 

http://www.snl.salk.edu/~shlens/pca.pdf. 

134- T. kohonen, Self-Organizing Maps, New York, Springer-Verlag 1995. 

135- A. Hyvarinen and E. Oja, Independent Component Analysis: Algorithms 

and Application, Neural Network, 13, pp. 411 - 430, 2000. 

136- S. Crucis, L. Castedo and H. Cichocki, Robust Blind Source Separation 

Methods using Cumulants, Elsevier Nerocomputingm, 49, pp. 87 - 118, 2002. 

137- C. Jutten and J. Karhunen, Advance in Nonlinear Blind Source Separation, 

4
th

 International Symposium on Independent Component Analysis and Blind 

Signal Separation, (ICA 2003), Japan. 

138- G. Clifford, Biomedical Signal and Image Processing chapter 15: Blind 

Source Separation: Principal & Independent Component Analysis, Springer 2008. 

139- M. Bartlett, S. Makeig, A. Bell, T. Jung, and T. Sejnowski, Independent 

Component Analysis for EEG Data, Society for Neuroscience Abstracts, 21: 437, 

1995. 

140- Y. Kadah, Spatio-temporal Analysis of Color Doppler Information using 

Independent Component Analysis, Proc. SPIE medical Imaging, 4687, pp. 227 - 

234, 2002. 

141- A. Hyvarinen and E. Oja, A Fast Fixed-Point Algorithm for Independent 

Component Analysis, Neural Computation, 9, 1483 - 1492, 1997. 

142- A. Hyvarinen, J. Karhumen and E. Oja, Independent Component Analysis, 

John Wiley and Sons, New York, 2001. 

143- S. Zobly, A. Youssef and Y. Kadah, Doppler Ultrasound Image 

Reconstruction Based on Compressed Sensing, Submitted to SPIE. 



159 

 

144- S. Zobly and Y. Kadah, Orthogonal Matching Pursuit & Compressive 

Sampling Matching Pursuit for Doppler Ultrasound Signal Reconstruction, CIBEC 

December 2012.    

145- S. Zobly and Y. Kadah, A New Clutter Rejection Technique for Doppler 

Ultrasound Signal Based on Principal and Independent Component Analysis, 

CIBEC December 2012.  


