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ABSTRACT

The main acquisition and reconstruction technique in magnetic resonance imaging

is the Fourier imaging technique. In spite of its success in conventional applications, it

has some limitations when applied to unconventional areas such as magnetic resonance

angiography and dynamic imaging. Moreover, its sensitivity to subtle deviations in

the magnetic �elds imposed by the technique results in a severe problem of geometric

distortion. In this thesis, three novel reconstruction approaches that can solve some of

the problems associated with Fourier imaging are proposed. The �rst, which is called

pseudo-Fourier imaging, is a generalized spatial encoding method based on selective

excitations with unconventional slice pro�les combined with phase encoding. The

classical selective excitation and Fourier encoding techniques are shown to be special

cases of the new formulation. An example of using the new theory is described

and implemented. Ths second and third approaches describe two new techniques to

solve the geometric distortion problem. In the �rst, the data is processed with a

correction kernel derived from the �eld map in the domain of the distorted images.

The second technique recognizes the nature of the problem as an inverse problem of an

ill-conditioned operator that can in general be estimated. The problem is discretized

and several algebraic methods are introduced to invert the distortion operator in the

least-squares sense. These proposed novel reconstruction techniques are important

steps toward the expansion of the MRI usage in several unconventional applications

such as stereotactic neurosurgery and radiotherapy treatment planning.
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Chapter 1

INTRODUCTION

Magnetic resonance imaging (MRI) is a powerful non-invasive tool for visualizing

the inside of the human body. Like other medical imaging modalities, magnetic reso-

nance images re
ect the spatial distribution of certain tissue-dependent parameters.

When a disease causes such parameters to change from their normal values, medical

imaging is of great value to diagnose it as well as to identify its locations and spatial

extent. In this perspective, MRI is of superior performance for its ability to create im-

ages that map one of several parameters or di�erent parameter combinations. When

this versatility is added to the inherently volumetric acquisition capabilities of the

technique, MRI stands out as a unique diagnostic tool in medicine.

1.1 Basic MRI Physics

The idea of MRI is based on the e�ect of high magnetic �eld on certain important

atomic nuclei in the human body. All substances are a�ected to di�erent extents

when they are placed in a magnetic �eld. Among many substances in the body, the

hydrogen nucleus (the proton) is the most interesting from the imaging point of view.

This is mainly due to its abundance in all organic compounds in di�erent amounts

and distributions that would allow a clear distinction between them if proton images

are acquired. In nature, protons, among other nuclei, have what is called nuclear

spin. That is, they can be thought of as spinning around their axes the way Earth

turns around its axis. When a nucleus spins, it has angular momentumand when that
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spinning nucleus has a net charge, it also has a magnetic dipole moment. Magnetic

dipole moments can be thought of as tiny bar magnets that are oriented in random

directions in the absence of outside in
uences. In this state, the statistical vector

sum of all dipole moments is zero. On the other hand, in the presence of a strong

magnetic �eld, such bar magnets tend to align along the direction of that �eld. The

vector sum of all magnetic dipole moments in this case tends to have a nonzero value,

which is usually referred to as the magnetization vector ~M . An important property

of magnetic dipole moments is that they precess. This means that each of these

vectors has a �xed tail while its head is revolving, resulting in a wobbling motion.

The frequency of precession ! is related to the magnetic �eld of strength B as,

! = 
 �B (1.1)

where 
 is termed the gyromagnetic ratio that is a constant for a given nucleus and

equals to 42.577 MHz/T for the hydrogen nucleus. This important relation is called

the Larmor equation.

As a result of the precession of magnetic dipoles, a radiofrequency signal can be

detected by a coil placed around such precessing nuclei. The strength of this signal

is a direct function of the number of magnetic dipoles or equivalently to the number

of nuclei in the uniform �eld. If the imposed external magnetic �eld is designed to

have a spatial variation in such a way to create an unambiguous mapping between

the spatial locations and their precession frequencies given by Larmor equation, the

reconstruction of images of the spatial distribution of a certain nucleus is possible in

principle [1].

It should be noted that the number of spins that align with the magnetic �eld and

generate the magnetization vector is a very small fraction of the total number of spins

even under high magnetic �elds. Speci�cally, this fraction is given by the Boltzmann

ratio as a function of the magnetic �eld strength among other things. The magnetic

�eld that is applied to align the spins is called the static �eld (B0), and is usually
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chosen in the Tesla range to allow for reasonable values of the Boltzmann ratio.

This precession of the magnetization vector ~M = (Mx;My;Mz) can be expressed

as a function of the applied magnetic �eld gradients ~B = (Bx; By; Bz) by a set of

approximate equations called the Bloch equations in the form:

dMz

dt
=

�
1

T1

�
(Mo �Mz) + 
 �

�
~M � ~B

�
z

(1.2)

dMx

dt
= �

�
Mx

T2

�
+ 
 �

�
~M � ~B

�
x

(1.3)

dMy

dt
= �

�
My

T2

�
+ 
 �

�
~M � ~B

�
y

(1.4)

where Mo is the magnitude of the equilibrium magnetization vector. The time con-

stants T1 and T2 are called the spin-lattice and spin-spin relaxation times respectively.

The naming convention of the axes is such that the z-axis is along the applied static

magnetic �eld, while the other two axes can be arbitrarily chosen. Starting from an

arbitrary initial magnetization vector, these equations suggest that the magnetiza-

tion components along the x and y axes take the form of dampen sinusoids while

that along the z-axis is of exponential form. In other words, the magnetization vec-

tor spirals its way to its steady state position where it is oriented along the static

magnetic �eld. This physical phenomenon is called the free induction decay (FID).

Given that the relaxation times are direct functions of the type of substances within

the imaged subject, it is possible in principle to obtain information about the compo-

sition of an imaged subject by observing the characteristics of its FID. This is usually

done by using the above equations to tip the magnetization vector from its steady

state position and then collect the resultant FID. This tipping of the magnetization

vector was shown to be possible via applying an external RF pulse at the Larmor

frequency. This was derived from an alternative form of the Bloch equations after a

simple transformation of the coordinate system to what is called the rotating frame

of reference. This transformation utilizes a set of coordinates that rotate with the

spiraling magnetization vector providing more convenient forms for the solutions of
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Mx and My that are free of the RF frequency component. In other words, in this

rotating frame, the magnetization vector is not spiraling. Also, its tipping angle is a

direct function of the strength of the applied RF pulse and its duration [2].

1.2 Imaging Techniques

In order to reconstruct an image in MRI, a unique correspondence between the signal

from a particular location within the �eld of view and its spatial position must be

established. The most common imaging technique (and the one that brought MRI to

reality) is what is called Fourier imaging. Fourier imaging achieves spatial encoding

by employing linear magnetic �eld gradients across the imaged region. These gradi-

ents are utilized in two closely related fashions to perform spatial encoding through

either changing the frequency or the phase of signals coming from di�erent spatial

positions. In either case, a Fourier transform of the FID signal would directly yield

the desired image. This can be applied to one or all of the three spatial dimensions

thus permitting a complete volumetric imaging. In a mathematical form, the return

FID signal S(~k) can be expressed as:

S(~k) =
Z
f(~r) � ej2�~k�~rd~r: (1.5)

The object f(~r) can therefore be reconstructed as,

f(~r) =
Z
S(~k) � e�j2�~k�~rd~k: (1.6)

S(~k) is called the k-space representation of the object. The k-space vector ~k is com-

pletely determined by the applied gradient strengths and their time dependence,

which both de�ne the trajectory of ~k in the k-space during the period of the experi-

ment. In the basic form of Fourier imaging, the k-space trajectory is selected to take

a simple rectilinear form to yield a uniformly-sampled k-space representation that is

suitable for discrete Fourier transform. Nevertheless, it is sometimes advantageous
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to use other more complex trajectories. For example, spiral trajectories are used for

their relatively shorter imaging time. A computational disadvantage of such trajec-

tories arises when the k-space is sampled in a non-uniform fashion. In this case, the

reconstruction involves some added complexity resulting from the need to apply a

gridding procedure before the Fourier transform is used to obtain the image [2].

In conventional magnetic resonance imaging machines, Fourier imaging is imple-

mented through small linear gradients along each of the three spatial axes. The FID

signal from the precessing magnetization vector is detected by two coils arranged in

quadrature to receive the signals corresponding to the x and y components of the

magnetization vector. In a typical imaging experiment, the magnetization vector is

tipped and the RF signal re
ecting the FID phenomenon is observed. By selecting

the time when the data are received (i.e., echo time, TE) to control T2 relaxation and

the repetition rate of the scanning (i.e., the reciprocal of the repetition time, TR)

to control T1 relaxation, proton density images weighted by one or a combination of

these two parameters can be obtained quite 
exibly.

Since it is only possible to receive a one-dimensional signal within any given time

period, several techniques were suggested to achieve two-dimensional images through

single or multiple one-dimensional FID signal acquisitions. The simplest of these is

when one-dimensional acquisitions correspond to di�erent lines of the two-dimensional

k-space under constant gradients. After all lines covering the two-dimensional k-

space area of interest are acquired sequentially, the two-dimensional image can be

reconstructed. Alternatively, in the single FID acquisition case, time varying gradients

are used to obtain the complete area of the two-dimensional k-space in a single-shot

manner. This class of methods is called echo-planar imaging (EPI), and is considered

of great value for many applications. EPI can be implemented in a variety of ways

using di�erent two-dimensional trajectories such as zigzag-EPI, blipped-EPI, or spiral

EPI [2]. These techniques have the unique advantage of allowing extremely fast

acquisition. On the other hand, they have the disadvantages of their susceptibility
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to severe geometric distortions in the presence of magnetic �eld inhomogeneity, and

their rather demanding requirements on the available magnetic �eld gradients.

1.3 Magnetic Resonance Angiography (MRA)

In addition to imaging tissues, MRI can also be used to visualize blood vessels in

the �eld of view. When MRI is used for this purpose, it is usually called magnetic

resonance angiography (MRA). The acquired vascular images in MRA look similar to

those obtained by X-ray digital subtraction angiography (DSA). In general, MRA is

performed by utilizing either of two major principles: time-of-
ight (TOF) and phase

contrast (PC). With TOF, the blood vessels visualized using a standard fast scan yield

a bright signal as result of fresh spins in the moving blood and the steady state spin

saturation phenomena in the stationary tissues. Subsequently, selective visualization

of blood vessels in TOF MRA is achieved using the maximum intensity projection

(MIP) algorithm. In this algorithm, the acquired volume data set is scanned along a

projection direction to �nd the maximum intensity in all slices corresponding to the

location of a given pixel in the projection plane. Then, this value is recorded in that

location and the process is repeated for all pixels in the projection plane until a full

projection image in that plane is collected. This resultant image is called the MIP

image and is considered of important clinical value. It should be noted that the MIP

algorithm can be used with volume data acquired through either multiple 2-D Fourier

transform slices (2DFT) or 3-D Fourier transform (3DFT). These two methods have

several relative advantages and disadvantages that make the choice between them

for a particular application rather di�cult. For example, the 3DFT technique has

the advantages of better signal-to-noise ratio in addition to its ability to produce

very thin slices. Unfortunately, it su�ers from spin saturation problems that hinder

the technique from imaging slowly 
owing blood. On the other hand, even though a

much less severe saturation problem exists with the 2DFT technique, this comes at the
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expense of much lower signal-to-noise ratio and thicker slices. Therefore, the choice

of which of these two techniques to use depends mainly on the relative importance of

their contradicting characteristics as applied to the speci�c problem at hand [3].

The second technique, phase contrast (PC) MRA,makes use of a di�erent principle

to label the blood vessels, namely the signal phase arising from applying a balanced

bipolar gradient pulse. This bipolar pulse does not have any e�ect on the stationary

structures in the image since the positive and negative lobes of the gradient cancel

out. On the other hand, for moving structures and 
owing blood, an incomplete

cancellation takes place resulting in a cumulative phase that is a direct function of

the motion speed. Therefore, by observing this phase di�erence, it is possible to

precisely derive an image of the vasculature as well as velocity maps [1].

1.4 Clinical Applications

MRI has been used extensively in many clinical applications. Those applications in-

clude its use to image the brain, the abdominal structures, the heart, as well as in

detecting abnormalities in blood vessels in such cases as stroke. Nevertheless, there

are some areas where MRI has not been as successful as other imaging modalities. For

example, in stereotactic neurosurgery, x-ray computed tomography (CT) combined

with x-ray digital subtraction angiography (DSA) is probably the only practical op-

tion [4]. In this procedure, an electrode or a biopsy needle is directed from the scalp

to target structures deep within the brain [5]. Image data from multiple modalities

are used to visualize the three-dimensional location of the target structure as related

to the outside of the scalp. Also, it is important to detect the major blood vessels that

can intercept the path of the surgical needle on its way to that target. Even though

MRI has an advantage over other modalities for its ability to combine both structural

and vascular imaging in an inherently volumetric acquisition, patient-dependent ge-

ometric distortion problems in addition to trade-o�s between di�erent techniques of
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MRA acquisition hindered its use in important applications such as this. The geo-

metric distortion, considered to be the main problem in this application, is the result

of susceptibility mismatches that are present in many areas of the head especially

near air cavities. This distortion renders the technique unsuitable for localizing deep

structures for this high precision operation.

Another important application in which MRI has not been as successful is radio-

therapy treatment planning [6, 7]. This application also requires precise de�nition

of structures and blood vessels and therefore faces similar problems with MRI as

stereotactic localization. Hence, it is clear that new acquisition and/or reconstruc-

tion techniques need to be devised to overcome these fundamental problems in order

to make MRI more versatile and to extend its practical applications even further.

In this thesis, the problems of MRI acquisition and geometric distortion correction

techniques are considered. In Chapter 2, the theory and experimental veri�cation of a

novel MRI spatial encoding technique are presented. The new technique has potential

in several applications such as volume imaging, magnetic resonance angiography, and

dynamic imaging. In Chapters 3 and 4, the theories and experimental veri�cations of

two new approaches to solve the problem of geometric distortion are presented. The

�rst approach proposes an inverse operator to reverse the process of distortion. On

the other hand, the second approach recognized the problem as an inverse problem

of a linear Fredholm integral equation of the �rst kind and proposes suitable solvers

to obtain robust estimation of the least-squares solution to the problem. Both ap-

proaches have large potential for use with fast imaging modalities such as EPI. The

development of these three new acquisition/reconstruction techniques will have an

impact on MRI versatility and will certainly help to extend its application to new

areas.



9

Chapter 2

PSEUDO-FOURIER IMAGING (PFI)

2.1 Background

In magnetic resonance imaging, spatial localization is achieved using selective exci-

tation or Fourier encoding. These two approaches have rather di�erent, sometimes

complementary, characteristics. Selective excitation is realized by applying a band-

limited RF pulse in the presence of a slice selection gradient. The spatial resolution

attainable with this technique is determined by the slice pro�le which is a direct

function of the slice selection gradient strength and the shape of the RF pulse. In

forming an image based on selective excitation (e.g., line scanning), data are acquired

using multiple localized excitations each a�ecting a di�erent region of the imaged

�eld of view. Hence, RF excitations can be interleaved within the same repetition

time, TR, for added e�ciency. Moreover, it is possible to update the image locally

with few excitations to follow dynamic events occurring in a portion of the �eld of

view. Nevertheless, since each region is excited separately, the signal-to-noise ratio

(SNR) is expected to be rather low since no data averaging is implicitly incorporated

in this process.

On the other hand, Fourier encoding achieves spatial localization through spa-

tial frequency or phase encoding while the entire volume of interest is excited. By

applying varying amounts of Fourier encoding (phase encoding steps) to su�ciently

sample the k-space region of interest, the �eld of view can be reconstructed using a

Fourier transform operation. This means that the resolution in this case is in prin-

ciple unrestricted while keeping an excellent SNR as a direct result of the implicit
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averaging in the Fourier transform operation. Since the entire �eld of view is excited

each time, the technique is susceptible to partial saturation as a function of the time

interval between excitations. Moreover, the global nature of Fourier encoding lacks

the desirable spatial localization property, making it necessary to re-acquire the entire

data set to update any portion of the image.

The di�erences between selective excitation and Fourier encoding are well-known

and have been carefully taken into consideration in various applications. For example,

in volume imaging, multi-slice imaging takes advantage of the interleaving capability

of selective excitation to e�ciently collect images with high contrast, while 3-D ac-

quisition is routinely used to obtain high resolution, high signal-to-noise ratio images.

In certain applications, the use of either one of these two techniques may not be op-

timal and a combination of the two methods may in fact be desirable. For example,

in time-of-
ight magnetic resonance angiography (TOF MRA), the trade-o� between

signal-to-noise ratio, slice thickness, and contrast makes it suboptimal to use either

multi-slice or 3-D acquisition. This motivated the introduction of hybrid techniques

to combine features from both techniques. For example, in multiple overlapping thin

slab acquisition (MOTSA) [11], the volume of interest is scanned via the acquisition

of a number of slabs, each acquired in a 3-D fashion while the di�erent slabs are

covered in a multi-slice fashion. In this case, the thin slabs allow for good 
ow con-

trast while the 3-D encoding within the slabs provides good spatial resolution and

an improved signal-to-noise ratio. In spite of the success of such hybrid techniques,

they are limited by their data ine�ciency arising from slab overlapping (as much as

50%). Therefore, a technique that allows smooth and 
exible combination of the

characteristics of selective excitation and Fourier encoding while acquiring the data

e�ciently can be advantageous.

More recently, the application of MRI has been extended to interventional and

dynamic imaging studies. In most of these applications, only a localized region needs

to be updated rapidly. Such applications inspired the development of several novel
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encoding techniques such as wavelet encoding [12] and SVD-based encoding [13].

Nevertheless, problems in the practical implementation and use for actual clinical ap-

plications hindered such techniques from becoming realistic alternatives. Therefore, a

spatial encoding technique that allows for fast localized image updating while keeping

a simple implementation procedure is desirable for such applications.

In this chapter, the problem of magnetic resonance imaging with 
exible excita-

tion pro�les acquired at a number of phase encoding steps is considered [8, 9, 10].

In particular, a novel approach for spatial encoding based on acquiring a set of win-

dowed Fourier transform coe�cients is developed. This new procedure is shown to be

a general technique representing a 
exible hybrid of selective excitation and Fourier

encoding. In particular, the proposed technique corresponds to the multi-slice tech-

nique at one extreme and the Fourier encoding technique at the other. The conditions

under which the reconstruction process is stable are described demonstrating that its

implementation can be readily achieved on the current MRI systems. Finally, the ex-

perimental results of implementing the new technique on a commercial MRI machine

are presented.

2.2 Theory

2.2.1 Decomposition of continuous functions using frames

Consider a continuous function f 2 L2(R), where L2(R) is the Hilbert space of all
functions ff : R ! Cg, R is the set of real numbers and C is the set of complex

numbers. A decomposition of this function can be obtained in terms of a set of basis

functions that form a frame for L2(R). An interesting class of frames is the one

generated from a single function w(x) 2 L2(R) (often called the basic window) by

translation and modulation in the form fwm;n(x) = exp(j2�!mx) � w(x� xn)g. Such
functions are called theWeyl-Heisenberg coherent states and have several applications

in quantum physics [14]. When these functions form a frame for L2(R), they can be
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used to decompose any function in this functional space with the windowed Fourier

transform de�ned as:

WFT (f)(m!o; nxo) =
Z

1

�1

f(x) � w(x� nxo) � e�j2�m!oxdx (2.1)

with !o; xo > 0 and m;n 2 Z, the set of integers. In the special case when the

coherent states are derived from a Gaussian function, this decomposition is called the

Gabor transform. In a more general sense, the basic window is a general function

that is usually chosen to have a compact support in either the frequency or the time

domains. The resultant windowed Fourier transform consists of uniform sampling of

the phase-space in what is known as the Gabor lattice [15]. This transform has a

stable inverse provided that the set of coherent states composed of the basic window

and its translations and modulations is complete [14]. In other words, any function

f(x) 2 L2(R) can be reconstructed from its decomposition into Weyl-Heisenberg

coherent states in this case.

2.2.2 Pseudo-Fourier imaging

Consider now the problem of imaging a 1-D object of signal intensity f(x). The signal

generated by applying a selective excitation with pro�le W (x) centered at xn is of

the form:

rselective =
Z

1

�1

f(x) �W (x� xn)dx: (2.2)

On the other hand, using a hard pulse to uniformly excite the full extent of the object

combined with phase encoding at a step m yields,

rPE =
Z

1

�1

f(x) � e�j2�m!oxdx: (2.3)

Hence, when a selective excitation centered at xn is combined with a phase encoding

step m, the resultant signal takes the form:

rn;m =

Z
1

�1

f(x) �W (x� xn) � e�j2�m!oxdx: (2.4)
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In other words, the measured signal is the windowed Fourier transform coe�cient

corresponding to translation n and modulation m of the basic window W (x). As

a result, by properly choosing the selective excitation pro�le such that the basic

window and its translations and modulations form a frame for L2(R), the object

spatial distribution can be reconstructed from these coe�cients covering the area of

interest in the phase-space. An important observation that should be noted here is

that the acquired coe�cients are exactly the result of the continuous integration form,

not of a discrete approximation.

Hence, to apply the theory, excitation pro�les are chosen to be members of the

class of functions with frequency spectra Ŵ (! � n!o), where Ŵ (�) is a basic window
and n takes the values 1; 2; � � � ; Ns. In other words, these excitations have spatial

pro�les given by

W (x� xn) = Ŵ (
 �G � (x� nxo)); (2.5)

which represent repetitions of the same excitation pro�le with di�erent frequency

shifts. It can be shown that Eqn.(2.4) can be expressed in the form of a convolution

as:

rm(xn) =
�
f(xn) � ej2�!m�xn

�
�W (�xn): (2.6)

Assuming su�cient sampling, the discrete-time Fourier transform (DTFT) can be

applied to this convolution with respect to xn to obtain:

Rm(!) = DTFT frm(xn)g = F (! + !m) � w(�!): (2.7)

Here F (�) is the Fourier transform of the signal intensity, w(�) is the Fourier transform
of W (�) with a constant term dropped out, and !m is the spatial frequency of the

phase encoding frequency step m. Hence, if the excitation pro�le w(�) has a compact

support, Rm(!) will essentially be a windowed version of the original k-space of the

object. Moreover, it can be seen that the e�ect of phase encoding !m in this formula

is to shift the focus of this k-space window to scan di�erent parts of the original
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k-space. Hence, by properly selecting the number and step of phase encoding such

that the overall span of this windowing forms a complete cover of the k-space interval

of interest, it is possible to �nd an analytical solution to F (!) in the form:

F (!) =

MP
m=1

Rm(! � !m)

MP
m=1

w(�! + !m)

(2.8)

whereM is the number of phase encoding steps. It should be noted that this solution

is valid only for ! values within the support of the denominator. This is equivalent to

the condition that the basic window and its translations and modulations form a frame

to L2(R). Moreover, it is possible to reconstruct a limited k-space approximation of

the object by acquiring a set of windowed Fourier transform coe�cients to uniformly

cover the phase-space area of interest. Block diagrams of the data acquisition and

the reconstruction procedure of PFI are shown in Figs.(2.1) and (2.2).

2.2.3 Formal reconstruction stability conditions

It is important here to state and discuss the formal validity conditions under which

the above result is true and the reconstruction is stable. First, in Eqn.(2.7), to be able

to invoke the discrete-time Fourier transform without encountering aliasing problems,

the sampling along x should satisfy the Nyquist condition. This requirement is clearly

determined by the basic window used in the data acquisition, not the extent of the

k-space to be covered in the reconstruction. Given that the received signal is actually

a windowed version of the original k-space, the sampling scheme is dictated by this

much narrower spectrum. The second validity condition is that the set of coherent

states used in the reconstruction form a frame for L2(R). It can be easily shown

that this condition is satis�ed when wo � xo � 1 and the combined support of the

basic window and its translations in either the time or the frequency domains forms

a complete cover to the real line interval of interest in that domain. This condition

can be alternatively visualized from the fact that the reconstruction formula will have
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poles when the support of the denominator contains some holes. It should be noted

that this condition does not require the support of the di�erent shifts of the basic

window to be non-overlapping, i.e., their union being a tight cover of the real line

R corresponding to the spatial frequency. Nevertheless, any degree of overlapping is

an ine�ciency in the implementation since some parts of the k-space will be covered

more than once during the data acquisition. This translates into extra acquisition

time since more phase encoding steps will be needed to form the k-space cover. An

e�cient implementation should therefore be as close as possible to a tight cover.

2.3 Example of Applying PFI Theory

As an example of the above theory, let us now consider the case when a square pulse

is used. That is, the basic RF excitation envelope function is given by:

w(t) =

8><
>:

1 for jtj � �=2

0 for jtj > �=2
(2.9)

where � is the temporal support of the pulse. The spatial pro�le of this excitation

is approximately a Sinc function peaked at the slice location for 
ip angles below

30�. In this case, the imaging window of PFI in the k-space approximately takes the

form of a rectangular window as shown in Fig.(2.3). To assess the validity of this

approximation, the slice pro�les were computed from the exact solution of the Bloch

equations [16] for the above RF excitation at di�erent 
ip angles and the results are

shown in Fig.(2.4). The corresponding imaging window shapes of PFI computed by

Fourier transforming the excitation pro�les are shown in Fig.(2.5). As can be seen, the

approximation of a Sinc excitation pro�le and a rectangular imaging window asserted

above is valid. The spatial frequency span of the excited pro�le is approximately

equal to 
 � G � � (m�1), where 
 is the gyromagnetic ratio, G is the slice selection

gradient in use.

Suppose now that it is required to compute a band-limited k-space approximation
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of the the imaged object within �BWmax=2. To satisfy the reconstruction stability

conditions, the support of the excitation � should be related to the number of required

phase encoding steps M as,

M � (
 �G � � ) � BWmax or � � BWmax

M � 
 �G (2.10)

The spacing of acquired slices should satisfy the Nyquist criterion for spatial frequency

bandwidth 
 �G � � (m�1). Consequently, the required number of slices for an object

of length L is given by:

Ns � ceiling

�
L �BWmax

M

�
(2.11)

The object k-space is constructed by concatenating segments of it from di�erent

excitations as shown in Fig.(2.2). It is worth noting that in the above example the

coverage of the k-space can be made tight. In this case, all parts of the k-space are

acquired only once, making this implementation most e�cient.

2.4 Implementation under Practical Conditions

In practice, possible gradients and pulse envelope shapes are limited by the slew rates

of the available imaging system. This means that the exact theoretical rectangular

pulse and gradient shapes considered in the above example or other similar shapes

may not be feasible to generate in the exact sense on practical systems. Therefore,

the problem of generating the excitation pro�les corresponding to these theoretical

pulses by using RF pulses and gradients with �nite ramp-up and ramp-down periods

is considered here.

The Bloch equations of nuclear magnetization in the rotating frame can be put in

the following matrix form [16]:

_~M =

2
666664
�1=T2 
 ~G � ~x �
B1;y

�
 ~G � ~x �1=T2 
B1;x


B1;y �
B1;x �1=T1

3
777775 �

~M (2.12)
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Where ~M is the magnetization vector in the Cartesian coordinates, and
_~M is its

time derivative; B1;x and B1;y are the two components of the RF pulse; ~G � ~x is the

dot product between the gradient system and the spatial location, and T1 and T2

are the spin-lattice and spin-spin relaxation time constants respectively. For most

practical applications, the pulse duration is very small compared to the values of T1

and T2 of interest. Hence, the above equation can be simpli�ed by neglecting the

e�ect of relaxation. This amounts to the same matrix equation but with zeros on the

diagonal elements of the system matrix. In the most general form of this equation,

the quantities B1;x, B1;y and ~G are all time varying. That is, the system is in the

form of a bilinear time-varying homogeneous state equation in the form:

_~� = A(t; ~G;B1;x; B1;y) � ~�: (2.13)

In a typical spin manipulation problem, it is required to design an excitation in terms

of ~G, B1;x, and B1;y such that the magnetization vector at a given time becomes a

given desired vector. Therefore, possible methods to �nd solutions to the above state

equation should be investigated. It can be shown that a su�cient condition for the

existence of a unique solution to this system is that all the elements of the matrix

A should be continuous. This condition is usually satis�ed in all magnetic resonance

problems of interest. When the gradients and RF pulse shapes are all constant, a

direct solution to the problem can be obtained of the form,

~x(t) = eA�(t��) � ~x(� ) (2.14)

Nevertheless, there is no direct method to obtain this unique solution for any gen-

eral gradient/RF pulse combination. Also, the available numerical solutions to this

system lack the clear perspective into the relationships between the di�erent control

parameters that the closed form solution presents. Therefore, it is advantageous to

look for closed form solutions for this problem under special conditions that apply to

our physical system.
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Lemma 1 Let B(t; � ) =
tR
�
A(�)d�, then a solution to the general time varying ho-

mogeneous system _~x(t) = A(t) � ~x(t) exists in the form ~x(t) = eB(t;�)~x(� ) if A(t) and

B(t; � ) commute. That is, whenever B(t; � ) �A(t) = A(t) �B(t; � ).

Proof: Di�erentiating both sides of the proposed solution with respect to t, it can

be shown that, _~x(t) = eB(t;�) � A(t) � ~x(� ). If A(t) and B(t; � ) commute, it follows

that A(t) commutes with any �nite-order polynomial of B(t; � ). Given that the

matrix exponential of B(t; � ) can be expressed as a �nite-order polynomial of B(t; � )

from Cayley-Hamilton theorem, it commutes with A(t). Invoking this property to

rearrange the right-hand side, the equation takes the form, _~x = A(t) � eB(t;�) � ~x(� ) =
A(t) � ~x(t). Therefore, The proposed form is a solution to to the time-varying system

equation. From the uniqueness of the solution of this problem, this solution must be

the unique solution.

Theorem 1 (Pro�le invariance) For a magnetic resonance imaging system with

general but similar RF pulse envelope and gradient shapes up to a constant multiplier,

the resultant excitation pro�le will be the same for all shapes that integrate to the same

value over the pulse duration.

Proof: Since the gradient and RF pulse pro�les have the same shape up to a

constant, then A(t) can be decomposed into the multiplication of a constant matrix

Ac multiplied by a function of time �(t). Hence, B(t; � ) can also be decomposed into

a similar multiplication of Ac and the integral of �(t) over the excitation duration.

As a result, A(t) and B(t; � ) commute in this case and it follows directly that the

solution to the Bloch equations is in the form given by the lemma. Since the state of

the magnetization vector is only important at the end of the excitation period, the

solution will be the same for all integrable functions with the same integration value

over the excitation period.
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Corollary 1 RF pulse shapes and gradients with similar ramp-up and ramp-down

times will produce excitation pro�les similar to that of a rectangular pulse with the

same area.

As a consequence of the above theorem, it can be seen that in principle practi-

cal gradients and pulse envelopes can indeed be used with PFI without losing the

e�ciency associated with the ideal rectangular pulse and gradient shapes. It should

be noted that the derivation of the above theorem did not involve any assumptions

regarding the 
ip angle. Therefore, it can be applied to large 
ip angles as well.

2.5 Signal-to-Noise Ratio of PFI

Now consider the evaluation of the signal-to-noise ratio (SNR) in the general case of

the new technique. The only source of noise is assumed to be the random noise arising

from the combined resistance of the imaged subject and the receiver coil. Assuming

that Ns slices at M phase encoding steps are acquired to recontsruct an N -point

object, these samples will undergo the following steps in the reconstruction process:

1. Ns-point discrete Fourier transform.

2. Inverse �ltering (scaling by constants).

3. N -point inverse discrete Fourier transform.

These steps can be described mathematically as follows. First, the acquired samples

take the form:

r̂m(xi) =

1Z
�1

f(x) �W (x� xi) � ej2�kmxdx+ ni;m: (2.15)

where ni;m � N (0; �2), an independent and identically distributed additive zero-mean

Gaussian white noise with variance �2. Hence, the noise contamination of di�erent
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samples will be uncorrelated from the properties of the Gaussian distribution. Given

the Ns samples obtained at a phase encoding step m, an Ns-point discrete Fourier

transform is applied thus yielding,

R̂m(k) = DFT fr̂m(xi)g = F (k + km) � w(�k) + ~nk;m: (2.16)

where ~nk;m � N (0; Ns�
2). Since the discrete Fourier transform is an orthogonal

transformation, ~nk;m values are uncorrelated.

The next step in the reconstruction process is the possible use of inverse �ltering

to restore general imaging window shapes to the ideal rectangular shape. This process

can be expressed as:

�Rm(k) = R̂m(k) � g(k) = F (k + km) � w(�k) � g(�k) + �nk;m: (2.17)

Here,

g(k) �w(k) =
8><
>:

1 for k 2 Supportfw(k)g
0 for otherwise:

(2.18)

Now the noise term becomes �nk;m � N (0; Ns�
2jg(k)j2). In the ideal case of a rect-

angular pro�le, g(k) = 1 and �nk;m � N (0; Ns�
2). Since this step does not involve

any mixing of k-space samples, the noise within each of these samples continue to be

uncorrelated after inverse �ltering.

In the �nal step, the full k-space is composed by concatenating these pieces and

an N -point inverse discrete Fourier transformation is performed to obtain the �nal

image. That is,

�f (x) = IDFTf �F (k)g = IDFTf
MX
m=1

�Rm(k � km)g = f(x) + n0x (2.19)

where M � Ns = N , the total number of points. Since the noise components in

the k-space samples are uncorrelated, the noise in the �nal image is given as n0x �
N (0; �2

PNs

k=1 jg(k)j2=(M �Ns)). It can be seen that the noise power is independent of

the location x and therefore will be uniform in the obtained image. It should be noted
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the noise in di�erent pixels will be correlated when an inverse �lter g(k) 6= 1 is applied.

Two special cases of interest should be pointed out from the above expression. In the

�rst case of volume imaging where Ns = 1 and M = N , the noise variance is �2=N .

On the other hand, for the second special case of selective excitation, Ns = N and

M = 1, and therefore, the noise variance is simply �2. These two values mark the two

ends of the range of possible values for the noise variance. Other values within this

range can be achieved with the choice of Ns and M of the pseudo-Fourier imaging.

Another important ratio that can be computed for pseudo-Fourier imaging is the

e�ciency �gure of merit de�ned as [11],

� =
SNRp
time

: (2.20)

This ratio is used mainly to compare di�erent imaging techniques having di�erent

SNR values and acquisition times. For example, when selective excitation is compared

to Fourier imaging, the ratio takes the form,

�Fourier

�Selective
=
p
N; (2.21)

where imaging times are assumed to be the same for both techniques. Similarly,

the comparisons between pseudo-Fourier imaging and these two techniques can be

computed as:

�PFI

�Selective
=

vuut NPNs

k=1 jg(k)j2
; (2.22)

and,

�PFI
�Fourier

=

s
1PNs

k=1 jg(k)j2
: (2.23)

It should be noted that the e�ciency �gure of merit does not take into account

slice interleaving. Therefore, the actual e�ciency for selective excitation and pseudo-

Fourier imaging may be higher in practice.
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2.6 Potential Applications of PFI

As a general encoding method, PFI can be applied in a number of areas in MRI. In

the following, three possible applications are discussed in some detail as examples.

2.6.1 Volume imaging

Currently, volume imaging is performed through either the acquisition of multiple

thin slices or phase encoding in the slice direction. Multiple slice acquisition has the

advantage of slice interleaving which allows the use of suitable TR values for proper

contrast. On the other hand, multi-slice imaging su�ers from slice pro�le limitations

as well as low SNR. With PFI, interleaving can be used to excite the slabs while

keeping Fourier encoding which provides better resolution and SNR. Moreover, the

trade-o� between these characteristics can be controlled 
exibly through the selection

of the number of slices and phase encoding steps.

2.6.2 Magnetic resonance angiography (MRA)

In MRA based on time-of-
ight contrast, problems are often encountered in asso-

ciation with both 2-D (multi-slice) and 3-D (thick volume) approaches. The 2-D

acquisition provides excellent 
ow contrast but has a limited slice resolution and

SNR. On the other hand, while the SNR and slice thickness are not problematic in

3-D acquisition, saturation of the moving spins in the blood from repeated excita-

tions degrades 
ow contrast. Hence, a hybrid between the two techniques can be

advantageous. PFI provides a natural vehicle for such a hybrid technique. It should

be noted here that PFI is di�erent from the MOTSA (multiple overlapped thin-slab

acquisition) technique which is based on conventional Fourier imaging [11]. Moreover,

MOTSA su�ers from a high degree of redundancy in data acquisition as a result of

overlapping between consecutive slabs. In contrast, Pseudo-Fourier imaging can be

implemented without any redundancy in the data acquisition process.
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2.6.3 Dynamic imaging

Many authors have suggested di�erent methods of reduced data acquisition, either

in the k-space or the spatial domain [17, 18]. The objective of these methods is

to obtain fast updates of the dynamic information within a given image. Wavelet

encoding can be potentially used to limit the dynamic information in both domains

[12]. However, its implementation is cumbersome, if not impractical, for many reasons

[19, 20]. From the above description of the pseudo-Fourier technique, it can be seen

that PFI readily permits reduced data acquisition in both domains. For example, to

reduce the updated k-space data, one can acquire only the low phase encoding steps.

On the other hand, when the dynamic event is known a priori to be localized to

within only a small portion of the image, one can limit the number of updated slices.

In this case, the pseudo-Fourier technique will only acquire those selective excitations

that are localized around the dynamic object, providing a better temporal resolution

for the dynamic imaging sequence.

2.7 Experimental Veri�cation of PFI

To experimentally demonstrate the new technique, PFI was implemented on a Siemens

Magnetom Vision MR scanner (Siemens Medical Systems, Iselin, NJ). Volume data

were acquired for a standard resolution phantom in which the pseudo-Fourier tech-

nique was used to reconstruct the slice direction. The data were obtained using a

FLASH sequence [22] with a 
ip angle � of 25�, a TR of 15 ms, and a TE of 6 ms. A

512 �s square excitation pulse pro�le was used in the presence of a 2.9 mT/m gradient

for selective excitation. The number of acquired slices (Ns) was 19 and these slices

were 16 mm apart. In addition to the in-plane encoding (25:6cm� 25:6cm FOV and

256�96 matrix), the number of phase encoding steps along the slice direction for the

pseudo-Fourier technique (M) was 16. The data were then used to reconstruct a total

of 304 slices 1-mm thick using Eqn.(2.8). Reformatted images along the PFI and fre-
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quency encoding directions from the volume data reconstructed using PFI are shown

in Fig.(2.6) along with a zoomed version to show the 1-mm bars obtained with both

PFI and conventional 2-D Fourier encoding for comparison in Fig.(2.7). The pseudo-

Fourier technique was used in the horizontal direction. The images exhibit 1-mm

resolution in the PFI direction, in agreement with what the pseudo-Fourier theory

predicted. The comparison between the two images indicates that the new technique

provides a similar resolution as the conventional Fourier encoding. Nevertheless, the


exibility of the new technique in combining desirable features of multi-slice and

volume imaging is a de�nite plus for many applications.

Examples of using PFI in MRA are shown in Figs.(2.8) and (2.9) for window sizes

of 8 mm and 16 mm respectively. A volume of 200 � 200 � 128 cm3 was covered

by a 256 � 192 � 128 matrix with PFI in the third dimension. The total acquisition

time in both sequences was 12 minutes. As can be seen, the smaller window provides

better detail while the larger window has a better SNR. The images also exhibited

good vessel contrast despite the fact that the sequences are not yet optimized.

To demonstrate the potential of PFI for dynamic imaging applications, both

spatial and k-space localization are utilized in this example. Images were recon-

structed with various amounts of data omitted to simulate reduced data acquisition.

In Fig.(2.10), di�erent portions of the image were reconstructed using fewer phase en-

coding steps. This was done by using only �ve encoding steps for the slices covering

these regions while the full data for the other slices was used in the reconstruction.

As can be seen, the resultant image presents a localized low-pass �ltered portion in

the corresponding slice locations. In the case of one slice, the image portions corre-

sponding to this slice in the volume of interest can be updated at a rate of 75 ms for

each image in the volume.
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2.8 Discussion

To illustrate the hybrid nature of PFI, two extreme cases of the technique can be

considered. In the �rst, when the excitation pro�le covers the entire volume, the

technique becomes equivalent to the conventional volume imaging. In this case, the

number of points in the PFI reconstruction is equal to the number of phase encoding

steps (N =M) with a single slice (Ns = 1). This represents the approach in volume

imaging where the k-space is sampled by phase encoding. On the other extreme, when

the excitation pro�le is very thin, PFI corresponds to the conventional multi-slice

imaging. This is the case when the number of points in the PFI reconstruction is equal

to the number of slices (N = Ns) with no phase encoding applied (M = 1). Therefore,

by selecting the parameter M , one can basically move anywhere between these two

extreme cases to obtain a tailored hybrid technique for the speci�c application at

hand.

From the Fourier uncertainty principle, any function and its Fourier transform

cannot both have compact support. Applying this principle to the compact windowed

k-space acquisitions of PFI, it can be shown that the spatial domain representation of

each of these windows is in�nite in extension in principle. As a result, to perform the

discrete-time Fourier transform operation in Eqn.(2.7) in the exact sense, an in�nite

number of samples is required. In practice, a truncated sampling is obtained. In our

implementation, due to the implicit approximation in using the truncated sampling

in the discrete Fourier transform, the resultant k-space is basically the convolution

of the Fourier transform of the sampling window function with the true k-space,

corresponding to blurring in the computed k-space. This blurring is usually negligible

since the k-space is often smooth.

As an unconventional spatial encoding technique, an interesting comparison arises

between PFI and other experimental techniques such as SVD or wavelet encoding.

The SVD technique is based on the availability of a priori knowledge regarding the
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object to be imaged [13]. Using this knowledge, it may be possible to determine

a reduced set of acquisitions to obtain images that are closest to the original in a

least-squares sense. One potential problem of the SVD approach is that in many

cases the singular value decomposition of the object yields a set of singular values

that are very close making the reduced representation impossible. The main problem

for the SVD technique arises from the availability and applicability of the needed a

priori information [21]. This is especially problematic in applications such as dynamic

imaging where the image content may undergo drastic changes in a dynamic event.

In other words, the singular values of the dynamic information may not be similar

to those of the static images known a priori. The pseudo-Fourier technique does not

assume such a priori description of the imaged object.

Now consider the comparison between PFI and the wavelet encoding technique

[12]. The motivation of implementing wavelet decomposition in most of its original

applications is to have basis functions maintaining localization properties in both

the spatial and k-space domains. This translates into less ringing artifacts in both

domains while retaining the completeness and invertibility of the transform. The main

di�erence between the wavelet encoding and PFI is that the space-frequency plane in

the wavelet encoding is sampled non-uniformly, unlike with PFI where it is uniformly

sampled on a Gabor grid. Both wavelet encoding and pseudo-Fourier techniques

are based on reconstructing the object through obtaining windowed versions of the

object spectrum. Nevertheless, the windows used in wavelet encoding are usually

overlapping and of di�erent widths, whereas the windows in PFI are identical. This

makes the implementation of PFI much easier than wavelet encoding.

The computational complexity of PFI is estimated to be O(N logN) 
ops for re-

constructing an N -point line. This estimate is independent of the window shape used

(or equivalently the basis functions used) with a possible increase of less than 10% in

acquisition time in the case of overlapping windows (non-orthogonal basis functions).

This presents a signi�cant reduction of the reconstruction complexity over encoding
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techniques using Hadmard or wavelet basis functions which have reconstruction al-

gorithms with a complexity of O(N2) 
ops. This reduction in the computational

complexity amounts to several orders of magnitude reduction in the reconstruction

time with PFI. The main reason for this reduction is the special structure of the PFI

basis functions which allows the use of FFT.

The performance of PFI in the presence of B0 inhomogeneity can also be easily un-

derstood. Since the slice pro�le is the same for all excitations, the associated gradient

strength is uniform all along the experiment time. Given that the B0 inhomogeneity

e�ect depends mainly on the gradient strength and that the reconstruction process

involves only Fourier transformations, the e�ect of magnetic �eld inhomogeneity in

the direction encoded by PFI will be very similar to that encountered with Fourier

imaging. The stronger the �eld gradient, the less the image distortion resulting from

the magnetic �eld inhomogeneity becomes.
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Figure 2.1: Data acquisition in PFI.
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Figure 2.3: RF excitation related to the imaging window of PFI. A rectangular ex-

citation pulse yields a Sinc pro�le in the spatial domain which in turn provides a

rectangular window of the k-space of the imaged object.

Figure 2.4: PFI excitation pro�les using a rectangular RF pulse at di�erent 
ip angles.

The deviation from the ideal Sinc pro�le is evident at high 
ip angles.
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Figure 2.5: PFI Imaging windows using a rectangular RF pulse at di�erent 
ip angles.

The deviation from the ideal Sinc pro�le is evident at high 
ip angles.
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Figure 2.6: Experimental result of imaging a resolution phantom with PFI. The PFI

images (left) exhibit a similar resolution to the comparison images obtained with

Fourier imaging (right) in the PFI direction (horizontal).
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Figure 2.7: Zoomed version of Fig.(2.6) to show the 1 mm resolution lines.

Figure 2.8: MIP images obtained with PFI with window size of 8 mm. PFI was used

to encode the axial direction.
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Figure 2.9: MIP images obtained with PFI with window size of 16 mm. The images

look less noisy but detail visualization is not as good as Fig.(2.8).

Figure 2.10: Example of spatial/k-space localization capabilities of PFI for potential

use in dynamic imaging: usual PFI reconstruction (left), reduced k-space acquisition

in 1 PFI slice (middle), and reduced k-space acquisition in 3 PFI slices (right).
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Chapter 3

SIMULATED PHASE EVOLUTION REWINDING

(SPHERE)

3.1 Background

In magnetic resonance imaging, linear magnetic �eld gradients are applied to achieve

spatial encoding. Such an encoding scheme can be sensitive to static �eld (B0) inho-

mogeneity because of its similar e�ect to that of the applied gradients. Consequently,

image degradation often arises when signi�cantB0 inhomogeneity exists. In sequences

where the traversal of the k-space in a given direction is linearly related to the time

within the sampling window (e.g., single-shot EPI), image degradation appears as

local displacement and intensity modulation. For more complicated sequences such

as segmented EPI with centric reordering and spiral EPI, the relationship between

the k-space variable and the time within the acquisition window is nonlinear. In

this case, the B0 inhomogeneity e�ect generally leads to a position-dependent local

blurring that degrades the spatial resolution achievable with these sequences. In such

clinical applications as stereotactic localization and radiotherapy treatment planning,

geometric accuracy is essential and B0 inhomogeneity-induced distortions in MRI

cannot be tolerated [4, 5]. Also, in functional MRI, severe distortions in EPI im-

ages make anatomic referencing using images obtained with other sequences di�cult.

Therefore, it is necessary to correct for such distortions in order to expand the use of

MRI in these �elds in addition to improving the obtainable image quality in general.

Many authors have suggested and implemented di�erent methods to overcome

the problem of inhomogeneity-induced image distortions. These techniques can be
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generally classi�ed into two main categories according to the way the inhomogeneity

inverse operator is designed. The �rst category includes the methods based on esti-

mating an approximate inhomogeneity inverse operator through �eld mapping. Field

maps can be used to correct shift distortions in the spatial domain by computing

the corresponding pixel shifts and unwarp the image [7, 28, 29, 31]. Alternatively,

they can also be used to modify the k-space while computing the spatial domain as

with the conjugate phase method [30, 37]. Other techniques also used the computed

�eld maps to derive analytical models for the distorted space-frequency mapping in

di�erent simpli�ed forms that allow for fast correction [26, 39, 40]. Finally, there was

an attempt to solve the inhomogeneity problem algebraicly by inverting a very large

approximate matrix operator to solve for a vector composed of the whole image [41].

The second category of correction techniques includes the methods that do not

require �eld mapping. The most important of such methods is the one that uses two

images acquired with reversed gradients [32]. Since the inhomogeneity e�ect does

not change between the two images, the direction of the resultant distortions will be

di�erent between the two. Hence, by comparing the two, it is possible to derive a

distortion-free image. It should be noted, however, that this method corrects only

shift distortions.

In this chapter, a general approach for reducing B0 inhomogeneity e�ects is pro-

posed [23, 24]. Observing that image degradation due to B0 inhomogeneity arises

from the phase accrual in the long data acquisition window, the present approach in-

troduces the concept of phase rewinding by numerically generating a corrected k-space

data set based on an initial estimate of the image and a corresponding �eld map. After

phase rewinding, the k-space data set is Fourier transformed to obtain the corrected

image. This approach is termed Simulated PHase Evolution REwinding (SPHERE).

In the simplest case, SPHERE resembles the Fourier space shift technique introduced

by Weissko� and Davis [31]. However, since SPHERE is conceptualized based on

the data acquisition process, it is more general and can be applied to other data
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acquisition schemes. With proper approximations, the computational complexity is

comparable to existing techniques [37, 38, 39]. This chapter describes the technical

details of SPHERE and provides a rigorous and complete theoretical analysis of the

technique. Finally, the technique is experimentally demonstrated using data obtained

with di�erent scanning sequences.

3.2 Theory

Consider imaging an object f(~r) in the presence of magnetic �eld inhomogeneity

�B(~r) which corresponds to an o�-resonance frequency ��(~r) = 
 ��B(~r). Ignoring
relaxation e�ects, gradient imperfections, and T2* decay, the signal acquired from

this object in the presence of Fourier encoding takes the form:

D(~k) =
Z
f(~r) � ej2���(~r)t(~k)�j2�~k�~r d~r (3.1)

where D(~k) is the signal sampled with Fourier encoding ~k, and t(~k) is the time at

whichD(~k) is sampled. When the data acquisition window is small relative to the o�-

resonance frequency, i.e. (max(t(~k))�min(~k)))�j��(~r)j � 1, the inhomogeneity term

in Eqn.(3.1) is essentially independent of ~k and leads to a TE-dependent phase factor

in the estimate of f(~r) that is eliminated in the magnitude image. For sequences

such as EPI and spiral where the data acquisition window is very wide (e.g., 100 ms)

and the inhomogeneity term is ~k-dependent, severe image distortion and blurring can

occur.

To remove the inhomogeneity induced e�ects in the acquired data, it is necessary

to undo the phase e�ect in Eqn.(3.1), which depends on both ~r, and ~k. An exact

solution to this problem can be achieved only if f(~r) and ��(~r) are known. In this

work, an approximate solution is derived based on this principle. Without the exact

knowledge of f(~r), an initial estimate from the acquired data, f̂(~r) , is used. An

estimate of the o�-resonance function, ��̂(~r), is derived from the phase-di�erence of
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images acquired at two di�erent echo times using the sequence under consideration.

With this approach, ��̂(~r) is a�ected by the B0 inhomogeneity but exactly regis-

tered with the initial estimate of f̂(~r). Mathematically, the rewinding process can be

described as

D̂(~k) =
Z
f̂(~r) � e�j2���̂(~r)t(~k)�j2�~k�~r d~r (3.2)

The rewinding process generates a simulated k-space data set, D̂(~k), which is subse-

quently used to reconstruct the �nal image. An intuitive interpretation of the correc-

tion technique is that it essentially redistributes f̂(~r) according to the o�-resonance

frequency map and the characteristics of the imaging process. A block diagram of

the correction process is shown in Fig.(3.1).

The e�ect of the phase-rewinding process described in Eqn.(3.2) can be under-

stood with the following analysis in which a 1-D object is considered without loss of

generality. The initial estimate, f̂(x), can be expressed as:

f̂(x) =
Z

1

�1

ej2�kx
Z

1

�1

f(�) � ej2���(�)t(k)�j2�k� d� dk (3.3)

which can be expressed as the inner product of f(x) and a distortion kernel, 	, such

that,

f̂ (x) =
Z

1

�1

f(�) �	(�; x) d� =< f;	 > (3.4)

with

	(�; x) =
Z

1

�1

ej2���(�)t(k) � e�j2�k(��x) dk (3.5)

being the distortion kernel. Note that Eqn.(3.4) is not a simple convolution since

	(�; x) is not shift invariant. If the inhomogeneity function is zero, the distortion

kernel is a �-function (the identity kernel). Otherwise, it is sparse in general and

could be ill-conditioned. It is straightforward to show that the correction method

described above applies a correction kernel,

�(�; x) =
Z

1

�1

e�j2���̂(�)t(k)e�j2�k(��x) dk (3.6)



39

to f̂(x) such that

f̂c(x) =
Z

1

�1

f̂(�) � �(�; x) d� (3.7)

Combining Eqns.(3.4) and (3.7),

f̂c(x) =
Z

1

�1

f(�) � �(�; x) d� (3.8)

where

�(�; x) =< �;	 >=
Z

1

�1

�(�; x) �	(�; �) d� (3.9)

Eqns.(3.7) and (3.8) indicate that the e�ect of SPHERE is to process f̂ (x) with a

restoration kernel such that the resultant estimate, f̂c(x), corresponds to the original

function integrated with a compound kernel, �.

The e�ectiveness of the correction process (in terms of the residual error) is fully

described by the compound kernel. For complete restoration, the compound kernel

should be the identity kernel. Before a theoretical analysis is provided, the above for-

malism is illustrated with an example. In this example, discrete versions of the three

kernels described above were computed for a practical case. A 1-D line along the

phase-encoding direction is considered for a segmented EPI sequence with centric re-

ordering. The distortion kernel is calculated using the �eld map derived from FLASH

images obtained at two echo times (Fig.(3.2a)) and the correction kernel is calculated

based on the �eld map derived from two segmented EPI images at di�erent echo

times (Fig.(3.2b)). The overall compound kernel is the result of the matrix product

of the two. The result of the calculation is illustrated in panel (c) of Fig.(3.2). In this

representation an identity kernel should be a diagonal line and any deviation from the

diagonal indicates a deviation from the identity kernel. In particular, the splitting in

the distortion kernel (panel a) shows the dispersion e�ect of the large �eld inhomo-

geneity in that region. In the correction kernel (panel b), a similar splitting in the

same region compensates that in the distortion kernel. Consequently, the compound

kernel (panel c) is very close to the identity kernel except at a small region where the
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inhomogeneity e�ect is very severe and signi�cantly violates the working conditions

for the technique described below. This practical example demonstrates the ability

of SPHERE to reduce the inhomogeneity distortions under realistic conditions. The

formal description of the performance of SPHERE and these conditions are presented

in the following section.

3.3 Performance Analysis of SPHERE

In the following, a theoretical analysis of SPHERE is presented. Since the compound

kernel is determined by t(~k) which is sequence-dependent, two special cases will be

considered �rst to illustrate the idea before the general case is considered.

3.3.1 Special case 1: Blipped-EPI

In this case, the trajectory function t(k) takes the form of a linear one-dimensional

function of k, i.e. t(k) = a � k, where a is a constant. The distortion and correction

kernels take the following forms:

	(�; x) = �(x� �� a��(�)) (3.10)

and

�(�; x) = �(x� � + a��̂(�)) (3.11)

It follows that the compound kernel is:

�(�; x) = �(x� �� a��(�) + a��̂(�+ a��(�))) (3.12)

When the distortion is in the form of a simple shift or when signals arising from

di�erent regions in the original image do not overlap, the terms containing the o�-

resonance e�ect in Eqn.(3.12) cancel and the compound kernel becomes the identity

kernel, leading to complete restoration. In practice, this condition may be violated

in certain areas such as tissue boundaries. Only a partial correction can be achieved

in these locations.
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3.3.2 Special case 2: Segmented-EPI with centric-reordering

This case is more complex since the overlap of the distortion shifts from neighboring

pixels cannot be avoided in general. The 1-D formalism is still valid here since the

�eld inhomogeneity mainly a�ects the phase-encoding direction. The form of t(k) in

this case is a linear function of the absolute value of k rather than k itself as in the

�rst case. The inhomogeneity phase function can be expressed as the sum of two

linear terms over two non-overlapping windows of the k-space. That is,

ej2���(x)�ajkj = ej2���(x)�ak � u(k) + e�j2���(x)�ak � u(�k) (3.13)

where u(k) is a unit-step function and a is a constant. The corresponding distortion

and correction kernels are:

	(�; x) = U+(x� �� a��(�)) + U�(x� �+ a��(�)) (3.14)

and

�(�; x) = U+(x� �+ a��̂(�)) + U�(x� � � a��̂(�)) (3.15)

where U+(�) and U�(�) are the Fourier transforms of u(k) and u(�k), respectively.
It follows from (13) and (14) that the compound kernel is a sum of four terms,

each corresponding to a possible combination of U+(�) and U�(�) in the two kernels.

Speci�cally,

�(�; x) =
Z

1

�1

U+(� � �� a��(�)) � U+(x� � + a��̂(�)) d�

+
Z

1

�1

U�(� � �+ a��(�)) � U�(x� � � a��̂(�)) d�

+

Z
1

�1

U+(� � �� a��(�)) � U�(x� � � a��̂(�)) d�

+

Z
1

�1

U�(� � �+ a��(�)) � U+(x� � + a��̂(�)) d� (3.16)

Under the condition that the distortion is non-overlapping in space (hereafter referred

to as the non-overlapping condition), ��̂(�) is constant and equal to ��(�) within



42

the non-zero portions of the integrands of the compound kernel. Hence, each of

these four terms is equivalent to an inner product of shifted versions of U+(�) and
U�(�). Given that shifted versions of U+(�) and U�(�) correspond to u(k) and u(�k)
multiplied by linear phase functions in the k-space respectively, the terms containing

the multiplication of U+(�) with U�(�) vanish because their corresponding k-space

functions are orthogonal. For example, the third term in Eqn.(3.15) becomes,

R
1

�1
U+(� � � � a��(�)) � U�(x� � � a��̂(�)) d� =

1

2�

Z
1

�1

u(k)u(�k)e�j2�k(���2�a��(�)) � e�j2�k(x�2�a��(�)) dk = 0 (3.17)

This orthogonality can be deduced from the fact that the multiplication of u(k) and

u(�k) is zero everywhere regardless of the presence of linear phase multipliers and by

invoking Parseval's identity of the Fourier transform [47]. The remaining two terms

take the form of the autocorrelations of U+(x) and U�(x) respectively, resulting in

u(k) and u(�k) which add up to a constant in the k-space or a �-function in the

spatial domain. In a mathematical form,

�(�; x) =
1

2�

�Z
1

�1

u(k)ej2�k(x��)dk +
Z

1

�1

u(�k)ej2�k(x��)dk
�

=
1

2�

Z
1

�1

ej2�k(x��)dk = �(x� �) (3.18)

Consequently, the resultant compound kernel under the non-overlapping condition is

an identity kernel and complete restoration is possible in this case.

3.3.3 General case of arbitrary trajectory

In the case of an arbitrary k-space trajectory, the complete restoration with SPHERE

is �rst proven when the inhomogeneity phase factor is periodic with period K, which

corresponds to the periodic extension with a �nite coverage in the k-space. Subse-

quently, the proof is generalized to the in�nite coverage by taking the limit as K !1
in the same way the Fourier transform is derived from the Fourier series expansion.
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When the inhomogeneity factor is periodic, it can be decomposed into a Fourier series.

That is,

ej2���(x)�t(k) =
X
n

�n(��(x)) � ej2�ndk (3.19)

and

e�j2���̂(x)�t(k) =
X
n

��n(��̂(x)) � e�j2�ndk (3.20)

with fundamental frequency d = 1=K. Hence, the corresponding distortion and

correction kernels are:

	(�; x) =
X
n

�n(��(x)) � �(x� �+ nd) (3.21)

and

�(�; x) =
X
m

��m(��̂(x)) � �(x� ��md) (3.22)

It follows that:

�(�; x) =
X
m

X
n

�n(��(�� nd))��m(��̂(x)) � �(x� �+ nd �md) (3.23)

The double sum in Eqn.(3.23) can be decomposed into two components: the diagonal

terms obtained when m = n and the remaining cross-terms. In the ideal case where

there is no overlap which also implies that ��(x � nd) = ��̂(x)8n 3 �n 6= 0, the

cross-terms vanish based on the following argument. Since both the distortion and

correction kernels are linear and bounded (i.e., the result of applying any of them to

any function will be �nite and can be expressed as a linear combination of elements of

that function), operator theory states that the norm of the compound kernel must be

less than or equal to the multiplication of their individual norms [42]. Given that the

norms of the distortion and correction operators are less than or equal to unity (as can

be deduced from the decomposition into orthogonal pure phase kernels and invoking

the triangle inequality), the norm of the compound kernel must be less than or equal

to one. Now consider the output of applying this kernel. This output is composed of

two main components: the zero-shift component corresponding to the diagonal terms
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of the compound kernel and the nonzero-shift component corresponding to the cross

terms. Since these two components are orthogonal (non-overlapping in space), the

norm of the output will be equal to their geometric sum. It can be shown that the

outcome from the diagonal terms alone will have a unity norm. Since the maximum

output norm is unity from the de�nition of the kernel norm and since the norm is

always positive, it follows that the norm corresponding to the cross terms must be

zero. As a result, all of its components must be zero from their orthogonality. In

other words, the compound kernel is the identity kernel, and complete restoration is

achieved.

Now let us consider the generalization of the above solution to the case for which

the inhomogeneity phase factor is non-periodic and has an in�nite support. As the

period K approaches in�nity, the periodic function tends to have only one cycle in

the interval �1 < k < 1 that is identical to the inhomogeneity phase factor [48].

In approaching the limit, the fundamental frequency d becomes smaller as K is made

larger and the frequency spectrum becomes denser. In the limit as K !1, the sums

in Eqns.(3.23) become integrals. Given that the �nal result of the above analysis is

not a function of the fundamental frequency, it can be shown that it is true in the limit

as well. That is, complete restoration can be achieved for an arbitrary inhomogeneity

phase factor when the non-overlapping condition is satis�ed.

3.3.4 Point spread function of SPHERE

In the above analysis, it was shown that the correction kernel was able to restore

the true image under the idealized non-overlapping condition. Without overlapping,

the correction kernel was constructed using exact knowledge of the inhomogeneity.

In practice, the non-overlapping condition is usually not fully satis�ed. The overlap

may introduce some ambiguity in the process of redistributing pixels in the corrected

image due to errors in estimating the correction kernel. To see how SPHERE works in

practice, the correction process is examined under these non-ideal conditions. Specif-
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ically, the spatially-dependent point spread function (PSF) of the compound kernel

is derived and assessed to see how it is a�ected by practical limitations.

In the following, discrete sampling in the k-space is considered, and for simplicity,

the �eld of view is normalized to 1 without loss of generality. To derive the PSF,

a single point in the original image located at xo is considered. This point is �rst

distorted by the distortion kernel constructed with an inhomogeneity value ��(xo).

To calculate the contribution of the original point in the corrected image at any

arbitrary point (xo+�x), a correction kernel centered at (xo+�x) and constructed

using an inhomogeneity value of ��̂(xo + �x) is applied. Expressing ��̂(xo + �x)

as ��(xo) + ��, the �nal result can be expressed as a function of both �x and ��

and de�ned here as the correction ambiguity function or CAF(.,.). In a mathematical

form,

CAF (�x; ��;xo) =
Z 1=2

�1=2
	(xo; �) � �(�; xo +�x) d�

=
Z 1=2

�1=2
F�1
k!�

n
ej2���(xo)t(k)e�j2�kxo

o

�F�1
k!�

n
ej2�(��(xo)+��)t(k)e�j2�k(xo+�x)

o
�

d� (3.24)

where F�1
k!�f�g is the inverse Fourier transform from the k domain to the � domain

and the forms of 	(�; x) and �(�; x) from Eqns.(3.5) and (3.6) are invoked. From Par-

seval's theorem of the Fourier transform, given two periodic functions F (x) and G(x)

and their Fourier transforms as the discrete functions f(k) and g(k), the following

identity is true [47]:

X
k

f(k) � g�(k) =
Z 1=2

�1=2
F (x) �G�(x) dx: (3.25)

This theorem states that the inner product of two functions does not change when

the Fourier transform is applied. Hence, Eqn.(3.24) can be written as:

CAF (�x; ��) =
X
k

�
ej2���(xo)t(k) � e�j2�kxo

�
�
�
e�j2�(��(xo)+��)t(k) � ej2�k(xo+�x)

�

=
X
k

e�j2����t(k) � ej2�k��x: (3.26)
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Given this form of the ambiguity function, the spatially-dependent PSF is given by:

PSF (x; xo;��̂(x)���(xo)) = CAF (x� xo;��̂(x)���(xo)): (3.27)

With this formalism, the PSF essentially corresponds to a curved pro�le of the 2-

dimensional CAF, where the curve is determined by the functional form of ��. Eqns.

(3.26) and (3.27) allow us to evaluate the PSF for any particular k-space trajectory.

When ��, i.e., (��̂(x) � ��(xo)), is zero, the ambiguity function approaches a �-

function. When �� is non-zero but small, the ambiguity function is still very close

to a �-function. In Fig.(3.3), an example of the correction ambiguity function for the

case of a centric-reordered segmented EPI sequence is presented as a surface plot (a)

to depict the relative magnitude of the various components of the function and as

a grey scale image (b) to illustrate the spatial dispersion. The PSF derived for this

sequence before and after the correction process are illustrated in Fig.(3.4a) and (3.4b)

respectively. The inhomogeneity was �� = 2=T and the correction was applied such

that �� = 1=2T , where T is the data acquisition period. Also, the two-dimensional

extension of the above analysis is applied to evaluate the PSF of a spiral sequence

with inhomogeneity �� = 2=T and after the correction when �� = 1=2T ; the results

are shown in Fig.(3.5). As can be observed, the resultant point spread functions are

close to an ideal �-function.

The importance of Eqn.(3.27) lies in that it illustrates when SPHERE is a good

approximation. It is a good approximation when �� is small. Observing that ��̂(x)

is the result of mixing original signal magnitude, it is therefore bounded by the range

of ��(x) in a neighborhood de�ned by the blurring function. Under most practical

situations, ��(x) is smooth, and �� is usually small. Therefore, the approximation

utilized in SPHERE is valid for most conditions. This observation also explains that

the deviation of the compound kernel from the identity kernel in Fig.(3.2) occurred

only in a location where �� is large.
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3.4 Method

The technique requires an initial estimate of the image and an inhomogeneity map.

In this implementation, the inhomogeneity map is derived from the phase di�erence

of two images acquired at di�erent TE values with the sequence of interest. The maps

are smoothed with a spatial �lter to improve the signal-to-noise ratio and thresholded

based on the image magnitude to remove the background pixels. To eliminate phase-

wrapping in the resultant phase map, Schafer's unwrapping procedure [43] was used.

The resultant �eld map, along with the initial estimate of the image to be corrected,

was used in the discrete version of Eqn.(3.2) to generate the simulated k-space data

for the �nal image.

Since each point in the k-space is acquired at a di�erent time in general, the exact

implementation of SPHERE calls for a point by point correction, requiring a long

reconstruction time. In practice, this stringent requirement can be relaxed to a large

extent by suitable approximations based on the characteristics of the sequence of

interest. Speci�cally, to reduce the computational complexity of SPHERE, it is im-

plemented by dividing the data acquisition window into a number of non-overlapping

partitions and treating each partition as an instant, or a time step, in the correction.

The computational complexity of SPHERE is thus proportional to the number of time

steps rather than the number of k-space points. In our implementation of SPHERE

for EPI sequences, since the time required to scan individual k-space lines along the

readout direction is relatively short and the inhomogeneity e�ects in this direction can

be ignored, the k-space correction is performed on lines instead of points. In applying

SPHERE to spiral scanning, the partitioning is achieved by dividing the k-space into

equally spaced annular rings where each ring is considered to be acquired instanta-

neously. Note that this implementation corresponds to a nonuniform partitioning of

the data acquisition window that is aimed at emphasizing the correction accuracy in

the low k-space areas.
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To illustrate the performance of this technique, it is applied to data obtained on

a 1.5T Siemens Magnetom Vision MR scanner using sequences in which B0 inhomo-

geneity induced degradation has varying degrees of complexity. The �rst sequence

was a single-shot blipped-EPI sequence. Experimental data were acquired in phan-

toms and normal human volunteers. For the phantom study, the imaging parameters

are TR/TE: 200/70 ms, blip spacing: 0.96 ms, matrix: 128 � 128, slice thickness: 5

mm, and FOV: 31 cm � 31 cm. On the volunteers, sagittal and coronal images were

obtained with imaging parameters identical to those used in the phantom study.

The second sequence studied was a segmented EPI sequence with centric reorder-

ing [34]. In this case, the o� resonance degradation is more complicated and leads

to a sum of two shifted versions of the original image. Experimental data in both

phantoms and normal volunteers were obtained (same imaging parameters as blipped-

EPI with 2 segments). These images were corrected with SPHERE and the resultant

images were compared with images obtained using FLASH.

SPHERE was also applied to image di�erent phantoms in addition to normal hu-

man volunteers using a spiral imaging sequence. The �eld map required for correction

was obtained from two spiral acquisitions with di�erent echo times. The k-space was

covered by 16 interleaved spirals, each taking approximately 11 ms. The gradient

waveforms used in this sequence were chosen according to previously described spiral

scanning methods [44, 45]. The imaging parameters were: TR/TE: 1000/6 ms, FOV

31 cm � 31 cm, matrix: 128 � 128.

3.5 Results

Results obtained from single-shot blipped-EPI studies are presented in Fig.(3.6).

Panel (d) illustrates images obtained using FLASH for comparison. B0 maps in these

slices derived from two single shot EPI images after smoothing and phase unwrapping

are shown in panel (a) (the shims are somewhat misadjusted in the phantom study
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to accentuate the o�-resonance e�ect). The B0 variation was in the range from �126
to +138 Hz for the phantom study and �100 to +100 Hz for the human study. EPI

images obtained without correction (panel b) are highly distorted. Images obtained

after line by line correction using SPHERE (128 time steps) (panel (c)) are virtu-

ally free of geometric distortion and structurally comparable to the corresponding

FLASH images (panel (d)). Signi�cant improvement can be noted in several areas in

the corrected images. In particular, in the sagittal image obtained from the normal

volunteer, substantial distortions in the frontal area of the brain due to the presence

of large susceptibility-induced �eld inhomogeneity were successfully removed in the

SPHERE corrected image.

In Fig.(3.7), results of a phantom study with the centrically reordered segmented

EPI sequence are presented. Panels (b-d) illustrate the images obtained with the

segmented EPI sequence without correction, with SPHERE correction (64 time steps),

and the corresponding FLASH images respectively. The corresponding �eld maps are

shown in panel (a) and the o�-resonance frequency varied between �126 to +138 Hz
for the �rst phantom, �33 to +143 Hz for the second, and �164 to +167 Hz for the
third. The original images are degraded with spatial distortion as well as blurring.

As a result of centric reordering, areas with substantial o�-resonance frequency are

ghosted on both sides of their original position. The corrected images in panel (c)

exhibited both improved geometric accuracy and spatial resolution. In particular,

areas that were substantially ghosted are brought back to their original position.

These images demonstrate that, despite B0 inhomogeneity induced blurring, image

degradation was signi�cantly reduced by SPHERE. Fig.(3.8) presents results obtained

with the same sequence in a normal volunteer. The �rst two images correspond to

sagittal scans obtained with the phase-encoding direction vertical, while the third

corresponds to a coronal scan with the phase encoding direction horizontal. The �eld

inhomogeneity for the sagittal scans was between �100 to +100 Hz, and that of the

coronal scan was between �94 to +100 Hz. Distortions seen in the original images
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are essentially eliminated, markedly improving the quality of the image.

The results of a phantom study using a spiral sequence are illustrated in Fig.(3.9).

The B0 �eld inhomogeneity maps are shown in Panel (a). The o�-resonance frequency

ranges for the phantoms starting from the leftmost were between�72 to +170 Hz,�89
to +269, and �76 to +247 respectively. The spin-echo comparison images are shown

in Panel (d). Panel (b) presents the spiral images reconstructed without correction.

The images are degraded by blurring arising from the o�-resonance e�ect. The images

reconstructed using SPHERE (64 time steps) are shown in panel (c). The blurring in

the original images is signi�cantly reduced, providing a better de�nition of the small

structures in the phantoms. Fig.(3.10) illustrates the results of applying SPHERE

to correct the human brain images obtained with the same spiral sequence. The o�-

resonance frequency in these images varied from �228 to +217 Hz, �231 to +213

Hz, and �236 to +200 Hz starting from the leftmost image to the right respectively.

The corrected images are sharper than the original images.

3.6 Discussion

The technique described in this chapter for reducing B0 inhomogeneity degradation in

MR images was demonstrated theoretically and experimentally to be e�ective, even

for cases with severe inhomogeneity. The Fourier space shift approach [31] which

applies to sequences where only simple pixel shift occurs can be shown to be a special

case of the present technique. Both SPHERE and the Fourier space shift method

avoid the spatial domain interpolation needed by pixel shift based approaches. The

signi�cance of SPHERE is that it not only corrects for B0 inhomogeneity induced

shifts, but also reduces the blurring commonly encountered in complex k-space tra-

jectory sequences. Therefore, the new technique is general and can be applied to all

types of sequences.

The correction ambiguity function (CAF) formalism provides a useful way of look-
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ing at SPHERE as a space-varying matched �ltering process. What the CAF describes

is the response of SPHERE to errors in the matched �lter estimation and the cross-

talk between neighboring matched �lters. In the ideal case when there is no overlap

for example, the distortion functions to be detected are orthogonal yielding an ideal

PSF of a �-function after the correction using SPHERE. On the other hand, when

these functions are not orthogonal, there will be a certain amount of cross-talk be-

tween neighboring distortions indicating that an exact correction may not be possible

in this case. This can be readily understood mathematically in the case of overlap

by observing that the inverse problem of estimating the corrected image becomes

ill-posed. This condition can be visualized by looking at the CAF of the imaging

system. For example, for segmented EPI with centric reordering shown in Fig.(3.3),

the ideal response is represented by the zero of the �� scale where the response is

an exact �-function in the �x direction. When the overlap starts to cause bias er-

rors in the estimation of the correction kernel (or equivalently when �� gets larger),

the resultant response begins to deviate from the ideal response and a �nite support

function results instead of the ideal �-function. This is re
ected as a weaker response

peak magnitude and a wider response bandwidth. When the deviation from the ideal

conditions becomes too signi�cant, the correction process may fail to provide good

results and a large portion of the original distortion remains as can be seen near the

edges of Fig.(3.3b). Nevertheless, it should be noted that under most practical con-

ditions, the inhomogeneity function is locally smooth and the correction is expected

to be reasonably localized within the middle portion of the CAF, thereby providing

e�ective correction. Even when this condition does not hold, the outcome of the tech-

nique can be shown to exhibit a reduced version of the original distortion. Therefore,

it is clear that SPHERE is e�ective in reducing the B0 inhomogeneity under most

practical imaging conditions.

It is interesting to compare SPHERE to other correction techniques in the liter-

ature. Many of the available techniques are based on pixel shifting in various forms
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either in the spatial domain or the frequency domain by using Fourier shift theorem

[25, 27, 28, 29, 31]. These techniques work only with linear k-space trajectory se-

quences such as blipped-EPI and cannot remove the blur encountered with the more

complex imaging sequences such as centric reordered segmented EPI and spiral imag-

ing. On the other hand, the conjugate phase method is based on an approximate

inverse transformation from the k-space to the corrected spatial domain and can be

used with complex sequences [30]. This method requires the acquisition of undistorted

�eld maps, usually obtained using gradient echo sequences, and derives each point in

the corrected image from the distorted k-space data and the estimated �eld inhomo-

geneity only at that point. In contrast, SPHERE derives each point in the corrected

image space in terms of the estimated �eld inhomogeneity of all points, which is po-

tentially advantageous besides being relatively immune to misregistrations between

the distorted image and its �eld map. For example, when the distortion causes pixel

shifts into areas outside the support of the undistorted object, the �eld map of the

undistorted object in this area will be identically zero since these areas will be empty

in the gradient echo �eld mapping images. As a result, the correction procedure in

the conjugate phase method will leave these pixels unaltered, which in turn remain

as artifacts near the boundaries. In contrast, this problem will not arise in SPHERE

since the �eld map is derived based on the distorted image. An illustration of the

comparison of conjugate phase and SPHERE is shown in Fig.(3.11) in which both

methods were applied to the human data of Fig.(3.8). As can be seen, the edges

in the SPHERE-corrected image are better de�ned when compared to the conjugate

phase corrected image. This di�erence between SPHERE and the conjugate phase

method also applies to other conjugate phase-based techniques such as those cur-

rently used for spiral imaging [37, 38]. The method in [38] has the advantage of not

requiring a �eld map and therefore, is useful if �eld mapping is not available. The

method described in [39] is quite e�cient; however, it is applicable only when the

�eld map is predominantly linear in nature. It should be noted that SPHERE can be
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readily combined with this method instead of [38] with no additional data acquisition

requirements to take advantage of the already available �eld mapping information.

Two practical scenarios of using SPHERE for dynamic imaging and functional

imaging can be envisioned. The �rst is to acquire a reference scan for the volume of

interest using a sequence that has a slightly di�erent echo time from the one used

in the actual data acquisition. Each image in the actual data is corrected based

on the �eld map obtained from the image and the corresponding reference scan.

Although this scenario requires that the object remains still between the acquisition

of the reference data and the subsequent imaging, it has been successfully used with

other artifact correction schemes in functional imaging applications [46]. The second

scenario might be more suitable for dynamic imaging applications where the imaged

object may change dramatically during the acquisition period. In this case, the slice

or slices of interest can be scanned with alternative echo times such that all the odd

acquisitions correspond to one echo time while the even acquisitions correspond to

another slightly di�erent echo time. Any given image with acquisition order n in the

obtained sequence of images is corrected based on the �eld map obtained from the

images n and (n�1). This approach allows the correction process to e�ectively track

the changes in the �eld during the acquisition period because the reference image is

also changing with time. Therefore, it is particularly suitable for dynamic imaging

applications in which this property provides much more accurate �eld maps than

the �xed reference scan method. It should be noted that these scenarios are also

applicable with other correction techniques.

Let us now address the computational complexity of SPHERE. Consider �rst

the 1-D case when the distortion is negligible along one of the two dimensions of

an M � N image, say the �rst dimension. The number of time steps used in

SPHERE is equal to N . The technique �rst computes the �eld map from two

images (O(M � N) 
ops/image). Subsequently, for each line in the k-space along

the �rst dimension, a space varying �lter is applied to derive the corrected k-space
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(O(M �N +M � log(M)) 
ops/line, repeated for N lines/image). The corrected im-

age is obtained by applying an inverse Fourier transform to the corrected k-space

(O(M � N � log(N) + N �M � log(M)) 
ops). Hence, the computational complexity

for 1-D SPHERE is O(M � N2) 
ops/image. Using a similar argument, it can be

shown that the complexity for the general case of using L time steps is O(L �M �N),

where L can be chosen by the user according to the desired accuracy/complexity.

It should be noted that the step-wise implementation for SPHERE is similar to a

method suggested for use with conjugate phase method [37]. Such an implementa-

tion corresponds to an approximation of 2-D SPHERE by repeated applications of

1-D SPHERE, providing a compromise between the accuracy and the computational

complexity. In such an approximation, the accuracy is determined by the temporal

width of each step. Consequently, with segmented data acquisition schemes where

the sampling windows of each segment is reduced by the number of segments, the

number of steps in the SPHERE implementation can also be reduced proportion-

ally. An example of using SPHERE with di�erent numbers of steps is illustrated in

Fig.(3.12) to show the gradual improvement in the reconstruction as compared to the

corresponding computational complexity.

Since the original image is multiplied by simple phase factors in Eqn.(3.2), noise

in the original image is not ampli�ed in the �nal image. However, the presence of

noise in the �eld map will introduce additional noise in the �nal image. Therefore, in

the current implementation, �eld maps are smoothed and thresholded based on the

image magnitude. Several spatial and frequency domain �lters were evaluated in this

study, and it was found that a smoothing spatial domain kernel with a size of 5 pixels

provided the best results. Our results con�rmed that the uncertainties in �eld maps

do not contribute substantially to the noise in the �nal image. Another e�ect of noise

in the �eld map arises from changes in the CAF. Any additive noise superimposed on

the �eld map will amount to a shift in the CAF in the direction ��, causing the point

spread function to broaden. As a result, additive noise with large variance may bring
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about some problems in the correction process and must therefore be �ltered out.

From our experience, the smoothing process described above kept the uncertainty in

the �eld inhomogeneity estimation below 3% introducing negligible blurring in the

correction process. Therefore, SPHERE can be considered robust in the presence of

additive noise.
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Acquisition #1
Echo Time= TE

Acquisition #2
Echo Time=TE+ ∆TE

Compute Field Map

Spatially−Varying
 Correction Filter

Corrected Image

Scanned Slice

Figure 3.1: Block diagram of SPHERE.
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(a)

(b)

(c)

(d)

Figure 3.2: An illustration of the kernels encountered with the proposed SPHERE

formalism in segmented EPI with centric reordering. (a) The distortion kernel. (b)

The correction kernel used with SPHERE. (c) The resultant compound kernel which

indicates a good correction. (d) ideal kernel with zero inhomogeneity.
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(a)

(b)

∆x

δν

δν

∆x

Figure 3.3: An illustration of the correction ambiguity function (CAF) for the case of

segmented EPI with centric reordering. (a) Surface plot. (b) Image representation.
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Figure 3.4: An illustration of the point spread function (PSF) for the case of seg-

mented EPI with centric reordering. (a) Before correction. (b) After SPHERE cor-

rection.
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Figure 3.5: An illustration of the point spread function for the case of spiral imaging.

(a) Before correction. (b) After SPHERE correction.
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(b)

(c)

(d)

Figure 3.6: Phantom and human blipped-EPI data correction results using SPHERE.

(a) Field maps. (b) Distorted images. (c) Corrected images. (d) Comparison

gradient-echo images.
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(a)

(b)

(c)

(d)

Figure 3.7: Results of using SPHERE to correct phantom data acquired with a seg-

mented EPI sequence with centric reordering. (a) Field maps. (b) Distorted images.

(c) Corrected images. (d) Comparison gradient-echo images.
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(a)

(b)

(c)

(d)

Figure 3.8: Results of using SPHERE to correct human data acquired with a seg-

mented EPI sequence with centric reordering. (a) Field maps. (b) Distorted images.

(c) Corrected images. (d) Comparison gradient-echo images.
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(a)

(b)

(c)

(d)

Figure 3.9: Results of using SPHERE to correct spiral scans of di�erent phantom. (a)

Field maps. (b) Distorted images. (c) Corrected images. (d) Comparison gradient-

echo images.
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(a)

(b)

(c)

(d)

Figure 3.10: results of using SPHERE to correct spiral brain scans of a normal hu-

man volunteer. (a) Field maps. (b) Distorted images. (c) Corrected images. (d)

Comparison gradient-echo images.
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(a) (b)

Figure 3.11: Comparison between SPHERE and the conjugate phase method as ap-

plied to correct the coronal scan of Fig.(3.8).
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(a)

(b)

(c)

(d)

(e)

Figure 3.12: An illustration of correction segmentation using SPHERE with di�erent

numbers of steps. (a) 64 steps. (b) 32 steps. (c) 16 steps. (d) 8 steps. (e) 4 steps.
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Chapter 4

ALGEBRAIC RECONSTRUCTION FOR MAGNETIC

RESONANCE IMAGING UNDER B0

INHOMOGENEITY

4.1 Introduction

The process of image reconstruction in magnetic resonance imaging can be expressed

as an inverse problem of a generally known imaging operator. While existing recon-

struction techniques provide satisfactory results in many situations, they correspond

to approximate inverses of the imaging operator when B0 inhomogeneity is severe and

the imaging operator ceases to be unitary. Consequently, the reconstructed images

are not optimal. Therefore, a reconstruction method that is based on solving for the

inverse of the imaging operator such that the norm of the error is minimum can be

advantageous.

In this chapter, an algebraic model and an optimal solution to the problem of B0

inhomogeneity distortion correction when the distortion is rather severe along only one

of the image dimensions. The 1-D continuous case is �rst considered and shown to be a

Fredholm integral equation of the �rst kind. Discretization strategies are proposed to

translate the continuous problem into a linear system of equations that can be solved

numerically to obtain the least-squares solution. Several computational methods of

di�erent characteristics are described to compute this solution in an accurate and

stable fashion under linear constraints. The issue of selecting an imaging sequence to

provide the best results with the algebraic reconstruction method is addressed, and
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it is shown that in general nonlinear k-space trajectories provide better results than

linear ones. Finally, the performance of the approach is demonstrated by computer

simulations and experimental data [49, 50].

4.2 General Problem formulation

4.2.1 Continuous problem formulation

Consider the case of Fourier imaging of a 1-D object of spatial intensity f(x) in

the presence of �eld inhomogeneity represented by �B(x). The resultant continuous

k-space of this object Fd(k) takes the form:

Fd(k) =

1Z
�1

f(x) � ej2�
�B(x)�t(k) expf�j2�kxgdx: (4.1)

Here, 
 is the gyromagnetic ratio and t(k) is a time function that depends on the k-

space trajectory of the imaging sequence. This equation represents a linear Fredholm

integral equation of the �rst kind with kernel, KI (x; k) = ej2�
�B(x)�t(k) expf�j2�kxg
[56]. That is, the k-space data can be expressed as the outcome of applying a linear

operator T to the original or true spatial intensity such that:

Fd = T (f): (4.2)

Throughout this paper, T will be referred to as the transformation operator since it

performs the mapping between the original object and the k-space. An equivalent

formulation can be generated by premultiplying Eqn.(4.2) with T �. In this case,

the operator equation is expressed in terms of the Grammian operator de�ned as

G = (T ��T ). Moreover, premultiplying by F�, the inverse Fourier transform operator,

another interesting operator equation arises in which the original object function f

is mapped directly to the resultant distorted spatial distribution fd. The operator in

this equation will be referred to as the deformation operator D = (F� �T ). Since these
three operator equations are equivalent, the choice of the one to use depends on their
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relative advantages as applied to the speci�c solution method at hand. Examples of

such features include the transformation operator being Vandermonde in some cases,

the Grammian operator being Hermitian, and the deformation operator being sparse.

In general, an operator A can be fully described by a mapping rule from the Hilbert

space of its domain to that of its range that is de�ned by the available information

about data acquisition. The reconstruction problem then becomes the one of �nding

an inverse operator Ay such that,

(Ay � A) = I (4.3)

where I is the identity operator. Then, the solution to the original problem of �nding

f is given by,

Ay(Fd) = (Ay � A)(f) = I(f) = f (4.4)

In general, the mapping rule that de�nes the operator may not be one-to-one. In this

case, the operator is singular, and it is not possible to construct the inverse operator.

In some other cases, the operator maps di�erent points in its domain to di�erent yet

very close points in its range. If these points are too close, slight contamination with

additive noise can render them indistinguishable, making it di�cult to compute the

inverse operator. The operator in such cases is ill-posed [54]. In this case, it is only

possible to seek a regularized inverse operator to obtain a solution.

Any linear operator over the Hilbert space can be completely de�ned by its eigen-

or singular value decomposition. When the operator is ill-posed or singular, the

domain of the operator can be divided into two orthogonal subspaces. The �rst is

de�ned by the eigen-functions or singular functions corresponding to the eigenvalues

or singular values that are above a selected threshold, while the second is spanned by

the remainder of those functions. The �rst subspace is termed the minimum-norm

space, since it de�nes the space of all minimum-norm solutions to the inverse problem

involving this operator. The second subspace is the null space of the operator. When

the inhomogeneity operator has blind spots de�ned by the null space in its domain,
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the components of the input spatial distribution that lie within these spots cannot be

recovered. Since the null and minimum-norm subspaces are orthogonal and together

they are complete, the least squares solution corresponds to the addition of two

components: the inversion of the well-posed projection of the original operator onto

the minimum-norm subspace applied to the available data, and any function in the

null subspace. The process of obtaining the minimum-norm part of the solution is

called pseudo-inversion.

Several forms of optimal solutions to the general class of inhomogeneity problems

represented by linear integral equations of ill-posed operators can be considered. The

�rst one is the minimum-norm or minimal least-squares solution. This solution is a

special case when fNULL is chosen to be zero. Given the de�nition of the null space

of the operator and some general constraints based on a priori information about the

imaged object, possible alternative solutions can be obtained by adding functions in

the null space to the minimumnorm solution such that these constraints are satis�ed.

Observing that the operator in this problem is a linear operator, it is possible

to obtain a solution based on full-rank operator composition achieved by reducing

the size of the null space with over-sampling. Oversampling can be achieved by

using multiple scans with di�erent k-space trajectories. In the absence of magnetic

�eld inhomogeneities, oversampling would be considered redundant. Nevertheless,

when magnetic �eld inhomogeneities exist, it plays a signi�cant role in improving the

conditioning of the operator equation and eliminating the null space.

4.2.2 Discretization

For practical implementation, it is necessary to discretize the original problem before

attempting to obtain the solution. The discretization can be done in a variety of ways

that approximate the integral with a �nite sum. In general, the discretized problem
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takes the form:
NX
n=1

wnKI(k; xn) � f(xn) = Fd(k) (4.5)

where wn are weights that are direct functions of the discretization rule. Notice that

in practice it is only possible to collect limited extent, discrete samples in the k-

space. Therefore, collocation is invoked to convert the above equation to the desired

�nite-dimensional problem [56]. That is, to force the continuous equation to hold at

speci�ed collocation points such that,

NX
n=1

wnKI(km; xn) � f(xn) = F (km) ; m = 1; 2; :::;M (4.6)

In this case, the original integral equation is approximated by anM�N linear system,

A~f = ~Fd, where A is an M � N matrix with entries [wnKI(km; xn)], ~f is an N � 1

vector with entries [f(xn)], and ~Fd is anM�1 vector with entries [Fd(km)]. The most

common approach to evaluate the weights wn is the midpoint rule. In this method, a

numerical integration rule (e.g., Simpson's rule) is applied to the continuous integral,

yielding a sum with equal and constant weights (ignoring edge e�ects). Therefore,

up to a constant multiplier, the weights for the midpoint rule are given as:

wmidpoint
n = 1 ; n = 1; 2; :::; N (4.7)

Another method of discretization assumes that f(x) can be modeled as a piecewise

constant function. In this case, within any given interval [xn; xn+1), the intensity and

inhomogeneity functions are expressed as

f(x) = cn and �B(x) = �n;o + �n;1 � (x� xn) (4.8)

with cn, �n;0 and �n;1 are evaluated by matching the model to the available values of

f(x) and �B(x) at xn and/or xn+1. Assuming uniform intervals of constant width

�x, the weights in the �nite-dimensional equation take the form:

wpiecewise
n (km) = Sinc (�(1� �n;1) ��x � km) (4.9)



73

When �x becomes very narrow, this approximation and the midpoint rule become

equivalent. Otherwise, the two models may provide di�erent results.

It should be noted that the discretization of an ill-posed integral equation of the

�rst kind yields an ill-conditioned linear system. In general, the higher the resolu-

tion of this discretization, the closer the �nite-dimensional problem to the ill-posed

continuous problem and consequently, the more ill-conditioned the algebraic problem

becomes [56]. Given that the size of common MRI inhomogeneity correction prob-

lems is usually large (around 128), the ill-conditioning of the algebraic problem is

expected to be severe. Therefore, numerical solution methods proposed to solve this

problemmust be able to maintain robust performance under these conditions in order

to obtain a stable inverse to this system.

4.2.3 Inhomogeneity problem in EPI: from 2-D to 1-D

In EPI, the data acquisition time is negligible along one of dimensions and t(kx; ky)

can be considered as a function of one component, i.e., t(kx; ky) � t(ky) without loss

of generality. In this case, the 2-D k-space data take the form:

Fd(kx; ky) =
Z 1Z
�1

f(x; y) � ej2�
�B(x;y)�t(ky) � exp[�j2�(kxx+ kyy)]dxdy (4.10)

where f(�; �) is the true signal within the imaged slice, Fd(�; �) is the obtained distorted
k-space, �B(�; �) is the corresponding inhomogeneity �eld map, and t(�) is a function
of the k-space time trajectory. Performing a 1-D inverse Fourier transform operation

with respect to kx on both sides of the above formula, the resultant form can be

expressed as:

F̂d(xo; ky) =

1Z
�1

f(xo; y) � ej2�
�B(xo;y)�t(ky) � exp[�j2�kyy]dy (4.11)

where F̂d(:; :) is the inverse Fourier transform of Fd(:; :) with respect to the �rst

dimension. As can be seen, this form is similar to the 1-D problem where the given
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data are the k-space representation of the object, the inhomogeneity �eld map, and

the k-space time trajectory; while the unknown is the spatial distribution along a

particular line in the image de�ned by x = xo. Hence, by solving a set of 1-D problems

that su�ciently sample the image structure in the x-dimension, the solution to the

2-D problem is obtained.

It should be noted that the above discussion is general for EPI since no particular

form for t(ky) in Eqn.(4.11) was assumed. Examples of possible forms of this function

include t(k) = constant�k for blipped-EPI, and t(k) = constant�jkj for segmented-

EPI with centric reordering.

4.2.4 Example of a matrix operator

As an example, the case of a blipped-EPI imaging sequence is examined in this

section. The midpoint discretization method is used and the corresponding linear

system is derived. In this particular case, the discrete transformation operator T
takes a Vandermonde matrix form with a constant phase function in the solution.

The Vandermonde matrix takes the form [57],

V =

2
6666666666664

1 1 � � � 1

�o �1 � � � �N

�20 �21 � � � �2N
...

...
...

�N0 �N1 � � � �NN

3
7777777777775

(4.12)

This matrix can be completely de�ned by only one row in the form: [�0�1 � � � �N ],
which is usually called the Vandermonde coe�cient vector. This can be of great

advantage for reducing the storage space when the matrix is large or when the number

of systems to be solved is large. For our problem, the elements of the Vandermonde

coe�cient vector corresponding to the transformation operator take the form,

�n = ej2�
�B(xo;yn)��k � exp[�j2�yn ��k] (4.13)
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where �k is the step size in the k-space. On the other hand, the matrix corresponding

to the Grammian operator of this Vandermonde system is a member of the class of

Hilbert matrices [61]. On the other hand, the columns of the deformation operator

are related to the Vandermonde transformation operator through a Fourier transform.

Given that each column of the Vandermonde matrix corresponds to samples of a

complex exponential, it is expected that each column of the deformation matrix will

contain only a few non-zero elements. In fact, if the sampling scheme happens to be

ideal for the particular frequency of a given column, its corresponding deformation

matrix column will contain exactly one element. In other words, the number of

nonzero elements depends on the severity of the leakage problem in the sampling

scheme used, but is generally much smaller than the size of the matrix. Hence, the

deformation matrix is sparse [55]. Moreover, the elements of this matrix are generally

expected to be somewhat centered around the main diagonal. Therefore, it can be

considered as a constant bandwidth sparse matrix with a bandwidth determined by

the maximum inhomogeneity.

Beyond the apparent possible computational and storage advantages of this for-

mulation, the deformation matrix also provides an explicit visual interpretation of the

inhomogeneity problem. When there is no inhomogeneity at a particular location, the

matrix column corresponding to this location is equal to the corresponding column of

an identity matrix. Conversely, if there is an inhomogeneous �eld at a certain loca-

tion, two possible scenarios can be encountered: corresponding to a shifted version of

an identity matrix column, and a blur extending over a number of locations around

the nonzero element. Given the deformation matrix, it is possible to identify the

presence of overlap among distortions from neighboring pixels by inspecting its rows.

In general, when there are many such overlaps, shift-based correction methods fail.

Therefore, it may be advantageous to use this matrix to analyze the inhomogeneity

e�ects before resorting to a particular correction method. It should be noted that

this matrix is the similar to the distortion kernel shown in Fig.(3.2) for the case of
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segmented EPI with centric reordering.

Of note is that a similar analysis can also be derived for the general case of nonlin-

ear t(k) such as segmented-EPI. The transformation operator is not a Vandermonde

matrix in this case, and the deformation matrix is still sparse but expected to have a

wider bandwidth because of the extra blur associated with the point spread functions

of such sequences.

4.3 Imaging Sequence Dependence

It is interesting to consider the dependence of the conditioning of the operators on

the imaging sequence. As can be seen from the above example, the operator matrix is

a function of t(k), which is de�ned by the k-space trajectory of the imaging sequence.

Therefore, the conditioning of the operators depends on the form of t(k).

In general, ill-posed operators are operators that are close to singular operators.

Therefore, a good criterion for assessing the well-posedness of an operator is to check

for possible singularities under small perturbations in its parameters. When singu-

larities exist, it is expected that the operator will generally be ill-posed in practice.

On the other hand, if there are no singularities, the operator is expected to maintain

its well-posedness.

In order to apply this criterion here, consider an inhomogeneity operator applied

to two points at di�erent locations in the �eld of view (without loss of generality). To

derive the singularity condition is equivalent to deriving the conditions under which

the outcome of applying the operator in both cases is the same. If such conditions

exist, the operator is said to have singularities and practical matrix operators are

expected to be ill-conditioned, and vice versa. The signals from two points located

at x1 and x2 with magnetic �eld inhomogeneities �B(x1) and �B(x2) are given by,

r1(k) = e�j2�kx1 � ej2�
�B(x1)t(k) (4.14)
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and

r2(k) = e�j2�kx2 � ej2�
�B(x2)t(k): (4.15)

Usually these signals are observed for a �nite interval, say [�1=2; 1=2). In order to

assess the independence of these signals, the inner product of the two signals over the

observation period is evaluated as,

< r1; r2 >=
Z 1=2

�1=2
e�j2�k(x2�x1) � ej2�
(�B(x2)��B(x1))t(k)dk: (4.16)

Let �n = x2�x1 and �b = 
(�B(x2)��B(x1)), and de�ne the distortion function

d(k;�b) = ej2�
(�B(x2)��B(x1))t(k). Assuming the periodicity of the k-space and in-

voking Parseval's identity of the Fourier transform, the inner product can be written

in the form,

< r1; r2 >=
X
n

�(n��n)D(n;�b) = D(�n;�b): (4.17)

Here D(n;�b) is the inverse discrete-time Fourier transform of d(k;�b). Hence, the

result of the inner product depends mainly on the value of the Fourier transform of

the distortion function. When singularities exist, this inner product becomes equal to

the square of the norm of either signal, indicating that the two signals are identical.

Now consider the two main functional form categories of t(k), namely, linear and

nonlinear functions. In the �rst, t(k) = k up to a constant such as with blipped-EPI.

In this case, the outcome of the inner product can be shown to take the form:

< r1; r2 >linear= �(�n��b) (4.18)

As a result, the operator in this case will be singular at all points with locations and

inhomogeneities satisfying �n = �b. Hence, the matrix operators in this case are

expected to be ill-conditioned. On the other hand, for nonlinear functional forms

of t(k), it is generally not possible to �nd such operator singularities. For example,

consider the case of a segmented-EPI with centric-reordering, where t(k) = jkj up to

a constant. In this case, it can be shown that the inner product takes the form:

< r1; r2 >non�linear =
1

2
(�(n��n+�b) + �(n��n��b))
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+
1

j

�
1

n ��n+�b
� 1

n ��n��b

�
(4.19)

Two main conclusions can be drawn from this form. First, the inner product becomes

a single �-function only in the trivial case when �n = �b = 0. Second, the maximum

values of this form occur at n = ��b, and is equal to approximately half the result

in the trivial case. As a result, the matrix operators obtained with this sequence

are expected to be better-conditioned than linear trajectories in practice. Therefore,

from a theoretical point of view, it is always advantageous to use nonlinear k-space

trajectories when inhomogeneity distortions exist and are to be corrected for in the

reconstruction.

4.4 Numerical Solution Methods

4.4.1 SVD matrix solver

As discussed above, eigen-decomposition or singular value decomposition can be used

to identify the null space of a given linear system and to obtain the least squares

solution. Given the superior numerical properties of the singular value decomposition

(SVD), it is usually the method of choice for this computation. Using SVD, any

N -dimensional matrix operator, A, can be expressed in an orthogonal representation

of the form:

A = U�VT =
NX
n=1

�n~un~v
T
n (4.20)

where �n is the n-th singular value and ~un and ~vn are members of the orthonormal

sets of vectors in the columns of U and the rows of V, spanning the space of N -D

vectors. In the case when the system is well-conditioned, the inverse of the matrix

operator A is given directly as:

Ay =
NX
n=1

1

�n
~un~v

T
n (4.21)

On the other hand, when the system is ill-conditioned, some singular values are too

small to distinguish from the usual numerical noise encountered in this computation.
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Consequently, the solution given above will be dominated by artifacts from the basis

vectors corresponding to those very small singular values. In this case, the method

of truncated singular value decomposition (TSVD) can be used to provide stable

solutions that are optimal in the least square sense. In this method, the singular

values are thresholded and only those values above the threshold are included in the

above expansion to derive the inverse. With appropriate selections of the truncation

level, TSVD is a regularization method. Hence, as with any regularization method for

ill-posed problems, the choice of this truncation level is critical. For a �xed amount

of noise, the TSVD will begin to diverge if the truncation level is increased beyond a

certain level. It should be noted that choosing the truncation level can be shown to

be equivalent to imposing a quadratic constraint on the solution.

4.4.2 Conjugate gradient method (CGM) matrix solver

Among known robust linear system solvers, the conjugate gradient method (CGM)

proposed originally by Hestenes and Stiefel [59, 60] is considered one of the most

e�cient. This method describes a class of iterative techniques that has the desirable

property of guaranteed convergence in a �nite number of iterations. Also, even when

the system is ill-conditioned, good estimates of the largest and smallest eigenvalues

are not needed to determine the algorithm parameters. The basic idea of this method

is to eliminate the residual error ~e = A � ~xsol �~b in a linear system A~x = ~b, along

mutually A-orthogonal directions spanning the space of the solution [60, 62]. The

original formulation of this technique requires the system to be real, square, symmetric

and positive de�nite for the algorithm to work and provide the unique solution to the

system. Nevertheless, a direct modi�cation of the technique can be applied to complex

Hermitian, positive semide�nite linear systems to compute the minimal least square

solution. Therefore, it can be used to solve the normal equations of the system given

the properties of the Grammian matrix de�ned by G = T� �T.
The conjugate gradient algorithm to solve the normal equation A�A~x = A�~b is
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described as follows:

1. Choose the initial solution ~xo as the distorted object.

2. Compute the initial residual ~ro = ~b�A~xo.

3. Compute �rst direction ~po = A�~ro.

4. Compute cm = kA�~rmk22, dm = kA~pmk22, and am = cm=dm.

5. Update solution ~xm+1 = ~xm+am �~pm, and update residual ~rm+1 = ~rm�am�A~pm.

6. Compute em = kA�~rm+1k22=cm, and update direction ~pm+1 = A�~rm+1+ em � ~pm.

7. Increment counter m = m+1, and repeat steps 4 through 6 until one of the fol-

lowing termination conditions is satis�ed: em = 0, cm is below a given threshold,

or the number of iterations reached N .

Two main issues about this algorithm should be pointed out. First, the initial

solution vector is chosen as the distorted image. Unlike any other initial selection, this

particular choice uses the available information to ensure that the solution obtained

after any number of iterations is better in the least-squares sense than the distorted

object. This choice may also reduce the number of iterations needed to reach a given

accuracy. Second, the termination conditions should ideally be that the norm of the

residual ~rk goes to zero if the system has a full rank or when the parameter ck goes

to zero if the system is rank-de�cient. Even though these conditions will eventually

be met in a �nite number of iterations, a large number of iterations amount to an

insigni�cant improvement in the solution. In particular, when ck is extremely small

yet nonzero, the added correction term is multiplied by a very small value and hence

do not amount to a noticeable change in the results. Therefore, in our implementation,

the termination condition was set as ck being smaller than a predetermined threshold.
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In theory, the CGM reaches the unique solution or the minimal least square so-

lution in less than N steps, where N is the size of the linear system [60]. Moreover,

if the linear system matrix can be expressed as the sum of the identity matrix and

another matrix C of rank rC, then the algorithm converges in no more than rC + 1

steps. Hence, the convergence is fast in general and only a few steps may be needed

to reach a reasonable accuracy. The complexity of this method is estimated as O(N2)


ops/iteration/line, which can be signi�cantly lower than that of SVD when a few

iterations are used.

The computational load of the CGM can be traded o� with the solution accuracy

in the following manner. With a constraint on computation time, the termination

condition can be modi�ed to be the maximum number of iterations that are allowed

within this time. In this case, the solution is considered optimal in the least-squares

sense for the given number of iterations. This direct control over the time/accuracy

trade-o� is not available with many other techniques such as SVD where the correction

process cannot be divided into independent pieces and the algorithm must proceed

to the end regardless of the accuracy required.

4.4.3 Solution constraining

When the linear system matrix is ill-conditioned, it is always advantageous to impose

certain constraints on the solution based on a priori information about the physical

system being imaged. In general, constraining improves the accuracy of the result and

amounts to regularization in some cases. The type of constraints that can be useful for

our problem is linear equality constraints, which are often invoked when certain parts

of the �eld of view are known a priori. For example, when the �eld of view is larger

than the imaged object, equality constraints can be applied to force the solution at

the points outside the object boundaries to be zero. In general, equality constraints

can be expressed as B � ~x = ~d, where B is a P � N full-rank matrix and ~d is a P -

dimensional vector. The exact application of the general form of this equation involves
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a QR decomposition step, which is rather computationally prohibitive, especially

when the solver is chosen to be the conjugate gradient method [62]. Nevertheless,

when B matrix is diagonal, the solution method can be modi�ed Nevertheless, in

practice, it is su�cient to adhere to the constraints only approximately. This allows

the constraints to be invoked with only a small added complexity. This can be done by

concatenating the constraint equation to the original linear system with a weighting

factor and the composite system is then solved. In this case, it can be shown that the

solution satis�es the constraint more closely as the weighting factor gets larger. It

should be noted, however, that numerical stability can be a�ected rather severely for

large values of this weighting factor. A reasonable value for this parameter is of the

order of the estimated average singular value of the linear system matrix, usually of

the order of 10. When B matrix is diagonal, the solution method can be modi�ed to

solve only for all pixels that are not assigned values by the constraints. In this case,

the solution satis�es the constraints in the exact sense.

Unlike linear constraints which impose localized conditions on individual pixel

values, quadratic constraints describe global conditions that must be satis�ed by the

2-norm of the solution. These constraints are particularly useful when the solution is

ill-conditioned where imposing the quadratic constraints amounts to a regularization.

In its general form, the quadratic constraints can be expressed as: kB � ~x� ~dk2 � �,

whereB is a full rank P�N matrix, ~d is a P -dimensional vector and � is a prespeci�ed

limiting value. For our problem,B is the identity matrix and ~d is zero, and the linear

system solution is therefore constrained to lie within a sphere of radius �. In this

case, the solution method amounts to adding an identity matrix multiplied by a factor

to the solution, which is exactly what regularization does [62]. It should be noted

however that imposing such constraints requires the SVD of the linear system matrix

to be available. Therefore, its application may be practical only with SVD solvers

where it can be used instead of TSVD to compute the regularized solution. However,

since there is no direct relationship between the norms of the distorted and original
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objects, there is no particular advantage for any of the two method over the other.

4.5 Experimental Results

The reconstruction methods described here were applied to experimental data of

di�erent phantoms and human volunteers on a 1.5T Siemens Magnetom Vision MR

scanner. The images were acquired using a blipped-EPI sequence or a segmented

EPI with centric reordering with a TE of 70ms and a TR of 200 ms. The FOV

was 31cm � 31cm and the matrix size used was 128 � 128. The �eld maps were

derived from two gradient-echo FLASH images with a 3 ms di�erence in echo time.

In Fig.(4.1), the results of using di�erent discretization methods with a CGM solver

on phantom data are illustrated. The B0 variation was in the range �66 to +210

Hz. As can be shown, the piecewise constant intensity models with constant or linear

inhomogeneities look rather blurred. The reason for that is the apodization of the

k-space values imposed by these models. In general, the quality of the midpoint

discretization looks better and it seems that this model better represents practical

data. In Fig.(4.2), the results of using a 2-step CGM iteration on human data obtained

with blipped-EPI are illustrated. The o�-resonance frequencies in these images varied

in the range �94 to +100 Hz for the coronal scan and from �100 to +100 Hz for the
sagittal scan. The system matrix was composed of two scans with opposite traversal

directions to obtain a full-rank composition. By comparison to the FLASH images,

it can be seen that the correction visibly improves the geometric accuracy in both

coronal and sagittal images. In Fig.(4.3), a comparison between the quality of the

obtainable correction with blipped-EPI and segmented EPI with centric reordering

as examples of linear and non-linear trajectory sequences. The range of B0 variation

was between �164 and +167 Hz. Even though the images obtained with the latter

sequence exhibit more severe distortion artifacts combining shift and blur, the quality

of corrected images from this sequence is superior to that with blipped-EPI. This is
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in full agreement with the theoretical prediction. Also, Figs.(4.4) and (4.5) con�rm

the same conclusion in human data of coronal and sagittal scans of a normal human

volunteer. The ranges of B0 variation in these images were from �94 to +100 Hz for
the coronal scan and from �100 to +100 Hz for the sagittal scan.

4.6 Discussion

In practice, the experimental information is usually contaminated with additive noise.

As a result, the processes of eigen- and singular value decomposition are perturbed by

this noise thus producing all non-zero eigenvalue and singular value sets even when

the operator is singular. In this case, the theoretical null space is equivalent to the

noise subspace that can be detected using one of many likelihood ratio criteria. If a

zero-mean white Gaussian noise model is assumed, this detection process amounts to

a simple absolute value thresholding to the obtained eigenvalues or singular values

as in TSVD. It is also important to consider the contamination of �eld maps with

noise and its e�ect on the reconstruction. To assess this problem, a combination of

measurements and simulations were performed to arrive at the following observations.

After performing a number of independent �eld mapping measurements for the same

slice, the results from all measurements were found to be within only 4% from their

average, assumed to be closest to the true �eld map. From computer simulations, it

was evident that when the �eld map values are within 5% of the original values, fairly

accurate reconstruction is expected. Therefore, the results from the �eld mapping

procedure can be generally considered stable. Smoothing and low intensity masking

of �eld maps were also found to be of important value to improve the stability of the

procedure even further.

When the matrix operator takes the form of a Vandermonde matrix as in the

above example, the �rst solver that comes to mind is the Vandermonde matrix solver

proposed by Bjork and Pereyra [57] which is known for its reduced complexity. How-
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ever, when the Vandermonde matrix form is ill-conditioned or rank-de�cient as with

cases of severe inhomogeneity, this solver cannot be used since regularization disrupts

the characteristic form of the matrix used to derive this solver. Without regulariza-

tion, the solution becomes dominated by numerical instabilities that are functions not

only of the condition number of the system matrix but also of the machine epsilon

[58]. Therefore, this solver cannot be used for our application because of its lack of

robustness.

Two important features should be noted about the SVD solution method. First,

it explicitly computes the inverse operator and in doing that, it requires only in-

formation about the system matrix A. It is not necessary to have the data vector

containing the outcome of applying the operator at this point. Given that the matrix

operator is usually estimated by �eld mapping before the actual acquisition of the

distorted data, the process of SVD computation can be performed even before the

actual data acquisition, assuming perfect registration between the �eld map and the

subject imaged subsequently. The second important feature of SVD is that it explic-

itly identi�es the null space of the matrix operator. Hence, when a number of k-space

traversal methods are available for data acquisition, they can be compared based on

the dimensionality of their corresponding null spaces. In other words, it is possible

to make a priori determination of the scanning method that would yield the best

solution in one scan. For example, if the operator matrix forms for blipped-EPI and

segmented EPI with centric reordering sequences are examined, it can be shown that

the the latter is more stable and is therefore expected to maintain full rank under the

same conditions that causes the former to be rank-de�cient. Moreover, if a full-rank

solution is required, it is possible to devise a k-space traversal strategy to provide

a full-rank operator equation from several scans. In this case, the tradeo� between

the amount of acquired data and the solution accuracy can be directly addressed

with this method. Although this solver is 
exible, it is associated with a rather high

computational complexity (O(N3) 
ops/line) that is a determining disadvantage in
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many situations.

As suggested by the theory, given a �eld map, it is possible to compare the per-

formance of di�erent scanning sequences prior to the actual data acquisition by com-

paring the condition numbers of their system matrices. An interesting observation

in this aspect is that only linear trajectory sequences may have rank-de�cient sys-

tem matrices. This is a direct result of their linear phase evolution characteristics,

which are quite similar to those of the Fourier transform matrix columns. With other

nonlinear scanning sequences such as segmented EPI or spiral, the phase evolution

characteristics are rather distinct from those of Fourier vectors and, hence, their sys-

tem matrices are of full-rank. Hence, our theoretical result indicate that the use of

non-linear k-space trajectories provides better reconstructions under B0 inhomogene-

ity.

It should be noted that the CGM does not explicitly identify the null space of the

system and the remaining residual after algorithm termination lies in that space. It

is therefore not possible to de�ne the null space using CGM. As a result, this method

cannot be used to derive a strategy for full-rank system composition from oversam-

pling as with SVD. Also, CGM requires that the result of applying the operator in

addition to the �eld mapping information be available before the algorithm starts,

which is again in contrast with SVD.

An interesting special case of the CGM procedure occurs when only one iteration

is used. In this case, the conjugate gradient method amounts to an approximate

correction method similar to the conjugate phase method proposed by Maeda et al

[30]. In fact, it can be shown that the conjugate phase method is a special case

of the conjugate gradient iterative solver when the initial solution is zero and the

number of iterations is exactly one. Hence, several strategies can be proposed to

take advantage of this observation. First, a generalized multi-step conjugate phase

method can be directly implemented by using the conjugate gradient iterations. An

alternative approach to the conjugate phase method can also be proposed when the
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initial solution is chosen to be the distorted object. The possible advantage of using

this method is the guaranteed lower error norm. This is not generally the case with

the conjugate phase method.

Even though the computational complexity of the SVD solver seems rather pro-

hibitive in general, this might not be the case for applications where repeated images

of the same slices are obtained. For example, in functional imaging (fMRI), a time

sequence of as many as hundreds of acquisitions of the same slice is obtained to assess

brain activation during the time course of an experiment. In this case, SVD inverse

matrix operator can be computed once and used to correct all images in the time se-

quence. The resultant complexity will be comparable to that of the conjugate phase

method while maintaining the least-squares optimality of the correction.
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(a) (b) (c)

(d) (e) (f)

Figure 4.1: Comparison of di�erent discretization methods as applied to correcting

phantom data collected with blipped-EPI sequence. (a) Distorted EPI image. (b)

Field map. (c) Comparison FLASH image. (d) corrected image using midpoint

discretization model. (e) corrected image using piecewise constant intensity model

and piecewise constant inhomogeneity. (f) corrected image using piecewise constant

intensity model and piecewise linear inhomogeneity.
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(a)

(b)

(c)

(d)

Figure 4.2: Correction of human data with 2-step conjugate gradient iteration. (a)

Field maps. (b) Distorted images. (c) corrected images. (d) FLASH comparison

images.
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(a) (b) (c)

(d) (e) (f)

Figure 4.3: Comparison of blipped-EPI and segmented EPI with centric reordering for

phantom data. The FLASH comparison image and the �eld map are shown in plates

(a) and (d) respectively. The distorted and SVD corrected images with blipped-EPI

are shown in plates (b) and (e), while those in (c) and (f) are for segmented EPI with

centric reordering.
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(a) (b) (c)

(d) (e) (f)

Figure 4.4: Comparison of blipped-EPI and segmented EPI with centric reordering

for a coronal human brain scan. The FLASH comparison image and the �eld map are

shown in plates (a) and (d) respectively. The distorted and SVD corrected images

with blipped-EPI are shown in plates (b) and (e), while those in (c) and (f) are for

segmented EPI with centric reordering.
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(a) (b) (c)

(d) (e) (f)

Figure 4.5: Comparison of blipped-EPI and segmented EPI with centric reordering

for a sagittal human brain scan. The FLASH comparison image and the �eld map

are shown in plates (a) and (d) respectively. The distorted and SVD corrected images

with blipped-EPI are shown in plates (b) and (e), while those in (c) and (f) are for

segmented EPI with centric reordering.
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Chapter 5

CONCLUSIONS

Three novel reconstruction techniques have been discussed in this thesis. First,

The theory and experimental veri�cation of a new spatial encoding technique, the

pseudo-Fourier imaging (PFI), was presented. This technique is based on a uniform

sampling of the phase-space on a Gabor grid and allows for controlled mixing of

selective excitation and Fourier encoding. The technique has potential applications

in many areas such as volume imaging, magnetic resonance angiography, and dynamic

imaging.

The second technique is for reducing B0 inhomogeneity-induced degradation in

MR images. The technique utilizes simulated phase rewinding to generate a cor-

rected k-space data based on the initial estimate of the image and an estimate of

the �eld map. A theoretical analysis of the technique shows that it is exact under

ideal conditions of non-overlapping spatial distortions or constant �eld inhomogene-

ity within these distortions. Under practical circumstances, the technique provides

a good approximation to the exact correction and its accuracy improves uniformly

as the ideal conditions are approached or the �eld inhomogeneity becomes smoother.

The technique was veri�ed on a resolution phantom and successfully applied to head

images from normal human subjects. Experimental studies have demonstrated that

it is robust for a variety of sequences.

Finally, stable algebraic reconstruction for magnetic resonance imaging under se-

vere magnetic �eld inhomogeneity were formulated and experimentally demonstrated.

This reconstruction can be applied to all imaging sequences in which the inhomo-

geneity distortion is much more severe along one of the image dimensions. The new
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approach is based on estimating the operator that produces the distorted images and

computing least-squares inverse operators that can be applied to correct distorted

images. The corrected images are therefore optimal in the Frobenius norm sense.

This formalism allows the theoretical comparison of imaging sequences with di�erent

trajectories in terms of the image quality after the reconstruction under B0 inhomo-

geneity. This analysis suggests that non-linear k-space trajectory sequences such as

segmented EPI with centric reordering provide better results than linear trajectory

sequences as blipped-EPI.

Based on the results of this thesis, further research can be proposed in the following

points:

� The application of pseudo-Fourier imaging (PFI) in magnetic resonance angiog-

raphy can be further optimized by conducting more studies on normal human

volunteers and then on patients. The parameters of the imaging sequence that

need to be optimized are the width of the imaging window, slice excitation

sequencing, TR as related to contrast, and the use of magnetization transfer

pulses.

� The application of pseudo-Fourier imaging in dynamic imaging can be further

investigated by human studies. The use of multi-dimensional selective excitation

pulses in order to enable the use of the new technique in 2-D can be attempted

to enhance the practicality of the technique.

� The implementation of simulated phase evolution rewinding (SPHERE) on

single-instruction multiple-data (SIMD) parallel computing machines is possible

and can help speed up the reconstruction using this method.

� Motion models can be directly included in the algebraic model in order to make

it more general.The solution methods should still be the same after this change.
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� The extension of the reconstruction techniques in this thesis to three-dimensions

can be investigated. For example, instead of using SPHERE for multi-slice

phase correction, it can be used in a volumetric fashion for use with 3-D EPI

sequences.

� The application of MRI in stereotactic neurosurgery and radiotherapy treatment

planning can be re-investigated. In particular, studies to compare the geometric

accuracy of corrected MRI images to those of CT can be conducted for each of

these applications.

� The application of simulated phase evolution rewinding and algebraic recon-

struction in the area of functional magnetic resonance imaging can be examined.

In particular, the value of the new techniques in reducing the misregistration

problem often encountered between functional maps and anatomical images in

anatomic referencing should be assessed with regard to the implementation and

the accuracy of registration as compared to the required computational over-

head.
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