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Abstract 

Magnetic Resonance Imaging (MRI) is an essential medical imaging modality. 

Enduring a diagnostic session in an MR machine means lying motionless for a long 

time (up to 45 minutes) which is very uncomfortable besides the countless ear-ringing, 

bangs, knocks and the image artifacts which may appear due to motion. So, reducing 

the scan time (Acquisition time) of an MR image is a very important issue. A newly 

emerged theory known as Compressed Sensing (CS) is a novel sampling paradigm 

which reduces the number of measurements needed for image reconstruction with no 

significant degradation in image quality. Applying CS for MRI offers significant scan 

time reductions and the availability of embedded reconstruction platforms based on 

such techniques will be very beneficial in size and cost reduction. An MR image 

reconstruction algorithm based on CS was built, tested and modified in order to 

produce images of higher quality in shorter reconstruction times under the same 

sampling conditions, and its performance was tested on different platforms including an 

embedded platform based on OMAP processor. This work showed good results for the 

quality of images reconstructed from highly undersampled k-space (up to 90 % 

reduction) using CS also the performance of the algorithm on the embedded platform 

was interesting and points to several future directions for performance optimization in 

utilizing such embedded platforms in practical medical imaging applications. 
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 : Introduction Chapter 1

 Problem Overview 1.1.

Magnetic Resonance Imaging (MRI) is one of the common and powerful medical 

imaging procedures used at the current time due to its ability to show soft tissue 

structures, such as ligaments and internal organs like brain. MRI can be safely used 

with people who are vulnerable to the effects of ionizing radiation, such as pregnancy 

cases and babies also to be used to image in any plane. All of this has made MRI an 

essential medical imaging modality but having an MRI scan is very uncomfortable 

because of the long scan times (20-60 minutes or more) which means lying motionless 

inside the gantry during this period besides hearing noisy sounds and this may prevent 

many claustrophobic people from undergoing an MRI scan. MR images also may suffer 

motion artifacts and the patient may repeat the scan many times till having a good 

image which will be very uncomfortable and costly. So using techniques that reduce 

MRI scan times will help to raise the efficiency of this important modality.  

 Thesis Objective 1.2.

This work aims to reduce MRI scan time by minimizing the number of 

measurements used to reconstruct an MR image through the use of a newly emerged 

theory called Compressed Sensing (CS) which uses nonlinear reconstruction themes to 

build images of good quality (with the same resolution) using far smaller number of 

measurements, and build a cheap and fast reconstruction platform using CS, and based 

on the use embedded and special function processors. 

 Thesis Organization 1.3.

The remainder of this thesis is organized as follows:  

 ‎Chapter 2 provides a background about MR image acquisition process. 

 ‎Chapter 3 provides an overview on compressed sensing and its usage with MRI. 

 ‎Chapter 4 provides an overview about the embedded platform used 

(BeagleBoard). 

 ‎Chapter 5 provides a detailed description for the methods used to enhance the 

performance of the CS algorithm with MR images. 

 ‎Chapter 6 provides a detailed description for the embedded implementation of 

the CS based reconstruction algorithm. 

 Appendix A provides detailed steps for building an operating system for 

BeagleBoard and getting it ready to be used. 
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 : MR Image Acquisition Chapter 2

The purpose of this chapter is to give a brief overview about the MR image 

acquisition process, the image data space, k-Space, and acquisition time.  

 Spin Echo (SE) Pulse Sequence 2.1.

Spin Echo (SE) is the most frequently used pulse sequence (a sequence of radio 

frequency pulses) during an MR study. The sequence starts with the 90° which causes 

the magnetization vector MZ to be flipped into the x-y plane. After the 90° pulse the 

spins will get out of phase with each other due to magnetic field inhomogeneity. At a 

certain time τ after the 90° pulse, when the spins have gotten out of phase, a 180° pulse 

is applied. Now all the spins flip 180° in the x-y plane and they continue precessing, but 

now in the opposite direction [1]. The pulse sequence diagram is shown in Figure ‎2.1. 

 

 

Figure ‎2.1: Pulse sequence diagram [1].  

From Figure ‎2.1 we start off with a 90° RF pulse to flip the spins into the x-y 

plane. We wait a time τ and apply a 180° RF pulse. Then we wait a long time, TR 

(Repetition Time), and repeat the process [1]. Also the time to echo (TE) is the time 

after the 90° pulse when we get maximum signal again. 

 Spatial Encoding 2.2.

The signals received from a patient contain information about the entire part of the 

patient being imaged but they do not have any particular spatial information, and to 

determine the origin of each component of the signal we use the gradients for x, y, and 

z directions Figure ‎2.2. These gradients are called: 

 The slice-select gradient 

 The frequency-encoding gradient 

 The phase-encoding gradient 
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Figure ‎2.2: Spatially Encoded Sequence [1]. 

 Data Space 2.3.

It is the analog version of the k-space, and it is composed of rows of acquired 

signals at different phase encoding gradients (Figure ‎2.3) as follows [1]: 

1. With TR#1, we have no phase shift. After the frequency-encoding step, a 

signal is received and placed into the center of the data space. 

2. With TR#2, we have no phase shift. After the frequency-encoding step, a 

signal is received and placed into one above the center of the data space. 

3. With TR#3, we have no phase shift. After the frequency-encoding step, a 

signal is received and placed into one below the center of the data space. 

4. Continue till filling the data space in this manner. 

 

 

Figure ‎2.3: Data Space [1]. 



 

5 
 

 Scan Time 2.4.

The scan time is an important factor in MRI systems. It is directly proportional to 

the size of the image and depends on also the type of the study being performed. It can 

be calculated through the simple formula in Eq. (‎2.1) [2], Table ‎2.1 shows ranges of 

scan time for different studies [3]. 

 

.averagessignalofnumberstepsencodingphaseofnumberTTimeScan R 
 

(‎2.1) 

 

Many ways are used in order to reduce the scan time but this comes with the 

reduction of image quality. One of this ways is to shorten TR and according to this 

reduction, the SNR will decrease according to the nature that SNR∝ √     [4] also 

the contrast of image is changed with TR and if it changes for the worse this will not be 

useful. Another way to reduce scan time is to reduce the number of phase encoding 

steps but this causes the volume effects to be worse [4]. So new methods are needed to 

reduce the scan time without affecting the image quality. 

Table ‎2.1: Different MRI Scan Times. 

Scan Type Scan Time 

MRI of the Brain 20-45 minute 

MRI of the Orbits 20-35 minute 

MRI of the TMJ 45-60 minute 

MRI of the Soft Tissue 

Neck 
25-35 minute 

MRI of the Cervical Spine 20-35 minute 

MRI of the Upper 

Extremity 
20-45 minute 

MRI of the Thoracic Spine 25-45 minute 

MRI of the Chest 25-45 minute 

MRI of the Abdomen 25-45 minute 

MRI MRCP 50-60 minute 

MRI of the Lumbar Spine 20-35 minute 

MRI of the Pelvis 20-35 minute 

MRI of the Lower 

Extremity 
20-35 minute 

MRI Run Off 50-60 minute 

MRI Arthrogram 30-60 minute 
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 : Compressed Sensing Chapter 3

Imaging speed is limited by many constraints like physical factors (e.g. slew rate in 

MRI), physiological factors and processing speed [5]. Any imaging system contains 

two main stages the first is data collection and the second is image reconstruction. The 

data collection stage depends on the resolution of image collected and field of view [6], 

[7]. The time needed for image reconstruction depends on the processing power of the 

machine and complexity of the reconstruction algorithm and of course the size of data 

[8]. In order to enhance the imaging speed this will be done in one of the previous 

stages or in both of them, and CS works mainly in the first stage of data acquisition in 

addition to a modification in the reconstruction process.  

The purpose of this chapter is to give a detailed description for the CS algorithm 

and the natural fit between MRI and CS. 

 Technique overview 3.1.

Conventional sampling approaches of signals or images follow Shannon’s theorem 

which states that the sampling rate must be at least twice the maximum frequency 

present in the signal in order to be able to completely recover the signal (Nyquist rate) 

[9], and this underlies nearly all signal acquisition protocols including those used in 

medical imaging devices. For some signals like images which are not bandwidth-

limited, the sampling rate is determined by the desired spatial resolution [9]. However, 

it is common to use an antialiasing filter to limit the bandwidth of the signal so that 

Shannon’s theorem applies. 

Compressed Sensing (CS) is a novel sampling paradigm that goes against the 

commonly known sampling wisdom, and tries to reduce the measurements needed to 

reconstruct the signal or image without significantly degrading its quality [10–12]. CS 

depends on the broad success of lossy compression techniques for signals and images 

which raises a very natural question: why to go to so much effort to acquire all the data 

when most of what we get will be thrown away? Can we just directly measure the part 

that will not end up being thrown away? [11]. So CS is a compressed data acquisition 

protocol which cares only about acquiring the data that will not be thrown away by 

lossy compression. In order for CS to be applicable the signal or image should obey 

two key requirements which are Sparsity and Incoherence [9]. 

 Sparsity 3.2.

For CS to be applied the Sparsity condition should exist for the object (signal or 

image) of interest. Sparsity means that the underlying object has a sparse representation 

in a known domain. 

Many natural signals have sparse representation in if it is expressed in a certain 

domain. For example if we considered the image in Figure ‎3.1(a) which represents a 

gray-level image, and contains pixel values from 0 to 255 and its wavelet transform in 

(b), we find that despite of having nearly all pixels with non zero value, the wavelet 

transform provides a concise representation with many near zero coefficients and 

relatively small few large coefficients [9]. 
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If the image is reconstructed after zeroing out most of the small coefficients in 

wavelet domain (97.5 % of coefficients) Figure ‎3.1(c), we see that the difference is 

hardly noticeable. Sparsity is what underlies most modern lossy coders like JPEG-2000 

and others by first applying a sparsifying transform, mapping image content into a 

vector of sparse coefficients, and then encodes the sparse vector by approximating the 

most significant coefficients and ignoring the smaller ones [9], [13].  

 

 

Figure ‎3.1: (a) A gray-level image. (b) Image Wavelet transform. (c) 

Reconstruction after zeroing out [9]. 

 Incoherence 3.3.

The second condition for CS to be applied is the incoherence which means that the 

artifacts caused in linear reconstruction due to reduction in data collected should be 

noise like in the sparsifying domain [5], and this depends on the undersampling scheme 

used. To be easily understood a 1D sinusoidal signal undersampling example is 

considered in Figure ‎3.2; in Figure ‎3.2(b) we can see the two used undersampling 

schemes (random and uniform 8-fold undersampling) [6]. The results from uniform 

undersampling (d) have coherent interference which prevents recovery, but in (c) the 

interference due to random undersampling can be separated and the signal can be 

recovered through two stages including strong components recovery using simple 

thresholding (e), (f), and weak components recovery is done by subtracting the 

interference calculated for the recovered strong components from the complete signal 

interference and then component isolation using thresholding (h), (g) [6].  

 Compressed Sensing MRI 3.4.

For successful application of CS in MRI, MR images should obey: (1) to be 

naturally compressible by sparse coding in a certain transform domain, and (2) the 

aliasing artifacts due to k-space undersampling be incoherent (noise like) in that 

transform domain [5]. The first condition applies for MRI as most MR images are 

sparse in an appropriate transform domain Figure ‎3.3. First, brain images look sparse in 

wavelet domain, angiograms in Finite difference, and dynamic heart in temporal 

frequency [6]. 
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Figure ‎3.2: (a) A sparse signal. (b) Its K-Space. (c) Incoherent interference due to 

random undersampling. (d) Aliasing due to uniform undersampling. (e), (f) 

Isolation of Strong components. (h), (g) Lowering interference and weak 

component isolation [6]. 

 

 

Figure ‎3.3: (a) MR Images. (b) Images in the sparse domain [6]. 

Also as included in the 1D signal example in Figure ‎3.2, we see that a complete 

random set of samples will be sufficient for incoherent interference [10], [11]. Random 

point k-space sampling in all dimensions is generally impractical as the k-space 

trajectories have to be relatively smooth due to hardware and physiological 

considerations [5], and therefore sampling trajectories must follow relatively smooth 

lines and curves. Non-Cartesian sampling schemes can be highly sensitive to system 
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imperfections [6]. So considering Cartesian grid sampling will be more practical where 

the sampling is restricted to undersampling the phase-encodes and fully sampled 

readouts [5]. Alternative sampling trajectories are possible and some very promising 

results have been presented by [14–16] (radial imaging), and by [17], [18] (spiral 

imaging).  

Furthermore, a uniform random distribution of samples in spatial frequency does 

not take into account the energy distribution of MR images in k-space, which is far 

from uniform. Most energy in MR imagery is concentrated close to the center of k-

space and rapidly decays towards the periphery of k-space [6]. Therefore, realistic 

designs for CS in MRI should have variable density sampling with denser sampling 

near the center of k-space, matching the energy distribution in k-space [6]. All those 

key features of MR images have enabled the use of CS with MRI. 

 Image Recovery (Reconstruction Problem) 3.5.

When using CS, the image should be reconstructed using a nonlinear 

reconstruction that enforces both the sparsity of the image and consistency of the 

reconstructed data with the acquired samples [5]. In MRI, CS can be considered to be a 

special case as the samples are simply individual Fourier coefficients (k-space samples) 

not pixel values [5]. 

 When applying CS with MRI, we only need to acquire a subset S of k-space 

coefficients and the reconstruction is obtained through solution of the following 

optimization problem: 

 

,y-mF                  minimize
2S1

 tosubjectm  (‎3.1) 

 

While     denotes the Fourier transform evaluated just at frequencies in the subset 

S, ψ is the sparse transform, m is the reconstructed image, y is the measured k-space 

data from the MR scanner, and ε controls the fidelity of the reconstructed data [5], [9]. 

In Error! Reference source not found., the objective function is the l1 norm 

hich is defined as ‖ ‖  ∑ |  | , and minimizing ‖  ‖  promotes sparsity [5], [19]. 

The constraint ‖     ‖    controls the data consistency. In other words Eq. (‎2.1) 

finds a solution that is compressible by ψ [5]. The use of l1 norm as a sparsity-

promoting function traces back several decades. A leading early application was 

reflection seismology, in which a sparse reflection function (indicating meaningful 

changes between subsurface layers) was sought from bandlimited data [20], [21]. An 

example for reconstruction of a 1D signal using l1 norm vs. l2 norm minimization is 

shown in Figure ‎3.4 [9]. As seen in the example minimizing the l1 norm shows perfect 

reconstruction. 

Special purpose methods for solving problem in Eq. (‎3.1) have been a focus of 

research interest since CS was first introduced. Proposed methods include: interior 

point methods [19], [22], projections onto convex sets [23], iterative soft thresholding 

[24–26], iteratively reweighted least squares [15], [27], and non-linear conjugate 

gradients and backtracking line-search [5], [14], [16], [28]. 
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Figure ‎3.4: (a) A sparse signal. (b) Reconstruction using l1 minimization. (c) 

Reconstruction using l2 minimization [9]. 
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 : BeagleBoard (Embedded Platform) Chapter 4

Embedded computing is a rapidly growing field. This field has exploded with the 

wide adoption of smartphones and most recently, the creation of multimedia devices. 

For developers interested in learning more about embedded computing or working to 

design a new embedded device, finding cost effective hardware on which to experiment 

can be a challenge. The BeagleBoard is one answer to this challenge [29]. 

This Chapter gives a detailed description for the BeagleBoard which is used the 

embedded platform for our experiment. 

 System Overview 4.1.

The BeagleBoard is a low cost USB powered fanless computer. It is based on the 

OMAP35xx architecture, uses Texas Instruments ARM-8 and designed specifically to 

address the open source community Figure ‎4.1 [30]. 

 

 

Figure ‎4.1: BeagleBoard [30]. 

The device can be connected to the USB port of a PC or laptop for 

experimentation. One great feature of the Beagle Board is that its capabilities can be 

expanded by the addition of various peripherals. These expansion capabilities include 

support for stereo audio, an interface for SD memory cards, the ability to be powered 

via USB style cell phone chargers and power supplies, DVI-D for connection to 

computer monitors, and different input devices like keyboards and pointing devices 

[29], [30]. There are certified and third party peripherals available including a 5V 

power supply and an Ethernet connection. 

The device can be used for a variety of applications. Some of the ones mentioned 

on the beagleboard.org web site include multimedia player, game console, home 

automation, and kitchen computer. 
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In order to use the BeagleBoard, it should be loaded with an operating system 

which may be Linux or Windows based.  Many software projects are available to create 

a version of Android for the BeagleBoard and OMAP3 platforms and also several 

Linux distributions being ported to the Beagle Board including Debian and Gentoo [29] 

(see Appendix A). All of this makes it not only a powerful learning tool but potentially 

a powerful and inexpensive prototyping tool as well. 

The BeagleBoard is an exciting project that provides an extremely low-cost 

hardware solution for developers to learn about embedded computing. It can also 

potentially provide the perfect platform for prototyping the next generation of 

embedded devices. 

 Processor 4.2.

The OMAP35x family of high-performance, applications processors are based on 

the enhanced OMAP™ 3 architecture and are integrated on TI's advanced 65-nm 

process technology. The architecture is designed to provide best-in-class video, image, 

and graphics processing sufficient to support video streaming, conferencing and 

gaming. The architecture of OMAP35xx is designed to provide maximum flexibility in 

a wide range of end applications including medical imaging. The device can support 

numerous HLOS and RTOS solutions including Linux and Windows Embedded CE 

Figure ‎4.2 [31]. 

 

 

Figure ‎4.2: OMAP35xx Block Diagram. 

This OMAP device includes state-of-the-art power-management techniques 

required for high-performance mobile products. 

The following subsystems are part of the device: 
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 Microprocessor unit (MPU) subsystem based on the ARM® Cortex™-A8 

microprocessor. 

 IVA2.2 subsystem with a C64x+ digital signal processor (DSP) core. 

 POWERVR SGX™ Graphics Accelerator subsystem for 3D graphics 

acceleration to support display and gaming effects. 

 Camera image signal processor (ISP) that supports multiple formats and 

interfacing options connected to a wide variety of image sensors. 

 Display subsystem with a wide variety of features for multiple concurrent 

image manipulation, and a programmable interface supporting a wide 

variety of displays. The display subsystem also supports NTSC/PAL video 

out. 

 Level 3 (L3) and level 4 (L4) interconnects that provide high-bandwidth 

data transfers for multiple initiators to the internal and external memory 

controllers and to on-chip peripherals. 

The device also offers: 

 A comprehensive power and clock-management scheme that enables high-

performance, low-power operation, and ultralow-power standby features. 

The device also supports SmartReflex™ adaptative voltage control. This 

power management technique for automatic control of the operating voltage 

of a module reduces the active power consumption. 

 A memory stacking feature using the package-on-package (POP) 

implementation. 

 Usage Scenarios 4.3.

When loading BeagleBoard with an operating system the ARM processor will 

work as the GPP, and to allow passing data and messages from the GPP to DSP, an 

inter-communication system will be built for the two sides. The CS based MRI 

reconstruction system will be implemented to run on the BeagleBoard in two modes as 

follows: 

 Complete processing on the GPP (ARM). 

 Hybrid processing on both sides of the processor (GPP and DSP). 
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 : Performance Enhancement of CS Algorithm Chapter 5

 CS Algorithm Architecture 5.1.

The problem in Eq. (‎3.1) represents a convex optimization problem. Finding a 

solution to this equation requires a highly efficient optimization method due to the large 

size of the parameter space. A suitable approach for such problems is the conjugate 

gradient method. It has initially been presented by Hestenes and Stiefel in 1952 for the 

solution of linear systems and in the meantime successfully applied to MRI 

reconstruction problems [32]. The method has been extended to nonlinear optimization 

by Fletcher and Reeves in 1964 and since then a number of optimized nonlinear 

conjugate gradient approaches have been developed [33]. Recently, Hager and Zhang 

[34] presented a version with improved convergence properties, which will be 

appropriate to solve Eq. (‎3.1). In this work we used the nonlinear conjugate gradient 

and backtracking line search to solve this problem similar to [5], [14], [16], [28] as it is 

characterized with low memory requirements and strong convergence. 

 

Considering the unconstrained problem in the so-called Lagrangian form: 

 

,ψmλymFargmin
1

2

2um   (‎5.1) 

 

Whereλis a regularization parameter that determines the trade-off between the 

data consistency and the sparsity [5].λcan be selected so that the solution of Eq. (‎5.1) 

will be the same as that of Eq. (‎3.1). The conjugate gradient algorithm implemented is 

shown in Figure ‎5.1 and f(m) is the objective function as defined in Eq. (‎5.1). 

“mingrad” and “maxiter” are used as stopping criteria for the algorithm by gradient 

magnitude and number of iterations respectively, αand βare line search parameters 

and are arbitrary selected (defaults are α= 0.05 and β=0.6). γ is the conjugate gradient 

update parameter and it can be calculated through many methods [33] and the selected 

method was that used in the first conjugate gradient method proposed by Fletcher and 

Reeves [35] as shown in Eq. (‎5.2). 
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  (‎5.2) 

 

Matlab (The MathWorks, Inc., Natick, MA, USA), was used for the 

implementation of CS algorithm. After implementation the algorithm was tested on two 

types of data the first is the SheppLogan phantom by computing its k-space at the 

wanted locations only using its continuous Fourier formulas, the second type of data is 

real brain MR image data. 
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Figure ‎5.1: Conjugate gradient Algorithm block diagram. 

 

 

Figure ‎5.2: (a) 10% pattern. (b) 33.3% pattern. 
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In order to maximize the incoherence for a given number of samples, random 

sampling was chosen which results in a good, incoherent, and near-optimal solution [5]. 

A Monte-Carlo algorithm was used to generate the undersampling pattern which uses a 

grid size based on the desired resolution, and this grid is undersampled using a 

constructed probability density function and randomly draw indices from that density. 

The quality of the generated undersampling pattern is judged using the Transform Point 

Spread Function (TPSF) which is defined as                
           [5], [6], and 

the pattern with the lowest peak interference was selected. An example of generated 

undersampling patterns is shown in Figure ‎5.2. 

 

As mentioned before the constructed CS algorithm was tested on a Shepp Logan 

phantom data and on a real MR data. Firstly for the Shepp Logan trial, the continuous 

Fourier data was calculated at specific locations according to the generated 

undersampling patterns of ratios of (33.3%, 30%, 25%, 20%, 15%, and 10%) and with 

a desired resolution of 512*512 pixels and these data was prepared for testing in two 

modes the first was using it directly with the algorithm and the other was by adding a 

Gaussian noise (µ=0.002 & σ
2
=0.002) to the Fourier data (Signal to Noise Ratio: 2.3 

dB) and then testing it with the algorithm. The sparsifying transform used for the Shepp 

Logan images was the Finite Difference transform. Secondly the Algorithm was tested 

on real MR data which was a brain MR image with a resolution 512*512 pixels with 

the same undersampling patterns used with the Shepp Logan trial but with Wavelet 

transform as the sparsifying transform. 

 

 Image Quality Evaluation Metrics 5.2.

Here, the metrics used to evaluate the quality of the produced images by 

compressed sensing are mentioned. 

5.2.1. Mean Squared Error (MSE) 

The MSE [36], [37] has been widely used to quantify image quality. It measures 

the quality change between the original and processed images in an M*N window. 

When it is used alone, it does not correlate strongly enough with perceptual quality. It 

should be used, therefore, together with other quality metrics and visual perception. 

MSE is defined by Eq. (‎5.3). 
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5.2.2. Geometric Average Error (GAE) 

The value of GAE [37] is approaching zero if there is a very good transformation 

(small differences) between the original and processed images; otherwise, the value of 

GAE is high. GAE is defined by Eq. (‎5.4). 
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5.2.3. Quality Index (QI) 

It models any distortion as a combination of three different factors, which are loss 

of correlation, luminance distortion, and contrast distortion, and is defined as:  
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Where  ̅ and   ̅ represent the mean of the original and processed values with their 

standard deviations σg and σf of the original and processed values of the analysis 

window, and σgf represents the covariance between the original and processed 

windows. QI is computed for a sliding window of size 8*8 without overlapping. Its 

highest value is 1 if gi, j = fi, j, whereas its lowest value is -1 if fi, j =    ̅         [37]. 

 CS Algorithm Performance 5.3.

The Algorithm was tested during all trials on a PC containing 8 GB RAM and an 

Intel
®
 Core™ i7-2630QM CPU 2.00GHz (Intel Corporation, USA). Figure ‎5.3 shows 

the results of reconstruction for Shepp logan for patterns of ratios (33.3%, 30%, 25%, 

20%, 15%, and 10%) from the top of figure. Figure ‎5.4 shows the results for the 

reconstruction of the noised Shepp Logan with the same ratios used with the clear 

Shepp Logan. Figure ‎5.5 shows the results for the brain MR image with ratios of 33.3% 

to 10% from top of figure. From these results we can see that the quality of images 

reconstructed from incomplete k-space is very good compared to that produced from 

the complete k-space. The quality of produced images using CS is evaluated using the 

metrics mentioned in the previous section. Figure ‎5.6 shows in the left column the 

mean squared error drawn versus the undersampling ratios and in the right column the 

quality index versus undersampling ratios for SheppLogan, noised SheppLogan, and 

brain MR image from top to down respectively. The values of MSE and QI are shown 

in Table ‎5.3to Table ‎5.8 at the end of chapter. From the calculated metrics it seems that 

the reconstructed images using CS for Shepp Logan phantom is with medium quality as 

it have a slightly high MSE and medium QI (near zero) which needs to have a value 

near one for good approximation of image. The algorithm shows approximately the 

same behavior with the noised Shepp Logan as in Figure ‎5.4 and Figure ‎5.6 from the 

side of quality metrics except that the produced images may be visually better than the 

noised images reconstructed from the complete k-space. The results for the real brain 

MR image show a very good performance as the reconstructed images using CS from 

small undersampling ratios have a very small MSE compared to the image produced 

from the complete k-space and the QI is very close to one which indicates that the 

reconstruction using CS is a very good approximation for the data. 
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 CS using L0-Norm Minimization 5.4.

In the objective function of the CS optimization problem in Eq. (‎3.1) and Eq. (‎5.1), 

we used the L1-norm minimization of the sparse representation of the reconstructed 

image. This part of the objective function is the part which enforces the sparsity of the 

produced image in the sparsifying transform domain. The L1-norm is calculated as 

mentioned before by summation of the absolute values of the array of interest and this 

cares about the values of coefficients of the image in the sparse domain, but if we can 

reduce the order of the norm in the objective function to care about the number of non-

zero elements in the sparse representation, this will more express the sparsity of the 

vector of coefficients and minimizing this number will produce sparser images than 

those produced by minimizing L1-norm. 

Reducing the order of the norm means that the L0-pseudo norm will be used which 

means the number of non-zero elements of the array of interest and the new 

optimization problem will be as follows: 

 

.y-mF                  minimize
2S0

 tosubjectm  (‎5.6) 

 

Solving Eq. (‎5.6) which is a non-convex optimization problem is generally 

infeasible [38]. Replacing the L0-pseudo norm by L1-norm as shown before is one of 

the solutions to this difficulty. A smoothed representation of the L0-norm by 

approximation using continuous function may enhances the performance of the CS 

algorithm and make it computationally inexpensive [38]. 

The used smoothed L0-norm is computed as follows: 

 Consider 

 

,
,0

,1
)(














x

x
xf  (‎5.7) 

 

Define the continuous multivariate function g(x) as: 
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L0-norm is calculated through 
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Using the new definition of the L0-norm in Eq. (‎5.9), the CS algorithm was 

implemented by solving the optimization problem in Eq. (‎5.6) using the same 

techniques used with the solution of problem in Eq. (‎3.1) (nonlinear Conjugate 

Gradient). Also the algorithm was tested on the same data for the algorithm of Eq. (‎3.1) 

(Shepp Logan, Noised Shepp Logan, and real MR data). 
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                        (a)                        (b) 

Figure ‎5.3: (a) Shepp logan image reconstructed from 100% of k-space. (b) 

Reconstruction using CS with undersampling ratios of 33.3, 30, 25, 20, 15, 10% of 

k-space respectively from top to bottom. 
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                        (a)                        (b) 

Figure ‎5.4: (a) Noised Shepp logan image reconstructed from 100% of k-space. (b) 

Reconstruction using CS with undersampling ratios of 33.3, 30, 25, 20, 15, 10% of 

k-space respectively from top to bottom. 
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                        (a)                        (b) 

Figure ‎5.5: (a) Brain image reconstructed from 100% of k-space. (b) 

Reconstruction using CS with undersampling ratios of 33.3, 30, 25, 20, 15, 10% of 

k-space respectively from top to bottom. 
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(a)                                   (b) 

  

(c)                                   (d) 

  

(e)                                   (f) 

Figure ‎5.6: MSE & QI calculated for CS reconstructions compared to full k-space 

reconstruction for the three data types. (a) & (b) MSE and QI of Shepp logan. (c) 

& (d) MSE and QI of Noised Shepp Logan. (e) & (f) MSE and QI of Brain Image. 
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The undersampling patterns used here are generated using the same Monte-Carlo 

method, but we used a modification on those ones used with the real MR data where we 

concentrated most of the samples in the central region as in Figure ‎5.7 taking in 

consideration that the MR k-space has most of its power in this region. 

 

Figure ‎5.7: (a) 10% undersampling pattern. (b) 33.3% undersampling pattern. 

The algorithm here also was implemented and tested on the same platform used for 

the original CS algorithm. Figure ‎5.8 shows the results of using L0-norm with the finite 

difference transform on the Shepp Logan for undersampling ratios of (33.3%, 30%, 

25%, 20%, 15%, and 10%) from the top of figure and as we see, the produced images 

seem to be with good quality compared the image produced from complete k-space 

reconstruction. Figure ‎5.9 shows the results of using L0-norm with the finite difference 

transform on the noised Shepp Logan for the same undersampling ratios. Figure ‎5.10 

shows the results of using L0-norm with the Wavelet transform on the real MR image. 

Figure ‎5.11 shows quality comparison for using the L0-norm and L1-norm in 

reconstruction including the mean squared error in the left column and the quality index 

in the right column. 

 CS using Fourier Transform as the Sparse transform 5.5.

for MR Real Data 

In this section we propose the use of the Fourier transform of the image of interest 

as the sparse transform, testing it with the use of both L1-norm and smoothed L0-norm 

minimization, and comparing it with the results of the same trials using the Wavelet 

transform as the sparse transform. The optimization problem of CS when using Fourier 

transform as the sparse transform will be as follows: 

 

.y-mF             .     minimize
2S1

tosubjectmF  (‎5.10) 

 

Where F indicates the complete forward Fourier transform. The algorithm of this 

technique was tested using the MR real data of the same resolution used in the previous 

trials, and tested on the same computing platform used for the original CS algorithm. 

Figure ‎5.12 shows the results of using the Fourier transform as the sparse transform 
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with L1-norm minimization. Figure ‎5.13 shows the results of using the Fourier 

transform as the sparse transform with L0-norm minimization. Figure ‎5.14 is quality 

comparison between using L1 and L0-norms with the Fourier transform as the sparse 

transform, using Wavelet and Fourier with L1-norm, and using Wavelet and Fourier 

with L0-norm. The left column shows the mean squared error and the right shows the 

quality index. Figure ‎5.15 shows performance comparison (Processing time) for the 

different versions of the CS algorithm. 

Table ‎5.1 to Table ‎5.11 contain all the data represented in the comparison figures 

including mean squared errors and quality index for both real brain MR and simulated 

data (clear and noised Shepp Logan), signal to noise ratio for noised Shepp Logan 

results, and processing time of all trials. 

 Discussion 5.6.

The basic CS algorithm gave excellent results compared to images reconstructed 

from complete k-space in both simulated data (Shepp Logan phantom) in Figure ‎5.3 

and Figure ‎5.4, and real brain MR data in Figure ‎5.5. The quality of reconstructed 

images is good according to the quality metrics measured in Figure ‎5.6 which show 

good mean squared errors and quality indices with the best performance with the real 

MR image. We can see that the MSE for the noised Shepp Logan gets bad as the 

undersampling ratio increases and the reason for this may be that increasing the 

sampling ratio here is for both the signal and the noise which results in acquiring more 

information about the sampled signal (the noised image) and as a result good recovery 

for the sampled signal which is an extra noised image with respect to the original Shepp 

Logan image (as MSE and QI are calculated with respect to the clear image). Also we 

see that the quality indices for clear and noised Shepp Logan are near zero which means 

a medium quality of the produced images, but for the real MR data it is near one which 

means that we have a good reconstruction from the side of correlation, luminance, and 

contrast distortion. 

Using the L0-norm penalized reconstruction gave the expected performance for 

both the simulated data and the real MR data as shown in Figure ‎5.8 for the clear Shepp 

Logan image, and Figure ‎5.10 for the real MR data. When comparing the MSE and the 

quality index for the reconstructed images using L0-norm based CS compared to image 

produced from complete k-space in Figure ‎5.11, we can see that the L0-norm 

penalization produces images of lower mean squared errors than those produced with 

L1-norm penalized reconstruction except for noised Shepp Logan images it gives 

higher mean squared errors for the same reason mentioned in the last paragraph. Also 

we find here that the quality of the produced images using L0-norm based CS from the 

side of contrast and luminance (QI) is slightly higher than that images produced using 

the L1-norm based CS. And as shown in Figure ‎5.15 (a) we can say that using L0-norm 

with wavelet as a sparse transform in CS algorithm has no benefit from the side of 

computation time as it has approximately the same computation time of using L1-norm 

and this is considered a good thing as using L0-norm now has become computationally 

inexpensive or at least comparable with using L1-norm.  

Figure ‎5.12 and Figure ‎5.13 show the results of using Fourier transform as the 

sparse transform with the real MR image, the results show that using Fourier with L1-

norm penalized reconstruction gave better results than using Wavelet with the same 

type of reconstruction and approximately the same quality of images if using it with 

L0-norm penalized reconstruction. This is verified in quality comparison figures in 
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Figure ‎5.14 which show that using Fourier based CS with L1-norm gives a smaller 

mean squared error than Wavelet and approximately the same mean error with L0-

norm. With respect to the quality indices for both transforms we see that they are 

excellent also and all of them are near one for both transforms (slightly higher for using 

Fourier based CS). Figure ‎5.15 shows the computation time for the different trials with 

the real MR image and we can see approximately all the trials have the same 

computation time except for the L1-norm penalized CS based on Fourier reconstruction 

which gives the best performance among all trials. 

Through previous results we can say that CS algorithm is a good reconstruction 

technique but the quality of images should be investigated in other ways to be sure of 

the efficiency of the algorithm in full recovery of the image. One way may be to 

investigate the results of the algorithm in reconstruction of diseased brain images and 

see the effect of incomplete sampling on appearance of images or to find another 

quality factor which better describes the reconstructed images using CS. Also other 

ways need to be investigated to reduce the computation time of CS algorithm like 

reducing the number of iterations of the steepest descent CG by improving the stopping 

criterion used in the algorithm. 
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                        (a)                        (b) 

Figure ‎5.8: (a) Shepp Logan image reconstructed from 100% of k-space. (b) 

Reconstruction using CS with L0-Norm for undersampling ratios of 33.3, 30, 25, 

20, 15, 10% of k-space respectively from top to bottom. 
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                        (a)                        (b) 

Figure ‎5.9: (a) Noised Shepp Logan image reconstructed from 100% of k-space. 

(b) Reconstruction using CS with L0-Norm for undersampling ratios of 33.3, 30, 

25, 20, 15, 10% of k-space respectively from top to bottom. 
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                        (a)                        (b) 

Figure ‎5.10: (a) Brain image reconstructed from 100% of k-space. (b) 

Reconstruction using CS with L0-Norm for undersampling ratios of 33.3, 30, 25, 

20, 15, 10% of k-space respectively from top to bottom. 
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(a)                                   (b) 

  

(c)                                   (d) 

  

(e)                                   (f) 

Figure ‎5.11: Quality comparison between using CS with L1-Norm & L0-Norm, (a) 

& (b) MSE and QI of Shepp Logan results. (c) & (d) MSE and QI of Noised Shepp 

Logan results. (e) & (f) MSE and QI of Brain image results. 
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                        (a)                        (b) 

Figure ‎5.12: (a) Brain image reconstructed from 100% of k-space. (b) 

Reconstruction using CS with Fourier transform and L1-Norm for undersampling 

ratios of 33.3, 30, 25, 20, 15, 10% of k-space respectively from top to bottom. 



 

34 
 

 

 

 

 

 

 
                        (a)                        (b) 

Figure ‎5.13: (a) Brain image reconstructed from 100% of k-space. (b) 

Reconstruction using Fourier based CS with L0-Norm for undersampling ratios of 

33.3, 30, 25, 20, 15, 10% of k-space respectively from top to bottom. 
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(a)                                   (b) 

  

(c)                                   (d) 

  

(e)                                   (f) 

Figure ‎5.14: Quality Comparison, (a) & (b) MSE & QI for brain image 

reconstructions using Fourier based CS with L0-Norm & L1-Norm. (c) & (d) MSE 

& QI for Fourier based CS vs. Wavelet based CS with L1-Norm. (c) & (d) MSE & 

QI for Fourier based CS vs. Wavelet based CS with L0-Norm. 
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(a)                                   (b) 

  

(c)                                   (d) 

Figure ‎5.15: Performance comparison (a) Processing time for reconstructions 

using Wavelet based CS with L0-Norm & L1-Norm. (b) Processing time for using 

Fourier based CS with L0-Norm & L1-Norm. (c) Processing time for using L1-

Norm with Wavelet and Fourier. (d) Processing time for using L0-Norm with 

Wavelet and Fourier. 

 

Table ‎5.1: Real MR image MSE with Fourier as a sparse transform 

Undersampling 
Ratio 

33% 30% 25% 20% 15% 10% 

L1-Norm 8.16e-4 8.47e-4 8.8e-4 9.39e-4 9.9e-4 0.001 

L0-Norm 6.45e-4 6.85e-4 7.42e-4 8.1e-4 8.79e-4 9.59e-4 
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Table ‎5.2: Real MR image QI with Fourier as a sparse transform 

Undersampling 
Ratio 

33% 30% 25% 20% 15% 10% 

L1-Norm 0.9837 0.9831 0.9825 0.9814 0.9804 0.9793 

L0-Norm 0.9870 0.9862 0.9852 0.9839 0.9825 0.9811 

Table ‎5.3: Real MR image MSE with Wavelet as a sparse transform 

Undersampling 
Ratio 

33% 30% 25% 20% 15% 10% 

L1-Norm 8.56e-4 9.02e-4 9.62e-4 10.5e-4 11.33e-4 12.35e-4 

L0-Norm 6.45e-4 6.85e-4 7.42e-4 8.1e-4 8.79e-4 9.57e-4 

Table ‎5.4: Real MR image QI with Wavelet as a sparse transform 

Undersampling 
Ratio 

33% 30% 25% 20% 15% 10% 

L1-Norm 0.9833 0.9823 0.9812 0.9793 0.9778 0.9759 

L0-Norm 0.9870 0.9863 0.9852 0.9839 0.9825 0.9811 

Table ‎5.5: Clear Shepp Logan MSE 

Undersampling 
Ratio 

33% 30% 25% 20% 15% 10% 

L1-Norm 2.4813 2.4811 2.4805 2.4796 2.4788 2.4777 

L0-Norm 0.5046 0.5041 0.5056 0.5063 0.5033 0.5030 

Table ‎5.6: Clear Shepp Logan QI 

Undersampling 
Ratio 

33% 30% 25% 20% 15% 10% 

L1-Norm 4.97e-6 4.97e-6 4.98e-6 4.99e-6 5e-6 5.01e-6 

L0-Norm 1.53e-5 1.53e-5 1.52e-5 1.51e-5 1.52e-5 1.52e-5 
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Table ‎5.7: Noised Shepp Logan MSE 

Undersampling 
Ratio 

33% 30% 25% 20% 15% 10% 

L1-Norm 2.4813 2.4811 2.4805 2.4796 2.4788 2.4777 

L0-Norm 2.4950 2.5537 2.5444 2.5520 2.5510 2.5403 

Table ‎5.8: Noised Shepp Logan QI 

Undersampling 
Ratio 

33% 30% 25% 20% 15% 10% 

L1-Norm 4.97e-6 4.97e-6 4.98e-6 4.99e-6 5e-6 5.01e-6 

L0-Norm 4.98e-6 4.89e-6 4.88e-6 4.9e-6 4.91e-6 4.91e-6 

Table ‎5.9: Noised Shepp Logan SNR 

Undersampling 
Ratio 

33% 30% 25% 20% 15% 10% 

L1-Norm 0.00427 0.00427 0.00427 0.00426 0.00426 0.00426 

L0-Norm 0.00417 0.00409 0.00410 0.00408 0.00408 0.00409 

Table ‎5.10: Real MR image reconstruction time with Fourier as sparse transform 

Undersampling 
Ratio 

33% 30% 25% 20% 15% 10% 

L1-Norm 126.41 126.68 130.05 131.34 124.01 129.74 

L0-Norm 188.99 189.20 237.00 150.50 187.94 212.77 

Table ‎5.11: Real MR image reconstruction time with Wavelet as sparse transform 

Undersampling 
Ratio 

33% 30% 25% 20% 15% 10% 

L1-Norm 189.03 188.99 236.57 150.00 187.14 211.83 

L0-Norm 189.61 188.40 236.42 149.62 186.97 212.28 
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 : Embedded Implementation Chapter 6

In this chapter we investigate the use of an embedded platform based on the 

OMAP processor (BeagleBoard) for a challenging image reconstruction algorithm for 

MRI based on the compressed sensing. We compare straightforward implementations 

of the compressed sensing reconstruction algorithm on different processing platforms 

including embedded processors to verify the performance of such platforms. The 

performance of the algorithm on the embedded platform was compared to the 

performance on two large processing platforms containing Intel® Core™ Duo 

Processor and Intel® Core™ i7-2630QM CPU 2.00GHz (Intel Corporation, USA). 

 CS Algorithm Preparation 6.1.

The CS algorithm to be tested on the embedded platform was the initial CS 

algorithm using the L1-norm minimization in the solution of the optimization problem 

in Eq. (‎3.1) and implemented using the standard C language and gcc 4.6.3 (Free 

Software Foundation, Inc., Boston, USA) on Ubuntu 11.10 (Canonical Ltd., London, 

United Kingdom) using a platform containing an Intel® Core™ Duo Processor T2450 

2.00 GHz (Intel Corporation, USA). The memory used by the program was optimized 

and reduced in order to be suitable for the limited memory of BeagleBoard. 

Due to memory considerations we used an angiography-like simulated image with 

a size of 100100 pixels and containing randomly generated vessels with different sizes 

and magnitudes as shown in Figure ‎6.1 (a).  The k-space of the image was 

undersampled with a factor of 20 with a randomly generated sampling pattern shown in 

Figure ‎6.1 (b), and as an initial guess for the algorithm we used a zero filling with 

density compensation (ZF-w/dc) reconstructed image Figure ‎6.1 (c). ZF-w/dc is the 

reconstruction by zero-filling the missing k-space data and k-space density 

compensation [5]. The algorithm block diagram is shown in Figure ‎6.2. 

 

 
(a) (b) (c) 

Figure ‎6.1: (a) Original image. (b) Sampling pattern. (c) Zero filling with density 

compensation reconstruction. 

http://www.fsf.org/
http://www.fsf.org/
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Figure ‎6.2: CS algorithm block diagram 

 Embedded Reconstruction 6.2.

In order to run the OMAP we need first to load it with an embedded operating 

system (Windows based or Linux based), we build Ångström system which is a 

complete Linux distribution and includes the kernel, a base file system, basic tools and 

a package manager to install software from a repository. It uses the Open Embedded 

(OE) platform, a tool-chain that makes cross-compiling and deploying packages easy 

for embedded platforms, also an inter-processor communication system (DSP/BIOS 

Link) Fig.3, was built between the two processors (ARM and DSP) to allow passing 

messages and data for testing algorithm from the ARM (that works as a general purpose 

processor GPP) side to the DSP side to perform it Figure ‎6.3 [8]. 

The algorithm was tested on the embedded platform in two modes the first was on 

the GPP (ARM) and the second was implemented using the two processors of the board 

(ARM & DSP) [8]. 

 

 

Figure ‎6.3: Communication with DSP. 
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6.2.1. Arm Based Reconstruction System 

Here the CS algorithm was tested only on the ARM processor and compiled using 

EGLIBC 2.16 (Linux Foundation, USA). All calculations were performed in a straight 

forward sequential manner using the GPP. The algorithm test data including the image 

file, the undersampling pattern, and the probability density function for the density 

compensated reconstruction was transferred to the BeagleBoard though Ethernet [8]. 

6.2.2. Hybrid processor based Reconstruction System 

The CS algorithm here was divided into two parts, the first is performed on the 

ARM processor and the second is performed on the DSP. The part to be on the ARM 

processor includes all preparation processes for the CS algorithm including memory 

allocations, read and write of test data to the shared memory with the DSP. The part to 

be on the DSP includes the core processes, iterations, and computations of the CS 

algorithm and it uses all the data written by the ARM in the shared memory. All the 

memory needed by the algorithm was fixed and preallocated from the ARM side [8]. 

 Results and Discussion 6.3.

After testing the algorithm on the BeagleBoard we get the reconstructed image 

using CS as shown in Figure ‎6.4 and it was identical to the one produced by the same 

algorithm tested on the large processing platforms. 

The performance of the algorithm after trying it on the different platforms is shown 

Table ‎6.1. All the processors give longer processing time than the time expected for this 

algorithm especially on the DSP while that on the ARM processor was found to be 

surprisingly close to significantly larger processing platforms. This is apparently due to 

the dependence of the algorithm on 2D Fourier transform and the prolonged loops 

which take long processing time. The excessive processing time obtained when running 

the same algorithm on the DSP was difficult to explain at first until further research was 

done and that revealed the different architecture of this platform that requires very 

different coding strategy to take advantage of the available computing hardware on the 

processor. Hence, simple porting of code running on other general purpose processors 

is not a good strategy to develop efficient code on DSPs. 

Difficulties were also found in attempting to transfer data between the ARM and 

DSP parts of the OMAP processor. The data passing interface allowed limited data 

packets that barely allowed the 100100 sized image to be transferred for processing. 

This is clearly a very challenging problem facing the porting of such algorithms into 

embedded DSPs.  

It should be noted that the algorithm used was implemented using serial code. This 

did not clearly take advantage of the number of processors available on the processing 

platform used. Hence, the difference between the first two Intel-based platforms with 2 

and 8 processors can be attributed only to differences in clock speed rather than number 

of processor. 
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Figure ‎6.4: CS based reconstructed image. 

 

Table ‎6.1: Processing time. 

Module Processing Time (min) 

Core duo 22.5 

Core i7 16.5 

ARM 30.1 

DSP About 1000 
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Conclusions and Future Work 

The results confirmed the theory of compressed sensing as a powerful method of 

image reconstruction under very low sampling conditions. The performance of the CS 

algorithm can be enhanced in both speed and quality of reconstructions through the use 

of some modifications as using l0 penalized reconstruction which gives better images 

than those produced by l1 penalized reconstructions. The used smoothed version of the 

l0-norm introduced a success in both the quality of reconstructed images which were 

better than their counterparts in the l1 penalized reconstruction and processing time that 

was found to be very close to the time of using l1 penalized problem. 

Using Fourier transform as a sparse transform was found to give better results than 

Wavelet transform if using an l1 penalized reconstruction and approximately the same 

results if using the l0 penalization. Also it was found that the Fourier transform is time 

consuming if used with the l0 penalization and speeds up the algorithm if used with l1 

penalization. The best performance for the CS algorithm in both quality and processing 

time was found to be achieved if using the l0 penalized reconstruction with Wavelet or 

the l1 penalized reconstruction with Fourier. 

A further research will be done in order to enhance the performance of the 

compressed sensing algorithm through taking in consideration the symmetry of 

encoded state (k-space) at which the MR images are acquired. This may increase the 

number of acquired samples in the k-space from the same low sampling conditions of 

CS. 

The processing time of the algorithm is compared on different processing platforms 

with results indicating interesting performance for the embedded ARM processor part 

of the OMAP processor. Also, the results indicated that the porting of such 

sophisticated algorithm to the DSP was not straightforward and that simple porting 

resulted in a very poor performance. So, special coding methods that take advantage of 

the architecture of the DSP to utilize the vectored computational hardware and 

pipelining must be carefully mapped onto the algorithm before it is ported. Further 

investigation is needed to develop specific porting instructions to allow the 

performance of the DSP to reach its theoretical limit. Targeting new embedded 

platforms that allow direct communication and debugging on DSP and containing 

multicores DSP’s will be an interesting path to follow to allow further investigation for 

the performance of such special function processors with the challenging and 

computationally expensive algorithms like compressed sensing. 
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Appendix A: Getting BeagleBoard Ready 

As mentioned before, BeagleBoard can be powered to act like a minicomputer by 

loading it with an operating system (OS). This OS may be a Linux or Windows based 

OS and in our work we used a Linux based OS. A complete Linux distribution: 

includes the kernel, a base file system, basic tools and even a package manager to 

install software from a repository was used (one of projects of Yocto Project). It is 

optimized for low-power controllers like the one in BB and intends to be small and 

basic system to modify on your needs. 

The Yocto Project is an umbrella project covering a fairly wide swath of embedded 

Linux technologies. It is not a Linux distribution. The Yocto Project™ is an open 

source collaboration project that provides templates, tools and methods to help you 

create custom Linux-based systems for embedded products regardless of the hardware 

architecture. It's a complete embedded Linux development environment with tools, 

metadata, and documentation - everything you need. The tools are easy to get started 

with, powerful to work with (including emulation environments, debuggers, an 

Application Toolkit Generator, etc.) and they allow projects to be carried forward over 

time without causing you to lose optimizations and investments made during the 

project’s prototype phase and to focus on their specific product features and 

development. The Yocto Project fully supports a wide range of hardware and generates 

images for many kinds of devices and supports device emulation through the QEMU 

Emulator. 

Needed things to develop the Yocto project environment: 

 A host system running a supported Linux distribution (i.e. recent releases of 

Fedora, openSUSE, CentOS, and Ubuntu). If the host system supports 

multiple cores and threads, you can configure the Yocto Project build 

system to decrease the time needed to build images significantly.  

 The right packages. 

 A release of the Yocto Project. 

 

Environment Development 

 
Packages and package installation vary depending on your development system 

and on your intent. The next sections list – for Ubuntu - the required packages needed 

to build an image that runs on BeagleBoard (the ARM side). The Yocto project has 

many distributions like Poky and Angstrom and we here use Poky distribution. 

1. The Packages 

The essential packages you need for Ubuntu can be acquired through the following 

command:  

 
 $ sudo apt-get install gawk wget git-core diffstat unzip 

texinfo \build- essential chrpath libsdl1.2-dev xterm 

 
2. Building an Image 

In the development environment you will need to build an image whenever you 

change hardware support, add or change system libraries, or add or change services that 

have dependencies.  
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Use the following commands to build your image. The OpenEmbedded build 

process creates an entire Linux distribution, including the toolchain, from source. 

 
 $ wget http://downloads.yoctoproject.org/releases/yocto/yocto-           

1.4/poky-dylan-9.0.tar.bz2 

 $ tar xjf poky-dylan-9.0.tar.bz2 

 $ cd poky-dylan-9.0 

 $ source oe-init-build-env 

 

Notes 

 The build process using Sato currently consumes about 50GB of disk space. 

To allow for variations in the build process and for future package 

expansion, we recommend having at least 100GB of free disk space.  

 The first command retrieves the Yocto Project release tarball from the 

source repositories using the wget command. 

 The second command extracts the files from the tarball and places them 

into a directory named poky-dylan-9.0 in the current directory. 

 The third and fourth commands change the working directory to the Source 

Directory and run the Yocto Project oe-init-build-env environment setup 

script. Running this script defines OpenEmbedded build environment 

settings needed to complete the build. The script also creates the Build 

Directory, which is build in this case and is located in the Source Directory. 

After the script runs, your current working directory is set to the Build 

Directory. Later, when the build completes, the Build Directory contains all 

the files created during the build. 

Examine your local.conf file in your project's configuration directory, which is 

found in the Build Directory. The defaults in that file should work fine. However, there 

are some variables of interest at which you might look. By default, the target 

architecture for the build is qemux86, which produces an image that can be used in the 

QEMU emulator and is targeted at an Intel® 32-bit based architecture. To change this 

default, edit the value of the MACHINE variable in the configuration file before 

launching the build (select that one of BeagleBoard).  

Another couple of variables of interest are the BB_NUMBER_THREADS and the 

PARALLEL_MAKE variables. By default, these variables are commented out. 

However, if you have a multi-core CPU you might want to uncomment the lines and set 

both variables equal to twice the number of your host's processor cores. Setting these 

variables can significantly shorten your build time. 

Continue with the following command to build an OS image for the target, which 

is core-image-sato in this example. 

 
 $ bitbake -k core-image-sato 

     

Depending on the number of processors and cores, the amount of RAM, the speed 

of your Internet connection and other factors, the build process could take several hours 

the first time you run it. Subsequent builds run much faster since parts of the build are 

cached. 

Upon finishing you can find your image data in the following path (yocto/poky-

danny-8.0/build/tmp/deploy/images) this data includes the following important files 

which will be loaded on our board: 

 uImage 

 u-boot.bin 

http://www.yoctoproject.org/docs/1.4/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.4/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.4/ref-manual/ref-manual.html#structure-core-script
http://www.yoctoproject.org/docs/1.4/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.4/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.4/ref-manual/ref-manual.html#var-BB_NUMBER_THREADS
http://www.yoctoproject.org/docs/1.4/ref-manual/ref-manual.html#var-PARALLEL_MAKE
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 MLO-beagleboard 

 core-image-sato-beagleboard.tar.bz2 

 

Compiling Kernel 

          
A kernel should be compiled and prepared to be added to system modules on 

BeagleBoard. One can bring a kernel from kernel.org, compile it and it will work 

properly on the board but for BeagleBoard there is a good kernel which has better 

compatibility with our system. This kernel is called Balister kernel. Philip Balister 

kernel is contained in the following link you just needs to zip its contents 

(https://github.com/balister/linux-omap-philip). 

 Before starting kernel compiling you need to make sure from installing the ARM 

compilers (code sourcery) from (http://www.mentor.com/embedded-software/sourcery-

tools/sourcery-codebench/editions/lite-edition/). Once you install them you will need to 

add the path of compilers (default is: /opt/CodeSourcery/Sourcery_G++_Lite/bin) to 

the system path using the export command in Ubuntu as follows: 

 
 export PATH="$PATH:/opt/CodeSourcery/Sourcery_G++_Lite/bin" 

 

but take care while you perform this. If not properly executed, can destroy your system 

path (this step can be included in the second item in the following steps as will be 

shown). 

 

Steps: 

 

1. Change your directory to balister kernel folder. 

2. Create the environment variables which include the architecture and cross 

compilers and the code sourcery path (if you did not perform before) in a file 

and call it env-vars as follows: 

 
export PATH=$PATH:/opt/CodeSourcery/Sourcery_G++_Lite/bin 

export CROSS_COMPILE=arm-none-linux-gnueabi- 

export ARCH=arm 

 

3. Source the file you created in 1 using the following command: 

 
source env-vars 

 

4. Copy the file named “defconfig” to “.config”. 

5. Type the following command “make menuconfig”. 

6. On execution of the previous command you will have the menu in Figure A.1. 

7. Select “system type”. 

8. Select “TI OMAP common features” as in Figure A.2. 

9. Mark labels beside “IOMMU Module” and “IOMMU_IVA2” as in Figure A.3. 

10. Save and exit the configuration. 

11. Now build the kernel and compile its modules using the following commands: 

 
make -j4 uImage 

make -j4 modules 

 

12. Now install your kernel modules using the following command: 

https://github.com/balister/linux-omap-philip
http://www.mentor.com/embedded-software/sourcery-tools/sourcery-codebench/editions/lite-edition/
http://www.mentor.com/embedded-software/sourcery-tools/sourcery-codebench/editions/lite-edition/
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make INSTALL_MOD_PATH=path modules_install 

but replace “path” with the path you want and at which the kernel modules will 

be created. 

 

 

Figure A.1: Kernel menu configuration. 

 

Figure A.2: Kernel menu configuration. 

13. Now you have your kernel ready at folder called “lib” at the path you selected 

in the previous step. 
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Figure A.3: Kernel menu configuration. 

Building Inter-processor Communication RTOS 
In order to perform inter-processor communication between ARM acting as GPP 

and the DSP we need a real time OS called SYSLINK to provide the needed API’s used 

for this process to handle the shared memory between the two processors. SYSLINK 

can be downloaded from TI company website (http://software-

dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/syslink/index.html). 

The SysLink product provides the following services to frameworks and 

applications:  

 Processor Manager  

 Inter-Processor Communication  

 Utility modules  

 

Steps: 

 

1. Before starting the build process you should make sure of installing the 

following components on your host system: 

a. TI Linux EZ Software Development Kit (EZSDK) for Sitara™ ARM
®
 

Microprocessors and you can download from 

(http://www.ti.com/tool/linuxezsdk-sitara) and a detailed installation for 

SDK is available here 

(http://www.fedevel.com/welldoneblog/2011/09/c6a816x-installation-

host-machine-linux-kernel-compilation/).  

b. TI inter-processor communication (IPC) and you can download from 

(http://downloads.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/ipc/

). 

c. TI BIOS and you can download from 

(http://downloads.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/bio

s/sysbios/6_34_04_22/index_FDS.html). 

d. TI XDC tools and you can download from 

(http://downloads.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/rtsc

/3_24_05_48/index_FDS.html). 

http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/syslink/index.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/syslink/index.html
http://www.ti.com/tool/linuxezsdk-sitara
http://www.fedevel.com/welldoneblog/2011/09/c6a816x-installation-host-machine-linux-kernel-compilation/
http://www.fedevel.com/welldoneblog/2011/09/c6a816x-installation-host-machine-linux-kernel-compilation/
http://downloads.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/ipc/
http://downloads.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/ipc/
http://downloads.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/bios/sysbios/6_34_04_22/index_FDS.html
http://downloads.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/bios/sysbios/6_34_04_22/index_FDS.html
http://downloads.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/rtsc/3_24_05_48/index_FDS.html
http://downloads.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/rtsc/3_24_05_48/index_FDS.html
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e. TI C6000 code generation tools and you can download from 

(https://www-

a.ti.com/downloads/sds_support/TICodegenerationTools/download.htm

). 

2. Extract the tar.gz file downloaded to any path you want using the following 

command: 

 
tar -xzvf syslink_<version>.tar.gz -C path 

and change your directory to Syslink directory. 

3. Update the product.mak file for your environment (BB) by changing the 

following parameters: 

a. Device. 

b. Directories for different TI components (IPC, XDCtools, BIOS, and 

SDK). 

4. Build the Syslink driver and libraries with the following command: 

 
 make syslink 

5. Build the examples using the following command: 

 
 make examples 

6. To assemble the SysLink executables and examples into a directory structure 

suitable for running on the device's file-system use the following command: 

 
 make install 

 

Preparing an SD Card carrying a Linux image for BB-xm 

 
The Linux image built on the host device is now ready for booting the 

BeagleBoard and in order to use you should prepare an SD card carrying the image to 

boot your BeagleBoard. As mentioned all the needed files for the image are o the 

following path where you installed your Yocto project Linux distribution (yocto/poky-

danny-8.0/build/tmp/deploy/images). A micro SD card of at least 4 GB is needed and to 

have it loaded with the image it should be divided into two partitions as in Figure A.4. 

The first partition is boot partition and its format should be (bootable FAT16) with a 

size that does not exceed 50 MB, the second partition is the one for Linux file system 

and it should be in (EXT3) format with the remaining bytes in the card. One can use for 

example the Ubuntu disk utility to create the needed partitions on SD card. 

 

 

 

Figure A.4: SD card partitions 

After creating partitions they will ne be loaded with the Linux image. The bootable 

partition will contain a copy of the following files: 

https://www-a.ti.com/downloads/sds_support/TICodegenerationTools/download.htm
https://www-a.ti.com/downloads/sds_support/TICodegenerationTools/download.htm
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 X-loader “MLO-beagleboard” and rename it to MLO on the card. 

 U-boot binary “u-boot.bin”. 

 uImage. 

 Boot script file “boot.scr” (the next paragraph shows how to create it). 

A boot script file is created by setting the environment variable in a “cmd” file. 

Environment variables are the boot arguments and the boot command for the BB. A 

“cmd” file with any name like “boot.cmd” is created and filled with arguments in Table 

A.1. And the “boot.cmd” file will looks like the snapshot in Figure A.5. 

Table A.1: Environment Variables. 

Variable Value 

bootargs console=tty0 console=ttyO2,115200n8 

root=/dev/mmcblk0p2 mem=200M@0x80000000 

mem=256M@0x90000000 rootwait rootfstype=ext3 ro 

bootcmd mmc init; fatload mmc 0:1 0x80300000 uImage; bootm 

0x80300000 

 

 

 

Figure A.5: “boot.cmd” file. 

Use the following command to create “boot.scr” file: 
 

mkimage -A arm -O linux -T script -C none -a 0 -e 0 -n 'Execute 

uImage.bin' -d boot.cmd boot.scr 

 

After preparing the boot partition now extract your file system on the second 

partition “rootfs”. The file system for your BB is the file called “core-image-sato-

beagleboard.tar.bz2” in the same directory of the previous files. Then move the 

compiled Balister kernel to the file system partition by zipping the lib directory 

produced from kernel compile process and extracting it at this SD partition. Also copy 

the built Syslink to the file system partition to use it. Now all the components needed 

for using your BB are ready and all loaded to the SD card for plug and play. After 

booting the BB you should insert the Syslink module to system modules using 

“insmod” command and you will find the module in the following path (syslink/lib/-/-/-

/-/-/syslink.ko). 
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Booting BeagleBoard-XM using USB-Serial converter 

 
1. Use the command minicom –s to configure the serial port settings. 

2. In serial port setup Figure A.6 change: 

a. Serial device to be “/dev/ttyUSB0”. 

b. Hardware flow control to be “No”. 

3. Save your setup as dfl. 

4. Exit. 

5. Power the BegaleBoard using USB or 5V power adapter. 

6. Wait till it requests BeagleBoard login and log in as root. 

 

 

Figure A.6: using minicom command. 

Compiling a C code file and running it on the ARM processor 

 
1. First make of the presence of cross compilers path (code sourcery) in the 

system path by echoing PATH and if not add it using export command as 

mentioned in earlier section. 

2. Add the path of the Sourcery bin folder to the system PATH. 

3. Compile your C code using  arm-none-linux-gnueabi-gcc with the following 

command: 
 arm-none-linux-gnueabi-gcc -Wall file_name.c –lm –o 

output_file_name 

4. Copy the executable file to the file system of BeagleBoard on the SD-card 

or transfer it using Ethernet and run it from its terminal. 

 

Running an algorithm on the DSP processor using SysLink 

 
1. You should have the source of SysLink (you can get it from: http://software-

dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/syslink/index.html ). 

http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/syslink/index.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/syslink/index.html
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2. You should divide your algorithm into two parts the 1
st
 to be run on the 

ARM processor and the other on DSP (memory allocations and reading or 

writing files are the parts to be done on the ARM and calculations are the 

parts to be run DSP. 

3. You can use any of the examples provided with the SysLink to write your 

code in order to use its architecture without the need to write it from scratch.  

4. After finishing your code perform the build operation to get your executable 

files as mentioned in an earlier section. 
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 ملخصال
 

الخضوع يمثل سائل التصوير الطبي. حد أهم و أالتصوير بالرنين المغناطيسي هو إن  
الإستلقاء بدون حركة لمدة طويله قد تصل أو  داخل جهاز رنين مغناطيسي تشخيصيةلجلسة 
هذا بالإضافة إلى عدد لايحصى من الأصوات المزعجة  ،مريحغير أمر هو دقيقة و  54تتخطى 

 زمن خفضوبالتالي فإن  ،ورنين الاذن والتلف الذي قد يحدث في الصورة نتيجة حركة المريض
هناك نظرية ظهرت حديثاً معروفة مغناطيسي هو أمر في غاية الأهمية. الفحص لصورة الرنين ال

تقنية جديدة للقياس والتي تقلل عدد القياسات المطلوبة بإسم الإحساس المضغوط وهي عبارة عن 
التصوير بالرنين  هذة التقنية في إستخدام يتيح لبناء الصورة بدون أي فقد يذكر في جودة الصورة.

انظمة  كما أن استخدام مثل هذة الطريقة مع بدرجة كبيرة الفحص زمنتقليل  المغناطيسي
في هذه الرسالة  قمنا منفعة كبيرة من ناحية تقليل الحجم والتكلفة. المعالجة المدمجة سيكون ذو

تنفيذ نظام لبناء صور الرنين المغناطيسي اعتماداً على نظرية الاحساس المضغوط وتم إختباره ب
المستخدمة في  أقل بإستخدام نفس عدد القياسات وقتفي  عاليةذات جوده  عديله لإنتاج صوروت

وتم اختبار كفاءة تشغيله على عدد من الأنظمة منها نظام معالجة مدمج يعتمد  الخوارزم الأصلي
(. هذا العمل أظهر نتائج جيدة بالنسبة لكفاءة الصور المبنية من خلال OMAPعلى المعالج )

بإستخدام الإحساس المضغوط كما أن تشغيلة % 09فضاء ترددي مضغوط بنسبة تصل إلى 
ووجهنا لأكثر من اتجاه لتحسين كفاءة  على نظام المعالجة المدمج أظهر نتائج جديرة بالإهتمام

 تطبيقات التصوير الطبي. فيتشغيل مثل تلك الأنظمة المدمجة 
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  :رسالةملخـص ال

لجلسة تشخيصية داخل إن التصوير بالرنين المغناطيسي هو أحد أهم وسائل التصوير الطبي. يمثل الخضوع 
دقيقة وهو أمر غير مريح، هذا  54جهاز رنين مغناطيسي الإستلقاء بدون حركة لمدة طويله قد تصل أو تتخطى 

بالإضافة إلى عدد لايحصى من الأصوات المزعجة ورنين الاذن والتلف الذي قد يحدث في الصورة نتيجة حركة 
نين المغناطيسي هو أمر في غاية الأهمية. هناك نظرية المريض، وبالتالي فإن خفض زمن الفحص لصورة الر 

ظهرت حديثاً معروفة بإسم الإحساس المضغوط وهي عبارة عن تقنية جديدة للقياس والتي تقلل عدد القياسات 
المطلوبة لبناء الصورة بدون أي فقد يذكر في جودة الصورة. يتيح إستخدام هذة التقنية في التصوير بالرنين 

تقليل زمن الفحص بدرجة كبيرة كما أن استخدام مثل هذة الطريقة مع انظمة المعالجة المدمجة المغناطيسي 
سيكون ذو منفعة كبيرة من ناحية تقليل الحجم والتكلفة. قمنا في هذه الرسالة بتنفيذ نظام لبناء صور الرنين 

اج صور ذات جوده عالية في وقت المغناطيسي اعتماداً على نظرية الاحساس المضغوط وتم إختباره وتعديله لإنت
أقل بإستخدام نفس عدد القياسات المستخدمة في الخوارزم الأصلي وتم اختبار كفاءة تشغيله على عدد من 

(. هذا العمل أظهر نتائج جيدة بالنسبة لكفاءة OMAPالأنظمة منها نظام معالجة مدمج يعتمد على المعالج )
% بإستخدام الإحساس المضغوط كما أن 09وط بنسبة تصل إلى الصور المبنية من خلال فضاء ترددي مضغ

تشغيلة على نظام المعالجة المدمج أظهر نتائج جديرة بالإهتمام ووجهنا لأكثر من اتجاه لتحسين كفاءة تشغيل مثل 
 تلك الأنظمة المدمجة في تطبيقات التصوير الطبي.
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