Cairo University

MAGNETIC RESONANCE IMAGE RECONSTRUCTION
USING COMPRESSED SENSING ON EMBEDDED
PROCESSING PLATFORMS

By

Yassin Amer El-Sayed Amer

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Systems & Biomedical Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2013

MAGNETIC RESONANCE IMAGE RECONSTRUCTION
USING COMPRESSED SENSING ON EMBEDDED
PROCESSING PLATFORMS

By
Yassin Amer EI-Sayed Amer

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Systems & Biomedical Engineering

Under the Supervision of

Prof. Dr. Yasser M. Kadah

Professor of Biomedical Engineering
Systems & Biomedical Engineering
Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2013

MAGNETIC RESONANCE IMAGE RECONSTRUCTION
USING COMPRESSED SENSING ON EMBEDDED
PROCESSING PLATFORMS

By
Yassin Amer EI-Sayed Amer

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Systems & Biomedical Engineering

Approved by the
Examining Committee

Prof. Dr. Yasser M. Kadah, Thesis Main Advisor

Prof. Dr. Nahed H. Solouma, Internal Examiner

Prof. Dr. Mohamed I. EI-Adawy, External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2013

Engineer’s Name: Yassin Amer EI-Sayed Amer

Date of Birth: 5/3/1989

Nationality: Egyptian

E-mail: yassin.amer@eng.cu.edu.eq

Phone: 01069699880 '
Address: Quweisna — Almenoufia Governorate
Registration Date: 1/10/2010 \
Awarding Date: /1

Degree: Master of Science

Department: Systems and Biomedical Engineering

Supervisors:
Prof. Dr. Yasser M. Kadah

Examiners:
Prof. Dr. Yasser M. Kadah (Thesis main advisor)
Prof. Dr. Nahed H. Solouma (Internal examiner)
Prof. Dr. Mohmaed I. EI-Adawy (External examiner)

Title of Thesis:
Magnetic Resonance Image Reconstruction Using Compressed Sensing On Embedded
Processing Platforms

Key Words:
Magnetic Resonance Imaging; Image Reconstruction; Compressed Sensing; LO Norm
BeagleBoard; OMAP; DSP.

Summary:

Magnetic Resonance Imaging (MRI) is an essential medical imaging modality.
Enduring a diagnostic session in an MR machine means lying motionless for a long
time (up to 45 minutes) which is very uncomfortable besides the countless ear-ringing,
bangs, knocks and the image artifacts which may appear due to motion. So, reducing
the scan time (Acquisition time) of an MR image is a very important issue. A newly
emerged theory known as Compressed Sensing (CS) is a novel sampling paradigm
which reduces the number of measurements needed for image reconstruction with no
significant degradation in image quality. Applying CS for MRI offers significant scan
time reductions and the availability of embedded reconstruction platforms based on
such techniques will be very beneficial in size and cost reduction. An MR image
reconstruction algorithm based on CS was built, tested and modified in order to
produce images of higher quality in shorter reconstruction times under the same
sampling conditions, and its performance was tested on different platforms including an
embedded platform based on OMAP processor. This work showed good results for the
quality of images reconstructed from highly undersampled k-space (up to 90 %
reduction) using CS also the performance of the algorithm on the embedded platform
was interesting and points to several future directions for performance optimization in
utilizing such embedded platforms in practical medical imaging applications.

mailto:yassin.amer@eng.cu.edu.eg

Acknowledgment

Firstly, I would like to thank ALLAH, the source of every gift.

Secondly, | would like to thank Prof. Yasser Kadah for his continuous support,
valuable guidance and great science which you will always find when you need them.
Also an important part of this research would not have been possible without the
support of Eng. Mostafa EI-Tager and Eng. Ehab EI-Alamy.

Finally for my family especially my parents, you are my real gift.

Dedication

To Egypt.

Table of Contents

ACKNOWLED GMENT ..ottt ettt ettt e ettt s s e e et e e ea s arrreeeeerees b s |
DED I CATION ..ottt e et e e e e e e e e e e e e e e e e eeennan 1
TABLE OF CON T EN T S ettt e e e e e e e e e e e e eeeeeenns 1]
LIST OF TABLES ... ettt e e e e e e e e e e e e e e s V
LIST OF FIGURES ... oottt e e e e e e ns Vi
NOMEN CLATURE ...ttt e ettt st r e e e st e ees s e rreeeeseesssnes VIl
A B S T R A T i ettt et ettt et e e et et e et et e eeeet et et e e eeereer s IX
CHAPTER 1 : INTRODUCTION ...ttt ettt s e e e s e s eas s s s e e e s enennnns 1
1.1. PROBLEM OVERVIEW ...etvettttiiiieeeteeetstissessesseesssssnssssessessssssnnsssessssessssnnssseesses 1
1.2. THESIS OBIECTIVE «.eeeteeee e et e e e e e et ee e e e e e e e ee e e eeeeeeeeeeeeennnaeseeeeeeennnnnns 1
1.3. THESIS ORGANIZATION ..ot e et e ettt ee e e e e e e e e ee e eaeeeeeeeeeeennaaeseeeeereennnens 1
CHAPTER 2 : MR IMAGE ACQUISITIONccoiiiiiie e 3
2.1. SPIN ECHO (SE) PULSE SEQUENCEcoiiiiiiiiisiisiesiisieeie et 3
2.2. SPATIAL ENCODING ..cevvvtie e ettt ettt st e e e e et ee e bnn s e e s e seess b s s seeesesesnnns 3
2.3. AT A SPACE ...ciieetiiee ittt ettt ettt et e st e e ettt e e st s e e e et et esa b rreeeeeseenbrr s 4
2.4. T N I 1SRRI 5
CHAPTER 3 : COMPRESSED SENSING.......oottiiieiee ettt e e e neaainn 7
3.1. TECHNIQUE OVERVIEWiiiiiiiieeeeeieititeeeeeee e e s s seiattbaeeeeeesssssnabareeesaeesssennsnns 7
3.2. P A RS TY ettt ettt et e e e e ettt e e et e e e eee e e e e eeeeeee e e aeeeeereee i aaaaeareennn—_ 7
3.3. INCOHERENCE ... ettt ettt ettt e e e e e e e e e e e e e e e e e e 8
3.4. COMPRESSED SENSING MR ...ttt 8
3.5. IMAGE RECOVERY (RECONSTRUCTION PROBLEM)......coiueiiiiieniinienieeieeienens 10
CHAPTER 4 : BEAGLEBOARD (EMBEDDED PLATFORM)ccocccovviieivenne 13
41. SYSTEM OVERVIEW ...eeevveiieiee ettt eeeees s e e e e et eeaeasseeeeesees st seeeesseesnsnnnreeeeeees 13
4.2. PROCESSOR ...cceeetteee ettt ettt et ettt e e e e et e ee et e e e e e et eeee s rreeeeeeseenbrnn s 14
4.3. USAGE SCENARIOS. ... ceiiteeetttee s et eeeteeeeat st eeeeeteeess e saseeeteteestasreeeeseseesssnnnres 15
CHAPTER 5 : PERFORMANCE ENHANCEMENT OF CS ALGORITHM....... 17
5.1. CS ALGORITHM ARCHITECTURE ..ttt ettt e e ee e eeeeae e e e e eeeeeeeaeeeeeeeseeesnnnaaseeeeeees 17
5.2. IMAGE QUALITY EVALUATION METRICS ...oooiiiiiiesiie e 19
5.2.1. Mean Squared Error (MSE).......cccooiiiiiiiniie e 19
5.2.2. Geometric Average Error (GAE)coooviiiiiiii s 19
5.2.3. QUAlTtY INAEX (QI) covvvevevireeeeee et 20

5.3. CS ALGORITHM PERFORMANCE ... ettt e et eeeeee e e e e e e e e teaeeeeeeeeeeeannenseeaeeees 20
5.4. CS USING LO-NORM MINIMIZATION ..t eeeeeeeeeee e e eeeeeeaeeeeeeeeeennaaseeeeeees 21

5.5. CS USING FOURIER TRANSFORM AS THE SPARSE TRANSFORM FOR MR REAL

DATA 26

5.6. DISCUSSION ...ttt ittt e st e e b e e nbeee s 27
CHAPTER 6 : EMBEDDED IMPLEMENTATION......ccooiiiiie e 39
6.1. CS ALGORITHM PREPARATION ...cuvvieiiieeitieesieeesiveeesnreesssseesssseesssnessnssesssns 39
6.2. EMBEDDED RECONSTRUCTIONcuvtiiiiitiiieesiiieeeesssrseessssseessssssnessssssssesessnnes 40
6.2.1. Arm Based Reconstruction SYSIEMccccoviiiriniieneeeeees e 41
6.2.2. Hybrid processor based Reconstruction System..........ccccocveveviviieeneneenenenne 41

6.3. RESULTS AND DISCUSSION......uttiiiiiiiiiiiieesiiiessirieesireessireessinessssnessnineesieeesnneas 41
CONCLUSIONS AND FUTURE WORKoooiiiiiiiiiie e 43
REFERENGCESot 45
APPENDIX A: GETTING BEAGLEBOARD READYccoceiiiiiiee e, 49

List of Tables

Table 2.1: Different MRI SCaN TIMES. ...ccvviiiiieieciesieeie e 5
Table 5.1: Real MR image MSE with Fourier as a sparse transform..............cccccocovenen. 36
Table 5.2: Real MR image QI with Fourier as a sparse transform...........ccccccoceevvriennen, 37
Table 5.3: Real MR image MSE with Wavelet as a sparse transformcc.cco...... 37
Table 5.4: Real MR image QI with Wavelet as a sparse transformcccocceeveienen. 37
Table 5.5: Clear Shepp Logan MSE ...t 37
Table 5.6: Clear Shepp Logan Ql........cooiiiiiiiee e 37
Table 5.7: Noised Shepp LOgan IMSEcoviieiieie i 38
Table 5.8: Noised Shepp Logan QIcovoiiiiiiiiiiesie e 38
Table 5.9: Noised Shepp Logan SNR.........cccooiiieiiee e 38
Table 5.10: Real MR image reconstruction time with Fourier as sparse transform....... 38
Table 5.11: Real MR image reconstruction time with Wavelet as sparse transform38
Table 6.1: ProCessing tME.cccooiiiiiiiiieiee e 42
Table A.1: Environment Variables.cooiiiiiiiiiiiiisee e 55

List of Figures

Figure 2.1: Pulse sequence diagram [1].cccooereriiiniiiniiieeesee e 3
Figure 2.2: Spatially Encoded SeqUENCE [1]. ..cccvevveiieiieiieie e 4
Figure 2.3: Data SPACE [L]....cveoeiirieriieieeiiee e 4
Figure 3.1: (a) A gray-level image. (b) Image Wavelet transform. (c) Reconstruction

after ZeroiNg OUL [9]. .ovo i 8

Figure 3.2: (a) A sparse signal. (b) Its K-Space. (c) Incoherent interference due to
random undersampling. (d) Aliasing due to uniform undersampling. (e), (f) Isolation of
Strong components. (h), (g) Lowering interference and weak component isolation [6]..9

Figure 3.3: (a) MR Images. (b) Images in the sparse domain [6].cccoecervvrrivervninnnn. 9
Figure 3.4: (a) A sparse signal. (b) Reconstruction using I; minimization. (c)

Reconstruction using I, minimization [9].......ccccooiiiiiiiiiie e, 11
Figure 4.1: BeagleBoard [30].ccoooeiiiiiieceee e 13
Figure 4.2: OMAP35XX BIOCK DIAQIam.ccceieriirinininieieiesiesie e 14
Figure 5.1: Conjugate gradient Algorithm block diagram.cccccevevieiiiiiciecee 18
Figure 5.2: (a) 10% pattern. (b) 33.3% PAterN........ccoooviiiiiieieeec e, 18

Figure 5.3: (a) Shepp logan image reconstructed from 100% of k-space. (b)
Reconstruction using CS with undersampling ratios of 33.3, 30, 25, 20, 15, 10% of k-
space respectively from top to DOttOM............coveiiiiiiii e 22
Figure 5.4: (a) Noised Shepp logan image reconstructed from 100% of k-space. (b)
Reconstruction using CS with undersampling ratios of 33.3, 30, 25, 20, 15, 10% of k-
space respectively from top t0 DOOM.........c.coviiiiii 23
Figure 5.5: (a) Brain image reconstructed from 100% of k-space. (b) Reconstruction
using CS with undersampling ratios of 33.3, 30, 25, 20, 15, 10% of k-space respectively
From tOP 10 DOLLOM.c.eiiic e e 24
Figure 5.6: MSE & QI calculated for CS reconstructions compared to full k-space
reconstruction for the three data types. (a) & (b) MSE and QI of Shepp logan. (c) & (d)
MSE and QI of Noised Shepp Logan. (e) & (f) MSE and QI of Brain Image................ 25
Figure 5.7: (a) 10% undersampling pattern. (b) 33.3% undersampling pattern. 26
Figure 5.8: (a) Shepp Logan image reconstructed from 100% of k-space. (b)
Reconstruction using CS with LO-Norm for undersampling ratios of 33.3, 30, 25, 20,
15, 10% of k-space respectively from top t0 DOttOM...........cccoviviiiiiiiiieeee, 29
Figure 5.9: (a) Noised Shepp Logan image reconstructed from 100% of k-space. (b)
Reconstruction using CS with LO-Norm for undersampling ratios of 33.3, 30, 25, 20,
15, 10% of k-space respectively from top to bottom............cccccoeeiiiiiiiiiiie e, 30
Figure 5.10: (a) Brain image reconstructed from 100% of k-space. (b) Reconstruction
using CS with LO-Norm for undersampling ratios of 33.3, 30, 25, 20, 15, 10% of k-
space respectively from top t0 DOOM..........coviiiiiii 31
Figure 5.11: Quality comparison between using CS with L1-Norm & LO-Norm, (a) &
(b) MSE and QI of Shepp Logan results. (c) & (d) MSE and QI of Noised Shepp Logan
results. (e) & (f) MSE and QI of Brain image results.ccccovieiiiiiiiie e, 32
Figure 5.12: (a) Brain image reconstructed from 100% of k-space. (b) Reconstruction
using CS with Fourier transform and L1-Norm for undersampling ratios of 33.3, 30, 25,
20, 15, 10% of k-space respectively from top to bottom..........cccoeveiiiiiiiiiiicc 33
Figure 5.13: (a) Brain image reconstructed from 100% of k-space. (b) Reconstruction
using Fourier based CS with LO-Norm for undersampling ratios of 33.3, 30, 25, 20, 15,
10% of k-space respectively from top to bottom...........cccceeviiiiiiiiii 34

Vi

Figure 5.14: Quality Comparison, (a) & (b) MSE & QI for brain image reconstructions
using Fourier based CS with LO-Norm & L1-Norm. (c) & (d) MSE & QI for Fourier
based CS vs. Wavelet based CS with L1-Norm. (¢) & (d) MSE & QI for Fourier based
CS vs. Wavelet based CS With LO-NOIM.ooiiiiiiiiieieee e 35
Figure 5.15: Performance comparison (a) Processing time for reconstructions using
Wavelet based CS with LO-Norm & L1-Norm. (b) Processing time for using Fourier
based CS with LO-Norm & L1-Norm. (c) Processing time for using L1-Norm with
Wavelet and Fourier. (d) Processing time for using LO-Norm with Wavelet and Fourier.

.. 36
Figure 6.1: (a) Original image. (b) Sampling pattern. (c) Zero filling with density

COMPENSALION FECONSLIUCTION. ...ttt 39
Figure 6.2: CS algorithm block diagramcccceoveiiiiiiiiececc e 40
Figure 6.3: Communication With DSP.cccccciiiiiiiiiiicce e, 40
Figure 6.4: CS based reconstructed IMage.coovveivereiieiieeie e 42
Figure A.1: Kernel menu configuration.ccooeiiiinininieiee e 52
Figure A.2: Kernel menu configuration.ccccevieiiic i 52
Figure A.3: Kernel menu configuration.c.ccoceviiinineniiiee e 53
Figure A.4: SD card PartitionS..........cocveiieieiieie e 54
Figure A.5: “Doot.cmd” flle.......c.oiviiiiiiiiei e 55
Figure A.6: using MinicCOM COMMAN.ccecuiiiieiieie e 56

Vii

ARM
BB
BIOS
CG

CS
DSP
GAE
GPP
HLOS
JPEG
MLO
MRCP
MRI
MSE
OMAP
0S

Ql
RAM
RTOS
SD

SE
SNR
TE

TI
TMG
TPSF
TR
ZF-w/dc

Nomenclature

Advanced RISC Machines
BeagleBoard

Basic Input/Output System
Conjugate Gradient

Compressed Sensing

Digital Signal Processor
Geometric Average Error

General Purpose Processor

High Level Operating System
Joint Photographic Experts Group
Memory Loader

Magnetic Resonance Cholangiopancreatography
Magnetic Resonance Imaging
Mean Squared Error

Open Media Applications Platform
Operating System

Quality Index

Random Access Memory

Real Time Operating System
Secure Digital

Spin Echo

Signal to Noise Ratio

Time to Echo

Texas Instruments
Temporomandibular Joint
Transform Point Spread Function
Repetition Time

Zero Filling with Density Compensation

viii

Abstract

Magnetic Resonance Imaging (MRI) is an essential medical imaging modality.
Enduring a diagnostic session in an MR machine means lying motionless for a long
time (up to 45 minutes) which is very uncomfortable besides the countless ear-ringing,
bangs, knocks and the image artifacts which may appear due to motion. So, reducing
the scan time (Acquisition time) of an MR image is a very important issue. A newly
emerged theory known as Compressed Sensing (CS) is a novel sampling paradigm
which reduces the number of measurements needed for image reconstruction with no
significant degradation in image quality. Applying CS for MRI offers significant scan
time reductions and the availability of embedded reconstruction platforms based on
such techniques will be very beneficial in size and cost reduction. An MR image
reconstruction algorithm based on CS was built, tested and modified in order to
produce images of higher quality in shorter reconstruction times under the same
sampling conditions, and its performance was tested on different platforms including an
embedded platform based on OMAP processor. This work showed good results for the
quality of images reconstructed from highly undersampled k-space (up to 90 %
reduction) using CS also the performance of the algorithm on the embedded platform
was interesting and points to several future directions for performance optimization in
utilizing such embedded platforms in practical medical imaging applications.

Chapter 1 : Introduction

1.1. Problem Overview

Magnetic Resonance Imaging (MRI) is one of the common and powerful medical
imaging procedures used at the current time due to its ability to show soft tissue
structures, such as ligaments and internal organs like brain. MRI can be safely used
with people who are vulnerable to the effects of ionizing radiation, such as pregnancy
cases and babies also to be used to image in any plane. All of this has made MRI an
essential medical imaging modality but having an MRI scan is very uncomfortable
because of the long scan times (20-60 minutes or more) which means lying motionless
inside the gantry during this period besides hearing noisy sounds and this may prevent
many claustrophobic people from undergoing an MRI scan. MR images also may suffer
motion artifacts and the patient may repeat the scan many times till having a good
image which will be very uncomfortable and costly. So using techniques that reduce
MRI scan times will help to raise the efficiency of this important modality.

1.2. Thesis Objective

This work aims to reduce MRI scan time by minimizing the number of
measurements used to reconstruct an MR image through the use of a newly emerged
theory called Compressed Sensing (CS) which uses nonlinear reconstruction themes to
build images of good quality (with the same resolution) using far smaller number of
measurements, and build a cheap and fast reconstruction platform using CS, and based
on the use embedded and special function processors.

1.3. Thesis Organization

The remainder of this thesis is organized as follows:

e Chapter 2 provides a background about MR image acquisition process.

e Chapter 3 provides an overview on compressed sensing and its usage with MRI.

e Chapter 4 provides an overview about the embedded platform used
(BeagleBoard).

e Chapter 5 provides a detailed description for the methods used to enhance the
performance of the CS algorithm with MR images.

e Chapter 6 provides a detailed description for the embedded implementation of
the CS based reconstruction algorithm.

e Appendix A provides detailed steps for building an operating system for
BeagleBoard and getting it ready to be used.

Chapter 2 : MR Image Acquisition

The purpose of this chapter is to give a brief overview about the MR image
acquisition process, the image data space, k-Space, and acquisition time.

2.1. Spin Echo (SE) Pulse Sequence

Spin Echo (SE) is the most frequently used pulse sequence (a sequence of radio
frequency pulses) during an MR study. The sequence starts with the 90° which causes
the magnetization vector MZ to be flipped into the x-y plane. After the 90° pulse the
spins will get out of phase with each other due to magnetic field inhomogeneity. At a
certain time t after the 90° pulse, when the spins have gotten out of phase, a 180° pulse
is applied. Now all the spins flip 180° in the x-y plane and they continue precessing, but
now in the opposite direction [1]. The pulse sequence diagram is shown in Figure 2.1.

90° LoCH 90° 180°
N m | M\ ﬂ
A T - 4
) TR !
\FID | ﬂ
N s
Vo o U
‘ oT=TE

Figure 2.1: Pulse sequence diagram [1].

From Figure 2.1 we start off with a 90° RF pulse to flip the spins into the x-y
plane. We wait a time t and apply a 180° RF pulse. Then we wait a long time, TR
(Repetition Time), and repeat the process [1]. Also the time to echo (TE) is the time
after the 90° pulse when we get maximum signal again.

2.2. Spatial Encoding

The signals received from a patient contain information about the entire part of the
patient being imaged but they do not have any particular spatial information, and to
determine the origin of each component of the signal we use the gradients for x, y, and
z directions Figure 2.2. These gradients are called:

e The slice-select gradient
e The frequency-encoding gradient
e The phase-encoding gradient

TR I !

u ° MR °
a0 180 SHOMAL 90

{ECHO)
RF —lfu A ——tlir

frequency

Figure 2.2: Spatially Encoded Sequence [1].

2.3. Data Space

It is the analog version of the k-space, and it is composed of rows of acquired
signals at different phase encoding gradients (Figure 2.3) as follows [1]:

1.

With TR#1, we have no phase shift. After the frequency-encoding step, a
signal is received and placed into the center of the data space.

With TR#2, we have no phase shift. After the frequency-encoding step, a
signal is received and placed into one above the center of the data space.
With TR#3, we have no phase shift. After the frequency-encoding step, a
signal is received and placed into one below the center of the data space.
Continue till filling the data space in this manner.

K Space

e ——

o
>

i

Increasing gradient

|

ESP i I (| S }Tn

L/
No gradient 0 —‘WWJ\,MW"\/"J‘N—_ }TH
- :

= I A fF—[ir
® |
6 S |
o
| =
5
(]
E] -
e
R)
v = -127 ATs ATs +128

Sampling Time =Ts

Figure 2.3: Data Space [1].

2.4. Scan Time

The scan time is an important factor in MRI systems. It is directly proportional to
the size of the image and depends on also the type of the study being performed. It can
be calculated through the simple formula in Eq. (2.1) [2], Table 2.1 shows ranges of
scan time for different studies [3].

Scan Time =T, x number of phase —encoding steps x number of signal averages. (2.1)

Many ways are used in order to reduce the scan time but this comes with the
reduction of image quality. One of this ways is to shorten TR and according to this
reduction, the SNR will decrease according to the nature that SNRoc /Time [4] also
the contrast of image is changed with Tr and if it changes for the worse this will not be
useful. Another way to reduce scan time is to reduce the number of phase encoding
steps but this causes the volume effects to be worse [4]. So new methods are needed to
reduce the scan time without affecting the image quality.

Table 2.1: Different MRI Scan Times.

Scan Type Scan Time

MRI of the Brain 20-45 minute
MRI of the Orbits 20-35 minute
MRI of the TMJ 45-60 minute
MRI of the Soft Tissue 9535 minute
Neck

MRI of the Cervical Spine 20-35 minute
MRI of_the Upper 90-45 minute
Extremity

MRI of the Thoracic Spine 25-45 minute
MRI of the Chest 25-45 minute
MRI of the Abdomen 25-45 minute
MRI MRCP 50-60 minute
MRI of the Lumbar Spine 20-35 minute
MRI of the Pelvis 20-35 minute
MRI of_the Lower 90-35 minute
Extremity

MRI Run Off 50-60 minute
MRI Arthrogram 30-60 minute

Chapter 3 : Compressed Sensing

Imaging speed is limited by many constraints like physical factors (e.g. slew rate in
MRI), physiological factors and processing speed [5]. Any imaging system contains
two main stages the first is data collection and the second is image reconstruction. The
data collection stage depends on the resolution of image collected and field of view [6],
[7]. The time needed for image reconstruction depends on the processing power of the
machine and complexity of the reconstruction algorithm and of course the size of data
[8]. In order to enhance the imaging speed this will be done in one of the previous
stages or in both of them, and CS works mainly in the first stage of data acquisition in
addition to a modification in the reconstruction process.

The purpose of this chapter is to give a detailed description for the CS algorithm
and the natural fit between MRI and CS.

3.1. Technique overview

Conventional sampling approaches of signals or images follow Shannon’s theorem
which states that the sampling rate must be at least twice the maximum frequency
present in the signal in order to be able to completely recover the signal (Nyquist rate)
[9], and this underlies nearly all signal acquisition protocols including those used in
medical imaging devices. For some signals like images which are not bandwidth-
limited, the sampling rate is determined by the desired spatial resolution [9]. However,
it is common to use an antialiasing filter to limit the bandwidth of the signal so that
Shannon’s theorem applies.

Compressed Sensing (CS) is a novel sampling paradigm that goes against the
commonly known sampling wisdom, and tries to reduce the measurements needed to
reconstruct the signal or image without significantly degrading its quality [10-12]. CS
depends on the broad success of lossy compression techniques for signals and images
which raises a very natural question: why to go to so much effort to acquire all the data
when most of what we get will be thrown away? Can we just directly measure the part
that will not end up being thrown away? [11]. So CS is a compressed data acquisition
protocol which cares only about acquiring the data that will not be thrown away by
lossy compression. In order for CS to be applicable the signal or image should obey
two key requirements which are Sparsity and Incoherence [9].

3.2. Sparsity

For CS to be applied the Sparsity condition should exist for the object (signal or
image) of interest. Sparsity means that the underlying object has a sparse representation
in a known domain.

Many natural signals have sparse representation in if it is expressed in a certain
domain. For example if we considered the image in Figure 3.1(a) which represents a
gray-level image, and contains pixel values from 0 to 255 and its wavelet transform in
(b), we find that despite of having nearly all pixels with non zero value, the wavelet
transform provides a concise representation with many near zero coefficients and
relatively small few large coefficients [9].

If the image is reconstructed after zeroing out most of the small coefficients in
wavelet domain (97.5 % of coefficients) Figure 3.1(c), we see that the difference is
hardly noticeable. Sparsity is what underlies most modern lossy coders like JPEG-2000
and others by first applying a sparsifying transform, mapping image content into a
vector of sparse coefficients, and then encodes the sparse vector by approximating the
most significant coefficients and ignoring the smaller ones [9], [13].

Wavelet
x 10* Coefficients

—

Amplitude

|
o
0

-
0O 2 4 6 8 10

Index % 10°

(@ (b) (c)

Figure 3.1: (a) A gray-level image. (b) Image Wavelet transform. (c)
Reconstruction after zeroing out [9].

3.3. Incoherence

The second condition for CS to be applied is the incoherence which means that the
artifacts caused in linear reconstruction due to reduction in data collected should be
noise like in the sparsifying domain [5], and this depends on the undersampling scheme
used. To be easily understood a 1D sinusoidal signal undersampling example is
considered in Figure 3.2; in Figure 3.2(b) we can see the two used undersampling
schemes (random and uniform 8-fold undersampling) [6]. The results from uniform
undersampling (d) have coherent interference which prevents recovery, but in (c) the
interference due to random undersampling can be separated and the signal can be
recovered through two stages including strong components recovery using simple
thresholding (e), (f), and weak components recovery is done by subtracting the
interference calculated for the recovered strong components from the complete signal
interference and then component isolation using thresholding (h), (g) [6].

3.4. Compressed Sensing MRI

For successful application of CS in MRI, MR images should obey: (1) to be
naturally compressible by sparse coding in a certain transform domain, and (2) the
aliasing artifacts due to k-space undersampling be incoherent (noise like) in that
transform domain [5]. The first condition applies for MRI as most MR images are
sparse in an appropriate transform domain Figure 3.3. First, brain images look sparse in
wavelet domain, angiograms in Finite difference, and dynamic heart in temporal
frequency [6].

Sampling /;\ Recovery

(d () (h)

Figure 3.2: (a) A sparse signal. (b) Its K-Space. (c) Incoherent interference due to
random undersampling. (d) Aliasing due to uniform undersampling. (e), (f)
Isolation of Strong components. (h), (g) Lowering interference and weak
component isolation [6].

Wavelet

Angiogram Finite Differences
Dynamic Heart Temporal Frequency
ibibadadhidd .-
@) (b)

Figure 3.3: (a) MR Images. (b) Images in the sparse domain [6].

Also as included in the 1D signal example in Figure 3.2, we see that a complete
random set of samples will be sufficient for incoherent interference [10], [11]. Random
point k-space sampling in all dimensions is generally impractical as the k-space
trajectories have to be relatively smooth due to hardware and physiological
considerations [5], and therefore sampling trajectories must follow relatively smooth
lines and curves. Non-Cartesian sampling schemes can be highly sensitive to system

imperfections [6]. So considering Cartesian grid sampling will be more practical where
the sampling is restricted to undersampling the phase-encodes and fully sampled
readouts [5]. Alternative sampling trajectories are possible and some very promising
results have been presented by [14-16] (radial imaging), and by [17], [18] (spiral
imaging).

Furthermore, a uniform random distribution of samples in spatial frequency does
not take into account the energy distribution of MR images in k-space, which is far
from uniform. Most energy in MR imagery is concentrated close to the center of k-
space and rapidly decays towards the periphery of k-space [6]. Therefore, realistic
designs for CS in MRI should have variable density sampling with denser sampling
near the center of k-space, matching the energy distribution in k-space [6]. All those
key features of MR images have enabled the use of CS with MRI.

3.5. Image Recovery (Reconstruction Problem)

When using CS, the image should be reconstructed using a nonlinear
reconstruction that enforces both the sparsity of the image and consistency of the
reconstructed data with the acquired samples [5]. In MRI, CS can be considered to be a
special case as the samples are simply individual Fourier coefficients (k-space samples)
not pixel values [5].

When applying CS with MRI, we only need to acquire a subset S of k-space
coefficients and the reconstruction is obtained through solution of the following
optimization problem:

minimize [ym| subject to IFsm-y]|, <&, (3.1)

While Fs denotes the Fourier transform evaluated just at frequencies in the subset
S, v is the sparse transform, m is the reconstructed image, y is the measured k-space
data from the MR scanner, and € controls the fidelity of the reconstructed data [5], [9].

In Error! Reference source not found., the objective function is the 11 norm
hich is defined as ||x||; = X.;|x;|, and minimizing ||yym||, promotes sparsity [5], [19].
The constraint ||[Fgm — y||, < € controls the data consistency. In other words Eq. (2.1)
finds a solution that is compressible by y [5]. The use of 11 norm as a sparsity-
promoting function traces back several decades. A leading early application was
reflection seismology, in which a sparse reflection function (indicating meaningful
changes between subsurface layers) was sought from bandlimited data [20], [21]. An
example for reconstruction of a 1D signal using I3 norm vs. I, norm minimization is
shown in Figure 3.4 [9]. As seen in the example minimizing the I; norm shows perfect
reconstruction.

Special purpose methods for solving problem in Eq. (3.1) have been a focus of
research interest since CS was first introduced. Proposed methods include: interior
point methods [19], [22], projections onto convex sets [23], iterative soft thresholding
[24-26], iteratively reweighted least squares [15], [27], and non-linear conjugate
gradients and backtracking line-search [5], [14], [16], [28].

10

Sparse Signal

2 :
- + Original
1t * - s
»t * - *
o F
0 sy — E
—1 - -
-+
_o . . >
0 200 400 600
(a)
I, recovery
2 .
L * Original
© Recovered
1t ® - g
P .. - & -
0 —— P |
- o P P
1| - i
_2 1 . s
o 200 400 600
(b)
I, Recovery
2

* *QOriginal
°Recovered

0 200 400 600
(c)

Figure 3.4: (a) A sparse signal. (b) Reconstruction using |; minimization. (c)
Reconstruction using I, minimization [9].

11

12

Chapter 4 : BeagleBoard (Embedded Platform)

Embedded computing is a rapidly growing field. This field has exploded with the
wide adoption of smartphones and most recently, the creation of multimedia devices.
For developers interested in learning more about embedded computing or working to
design a new embedded device, finding cost effective hardware on which to experiment
can be a challenge. The BeagleBoard is one answer to this challenge [29].

This Chapter gives a detailed description for the BeagleBoard which is used the
embedded platform for our experiment.

4.1. System Overview
The BeagleBoard is a low cost USB powered fanless computer. It is based on the

OMAP35xx architecture, uses Texas Instruments ARM-8 and designed specifically to
address the open source community Figure 4.1 [30].

EXPANSION

o

o

(o]
IO

(o]
lo
|©
|1©
[©
|©
[

Figure 4.1: BeagleBoard [30].

The device can be connected to the USB port of a PC or laptop for
experimentation. One great feature of the Beagle Board is that its capabilities can be
expanded by the addition of various peripherals. These expansion capabilities include
support for stereo audio, an interface for SD memory cards, the ability to be powered
via USB style cell phone chargers and power supplies, DVI-D for connection to
computer monitors, and different input devices like keyboards and pointing devices
[29], [30]. There are certified and third party peripherals available including a 5V
power supply and an Ethernet connection.

The device can be used for a variety of applications. Some of the ones mentioned
on the beagleboard.org web site include multimedia player, game console, home
automation, and kitchen computer.

13

In order to use the BeagleBoard, it should be loaded with an operating system
which may be Linux or Windows based. Many software projects are available to create
a version of Android for the BeagleBoard and OMAP3 platforms and also several
Linux distributions being ported to the Beagle Board including Debian and Gentoo [29]
(see Appendix A). All of this makes it not only a powerful learning tool but potentially
a powerful and inexpensive prototyping tool as well.

The BeagleBoard is an exciting project that provides an extremely low-cost
hardware solution for developers to learn about embedded computing. It can also
potentially provide the perfect platform for prototyping the next generation of
embedded devices.

4.2. Processor

The OMAP35x family of high-performance, applications processors are based on
the enhanced OMAP™ 3 architecture and are integrated on TI's advanced 65-nm
process technology. The architecture is designed to provide best-in-class video, image,
and graphics processing sufficient to support video streaming, conferencing and
gaming. The architecture of OMAP35xx is designed to provide maximum flexibility in
a wide range of end applications including medical imaging. The device can support
numerous HLOS and RTOS solutions including Linux and Windows Embedded CE
Figure 4.2 [31].

C64x+™ DSP and Display Subsystem
Video Accelerators LCD =
(3525/3530 only) Video| | 10-bit DAG
rolier

Enc | | 10-bit DAC

2D/3D CGamera I/F
Graphics

Image
(3515/3530 only) Pipe Parallel I/F

L3/L4 Interconnect

Peripherals Gonnectivity System

USB 2.0 HS USB Timers
0TG Host GP x12
Controller | Confroller x2 WDT x2

Serial Interfaces Program/Data Storage

Figure 4.2: OMAP35xx Block Diagram.

This OMAP device includes state-of-the-art power-management techniques
required for high-performance mobile products.
The following subsystems are part of the device:

14

Microprocessor unit (MPU) subsystem based on the ARM® Cortex™-A8
MICroprocessor.

IVA2.2 subsystem with a C64x+ digital signal processor (DSP) core.
POWERVR SGX™ Graphics Accelerator subsystem for 3D graphics
acceleration to support display and gaming effects.

Camera image signal processor (ISP) that supports multiple formats and
interfacing options connected to a wide variety of image sensors.

Display subsystem with a wide variety of features for multiple concurrent
image manipulation, and a programmable interface supporting a wide
variety of displays. The display subsystem also supports NTSC/PAL video
out.

Level 3 (L3) and level 4 (L4) interconnects that provide high-bandwidth
data transfers for multiple initiators to the internal and external memory
controllers and to on-chip peripherals.

The device also offers:

A comprehensive power and clock-management scheme that enables high-
performance, low-power operation, and ultralow-power standby features.
The device also supports SmartReflex™ adaptative voltage control. This
power management technique for automatic control of the operating voltage
of a module reduces the active power consumption.

A memory stacking feature using the package-on-package (POP)
implementation.

4.3. Usage Scenarios

When loading BeagleBoard with an operating system the ARM processor will
work as the GPP, and to allow passing data and messages from the GPP to DSP, an
inter-communication system will be built for the two sides. The CS based MRI
reconstruction system will be implemented to run on the BeagleBoard in two modes as

follows:
[]

Complete processing on the GPP (ARM).
Hybrid processing on both sides of the processor (GPP and DSP).

15

16

Chapter 5 : Performance Enhancement of CS Algorithm

5.1. CS Algorithm Architecture

The problem in Eq. (3.1) represents a convex optimization problem. Finding a
solution to this equation requires a highly efficient optimization method due to the large
size of the parameter space. A suitable approach for such problems is the conjugate
gradient method. It has initially been presented by Hestenes and Stiefel in 1952 for the
solution of linear systems and in the meantime successfully applied to MRI
reconstruction problems [32]. The method has been extended to nonlinear optimization
by Fletcher and Reeves in 1964 and since then a number of optimized nonlinear
conjugate gradient approaches have been developed [33]. Recently, Hager and Zhang
[34] presented a version with improved convergence properties, which will be
appropriate to solve Eq. (3.1). In this work we used the nonlinear conjugate gradient
and backtracking line search to solve this problem similar to [5], [14], [16], [28] as it is
characterized with low memory requirements and strong convergence.

Considering the unconstrained problem in the so-called Lagrangian form:
argmin, [F,m—y|,"+ A Jym|,, (5.1)

Where 14 is a regularization parameter that determines the trade-off between the
data consistency and the sparsity [5]. A can be selected so that the solution of Eq. (5.1)
will be the same as that of Eq. (3.1). The conjugate gradient algorithm implemented is
shown in Figure 5.1 and f(m) is the objective function as defined in Eq. (5.1).

“mingrad” and “maxiter” are used as stopping criteria for the algorithm by gradient
magnitude and number of iterations respectively, a«and (3 are line search parameters
and are arbitrary selected (defaults are « =0.05 and 3 =0.6). v is the conjugate gradient
update parameter and it can be calculated through many methods [33] and the selected
method was that used in the first conjugate gradient method proposed by Fletcher and
Reeves [35] as shown in Eq. (5.2).

2
_ lgwal,

- . (5.2)
9.l

v

Matlab (The MathWorks, Inc., Natick, MA, USA), was used for the
implementation of CS algorithm. After implementation the algorithm was tested on two
types of data the first is the SheppLogan phantom by computing its k-space at the
wanted locations only using its continuous Fourier formulas, the second type of data is
real brain MR image data.

17

Initializations
a=0.05; k=0;
P=0.6; go=Fi(myg);

Pmo=-gu

>
v
t=1

r<
v
Calculate
x=ffm+t Fny)-
flmy)

L t=pt

NO

-
o
l Yes

Calculate
Mg 1=+t ka
Gie1= V(M)
dis1=-Greaty . Fmyg
k=k+1

y

100

200

300

400

5008

NO !f Girz < ves
mingrad [/ Image=m.4)
k>maxiter —_—

A%

Figure 5.1: Conjugate gradient Algorithm block diagram.

100
200
200
400

500
100 200 300 400 500

(b)

100 200 300 400 500
(a)

Figure 5.2: (a) 10% pattern. (b) 33.3% pattern.

18

In order to maximize the incoherence for a given number of samples, random
sampling was chosen which results in a good, incoherent, and near-optimal solution [5].
A Monte-Carlo algorithm was used to generate the undersampling pattern which uses a
grid size based on the desired resolution, and this grid is undersampled using a
constructed probability density function and randomly draw indices from that density.
The quality of the generated undersampling pattern is judged using the Transform Point
Spread Function (TPSF) which is defined as TSPF (i, j) = (@ *FsFsy)(i,j) [5], [6], and
the pattern with the lowest peak interference was selected. An example of generated
undersampling patterns is shown in Figure 5.2,

As mentioned before the constructed CS algorithm was tested on a Shepp Logan
phantom data and on a real MR data. Firstly for the Shepp Logan trial, the continuous
Fourier data was calculated at specific locations according to the generated
undersampling patterns of ratios of (33.3%, 30%, 25%, 20%, 15%, and 10%) and with
a desired resolution of 512*512 pixels and these data was prepared for testing in two
modes the first was using it directly with the algorithm and the other was by adding a
Gaussian noise (u=0.002 & 6°=0.002) to the Fourier data (Signal to Noise Ratio: 2.3
dB) and then testing it with the algorithm. The sparsifying transform used for the Shepp
Logan images was the Finite Difference transform. Secondly the Algorithm was tested
on real MR data which was a brain MR image with a resolution 512*512 pixels with
the same undersampling patterns used with the Shepp Logan trial but with Wavelet
transform as the sparsifying transform.

5.2. Image Quality Evaluation Metrics

Here, the metrics used to evaluate the quality of the produced images by
compressed sensing are mentioned.

5.2.1. Mean Squared Error (MSE)

The MSE [36], [37] has been widely used to quantify image quality. It measures
the quality change between the original and processed images in an M*N window.
When it is used alone, it does not correlate strongly enough with perceptual quality. It
should be used, therefore, together with other quality metrics and visual perception.
MSE is defined by Eg. (5.3).

l M N

MSE :WZZ(g” - £ ;)% (5.3)

i=l j=1

5.2.2. Geometric Average Error (GAE)

The value of GAE [37] is approaching zero if there is a very good transformation
(small differences) between the original and processed images; otherwise, the value of
GAE is high. GAE is defined by Eq. (5.4).

19

GAE=([[]ai;-fi;)™ (5.4)

i=1 j=1

5.2.3. Quality Index (QI)

It models any distortion as a combination of three different factors, which are loss
of correlation, luminance distortion, and contrast distortion, and is defined as:

o 2f g o0
Q=—0t— —— =, <, 5.5
Gng (f)Z(g)Z Gf2+692 ()

Where g and f represent the mean of the original and processed values with their
standard deviations o4 and of of the original and processed values of the analysis
window, and oy represents the covariance between the original and processed
windows. QI is computed for a sliding window of size 8*8 without overlapping. Its
highest value is 1 if g; j = fi j, whereas its lowest value is -1 if fi j=2 g — g, ; [37].

5.3. CS Algorithm Performance

The Algorithm was tested during all trials on a PC containing 8 GB RAM and an
Intel® Core™ {7-2630QM CPU 2.00GHz (Intel Corporation, USA). Figure 5.3 shows
the results of reconstruction for Shepp logan for patterns of ratios (33.3%, 30%, 25%,
20%, 15%, and 10%) from the top of figure. Figure 5.4 shows the results for the
reconstruction of the noised Shepp Logan with the same ratios used with the clear
Shepp Logan. Figure 5.5 shows the results for the brain MR image with ratios of 33.3%
to 10% from top of figure. From these results we can see that the quality of images
reconstructed from incomplete k-space is very good compared to that produced from
the complete k-space. The quality of produced images using CS is evaluated using the
metrics mentioned in the previous section. Figure 5.6 shows in the left column the
mean squared error drawn versus the undersampling ratios and in the right column the
quality index versus undersampling ratios for SheppLogan, noised SheppLogan, and
brain MR image from top to down respectively. The values of MSE and QI are shown
in Table 5.3to Table 5.8 at the end of chapter. From the calculated metrics it seems that
the reconstructed images using CS for Shepp Logan phantom is with medium quality as
it have a slightly high MSE and medium QI (near zero) which needs to have a value
near one for good approximation of image. The algorithm shows approximately the
same behavior with the noised Shepp Logan as in Figure 5.4 and Figure 5.6 from the
side of quality metrics except that the produced images may be visually better than the
noised images reconstructed from the complete k-space. The results for the real brain
MR image show a very good performance as the reconstructed images using CS from
small undersampling ratios have a very small MSE compared to the image produced
from the complete k-space and the QI is very close to one which indicates that the
reconstruction using CS is a very good approximation for the data.

20

5.4. CSusing LO-Norm Minimization

In the objective function of the CS optimization problem in Eqg. (3.1) and Eqg. (5.1),
we used the L1-norm minimization of the sparse representation of the reconstructed
image. This part of the objective function is the part which enforces the sparsity of the
produced image in the sparsifying transform domain. The L1-norm is calculated as
mentioned before by summation of the absolute values of the array of interest and this
cares about the values of coefficients of the image in the sparse domain, but if we can
reduce the order of the norm in the objective function to care about the number of non-
zero elements in the sparse representation, this will more express the sparsity of the
vector of coefficients and minimizing this number will produce sparser images than
those produced by minimizing L1-norm.

Reducing the order of the norm means that the LO-pseudo norm will be used which
means the number of non-zero elements of the array of interest and the new
optimization problem will be as follows:

minimize ym|, subject to IFsm-yl|, <& (5.6)

Solving Eg. (5.6) which is a non-convex optimization problem is generally
infeasible [38]. Replacing the LO-pseudo norm by L1-norm as shown before is one of
the solutions to this difficulty. A smoothed representation of the LO-norm by
approximation using continuous function may enhances the performance of the CS
algorithm and make it computationally inexpensive [38].

The used smoothed LO-norm is computed as follows:

Consider

f00 L, |X<<o 5.7)
0, [X>>0c '

Define the continuous multivariate function g(x) as:
N
g(x) =2 f(x), (5.8)
i=1

LO-norm is calculated through
[¥y=N-g(x). (5.9)

Using the new definition of the LO-norm in Eg. (5.9), the CS algorithm was
implemented by solving the optimization problem in Eq. (5.6) using the same
techniques used with the solution of problem in Eqg. (3.1) (nonlinear Conjugate
Gradient). Also the algorithm was tested on the same data for the algorithm of Eq. (3.1)
(Shepp Logan, Noised Shepp Logan, and real MR data).

21

350

Aas0

a0 A b O WNN-= 2

O 0o OO OO KL 0O O

00O0O0O0OO0OOOO OO
A W NN 2 &
o] (ST, N B B o |
(o} O 0O0OOOOP O

sS00

100 200 200 “400 500

[
0
s}
A
0

A00

<00
450

500

o 200 <400 S00

N
Q

oAb W WwWNN=S 2
oGO0 OO OO OGO O
0O0O0O0O0CODOOODOOQ

400

AS50

BowoN N 2
1, I o B B o I, B o |
0O 00O0O0TOOQ

500
100 200 200 400 500

a h b WwwEwNN-=2 2
[o 1) I o T O ¢, I o) R o B
0O 000O0O0ODOCOO

100 200 200 <400 500

(@)

Figure 5.3: (a) Shepp logan image reconstructed from 100% of k-space. (b)
Reconstruction using CS with undersampling ratios of 33.3, 30, 25, 20, 15, 10% of
k-space respectively from top to bottom.

22

S50 S50

100 100
150 150
200 2ea

250 250

o b b owow
0% 0 0o
00 0O0O0
a b b owow
(ol IO TN, o}
00 00O

S0
100
150 150
200 200
200 200
250 350
<400 <00
450 450

S00 S00

N
o]
a

S50
100
150
200
250
300
350
<400
“450

S00 S00

A b ow NN =2 2
"o nononoa
000O0O0O0COUO OO

A
o}
s}

S50

100

150

200

250

200

as50

“A00

“A50

()
0

0

1 T N
OO0 ODOOOOWO
0D ODOODGOTO DG OO

200 200

250 250
<400 <400
450 450

500 S00

@
NN S 2
noaon
0 0O0O0O

S50 S50

100 100
150 150
200 200
250 250
200 200
250 250
“400 <400
450 450
500 500
100 200 200 “A00 500 200 200 “A00 =1

(@) (b)

Figure 5.4: (a) Noised Shepp logan image reconstructed from 100% of k-space. (b)
Reconstruction using CS with undersampling ratios of 33.3, 30, 25, 20, 15, 10% of
k-space respectively from top to bottom.

23

100 100
200 200
300 300
400 400
500 500
100 200 300 400 500 100 200 300 400 500

100 100
200 200
300 300
400 400
500 500
100 200 300 400 500 100 200 300 400 500

100 100

200 200

300 300

400 400

500 500

100 200 300 400 500 100 200 300 400 500

100 100
200 200
300 300
400 400
500 500
100 200 300 400 500 100 200 300 400 500

100 100
200 200
300 300
400 400
500 500
100 200 300 400 500 100 200 300 400 500

100 100
200 200
300 300
400 400
500 500
100 200 300 400 500 100 200 300 400 500

(@) (b)

Figure 5.5: (a) Brain image reconstructed from 100% of k-space. (b)
Reconstruction using CS with undersampling ratios of 33.3, 30, 25, 20, 15, 10% of
k-space respectively from top to bottom.

24

2482

24815+
24811

24805 /2‘

MSE
o
o~
3
\

¥

247951 P
2479t G
24785} #

2478

24775

. . .
0.1 0.15 02 025
Sampling Ratio

(@)

2482

03 035

24815 ¢

24811

24805 ¢

248 ¢

MSE

24795 ¢

24791

24785

24781

24775 L L 1
01 0.15 02 025
Sampling Ratio

(©)

03 035

1051

MSE

0951

09r

I | |
01 0.15 02 025
Sampling Ratio

(€)

03 035

QI

QI

Q

02

015k
01F

0051

-005F
S0
0151

-02
0

08F
06+
04+

02r

02r
04+
06+

08F

1081
106+
104+

102+

098
096
094 -

092F

|
0.1 02 03 04 05
Sampling Ratio

(b)

I 1
0.1 02 03 04 05
Sampling Ratio

(d)

:

09
0

0.1 02 03 04 05
Sampling Ratio

(f)

Figure 5.6: MSE & QI calculated for CS reconstructions compared to full k-space
reconstruction for the three data types. (a) & (b) MSE and QI of Shepp logan. (c)
& (d) MSE and QI of Noised Shepp Logan. (e) & (f) MSE and QI of Brain Image.

The undersampling patterns used here are generated using the same Monte-Carlo
method, but we used a modification on those ones used with the real MR data where we
concentrated most of the samples in the central region as in Figure 5.7 taking in
consideration that the MR k-space has most of its power in this region.

100

200

300

400

500

100 200 300 400 500 © 100 200 300 400 500
(a) (b)

Figure 5.7: (a) 10% undersampling pattern. (b) 33.3% undersampling pattern.

The algorithm here also was implemented and tested on the same platform used for
the original CS algorithm. Figure 5.8 shows the results of using LO-norm with the finite
difference transform on the Shepp Logan for undersampling ratios of (33.3%, 30%,
25%, 20%, 15%, and 10%) from the top of figure and as we see, the produced images
seem to be with good quality compared the image produced from complete k-space
reconstruction. Figure 5.9 shows the results of using LO-norm with the finite difference
transform on the noised Shepp Logan for the same undersampling ratios. Figure 5.10
shows the results of using LO-norm with the Wavelet transform on the real MR image.
Figure 5.11 shows quality comparison for using the LO-norm and L1-norm in
reconstruction including the mean squared error in the left column and the quality index
in the right column.

5.5. CS using Fourier Transform as the Sparse transform
for MR Real Data

In this section we propose the use of the Fourier transform of the image of interest
as the sparse transform, testing it with the use of both L1-norm and smoothed LO-norm
minimization, and comparing it with the results of the same trials using the Wavelet
transform as the sparse transform. The optimization problem of CS when using Fourier
transform as the sparse transform will be as follows:

minimize |F.m|; subject to [Fsm-y], <e. (5.10)

Where F indicates the complete forward Fourier transform. The algorithm of this
technique was tested using the MR real data of the same resolution used in the previous
trials, and tested on the same computing platform used for the original CS algorithm.
Figure 5.12 shows the results of using the Fourier transform as the sparse transform

26

with L1-norm minimization. Figure 5.13 shows the results of using the Fourier
transform as the sparse transform with LO-norm minimization. Figure 5.14 is quality
comparison between using L1 and LO-norms with the Fourier transform as the sparse
transform, using Wavelet and Fourier with L1-norm, and using Wavelet and Fourier
with LO-norm. The left column shows the mean squared error and the right shows the
quality index. Figure 5.15 shows performance comparison (Processing time) for the
different versions of the CS algorithm.

Table 5.1 to Table 5.11 contain all the data represented in the comparison figures
including mean squared errors and quality index for both real brain MR and simulated
data (clear and noised Shepp Logan), signal to noise ratio for noised Shepp Logan
results, and processing time of all trials.

5.6. Discussion

The basic CS algorithm gave excellent results compared to images reconstructed
from complete k-space in both simulated data (Shepp Logan phantom) in Figure 5.3
and Figure 5.4, and real brain MR data in Figure 5.5. The quality of reconstructed
images is good according to the quality metrics measured in Figure 5.6 which show
good mean squared errors and quality indices with the best performance with the real
MR image. We can see that the MSE for the noised Shepp Logan gets bad as the
undersampling ratio increases and the reason for this may be that increasing the
sampling ratio here is for both the signal and the noise which results in acquiring more
information about the sampled signal (the noised image) and as a result good recovery
for the sampled signal which is an extra noised image with respect to the original Shepp
Logan image (as MSE and QI are calculated with respect to the clear image). Also we
see that the quality indices for clear and noised Shepp Logan are near zero which means
a medium quality of the produced images, but for the real MR data it is near one which
means that we have a good reconstruction from the side of correlation, luminance, and
contrast distortion.

Using the LO-norm penalized reconstruction gave the expected performance for
both the simulated data and the real MR data as shown in Figure 5.8 for the clear Shepp
Logan image, and Figure 5.10 for the real MR data. When comparing the MSE and the
quality index for the reconstructed images using LO-norm based CS compared to image
produced from complete k-space in Figure 5.11, we can see that the LO-norm
penalization produces images of lower mean squared errors than those produced with
L1-norm penalized reconstruction except for noised Shepp Logan images it gives
higher mean squared errors for the same reason mentioned in the last paragraph. Also
we find here that the quality of the produced images using LO-norm based CS from the
side of contrast and luminance (QI) is slightly higher than that images produced using
the L1-norm based CS. And as shown in Figure 5.15 (a) we can say that using LO-norm
with wavelet as a sparse transform in CS algorithm has no benefit from the side of
computation time as it has approximately the same computation time of using L1-norm
and this is considered a good thing as using LO-norm now has become computationally
inexpensive or at least comparable with using L1-norm.

Figure 5.12 and Figure 5.13 show the results of using Fourier transform as the
sparse transform with the real MR image, the results show that using Fourier with L1-
norm penalized reconstruction gave better results than using Wavelet with the same
type of reconstruction and approximately the same quality of images if using it with
LO-norm penalized reconstruction. This is verified in quality comparison figures in

27

Figure 5.14 which show that using Fourier based CS with L1-norm gives a smaller
mean squared error than Wavelet and approximately the same mean error with LO-
norm. With respect to the quality indices for both transforms we see that they are
excellent also and all of them are near one for both transforms (slightly higher for using
Fourier based CS). Figure 5.15 shows the computation time for the different trials with
the real MR image and we can see approximately all the trials have the same
computation time except for the L1-norm penalized CS based on Fourier reconstruction
which gives the best performance among all trials.

Through previous results we can say that CS algorithm is a good reconstruction
technique but the quality of images should be investigated in other ways to be sure of
the efficiency of the algorithm in full recovery of the image. One way may be to
investigate the results of the algorithm in reconstruction of diseased brain images and
see the effect of incomplete sampling on appearance of images or to find another
quality factor which better describes the reconstructed images using CS. Also other
ways need to be investigated to reduce the computation time of CS algorithm like
reducing the number of iterations of the steepest descent CG by improving the stopping
criterion used in the algorithm.

28

200 200 400

S00

A00
A50

S00

100

200

g

N

S50

A

200
250
<400
450

S00
400 S00

100

200
250
200

250

Figure 5.8: (a) Shepp Logan image reconstructed from 100% of k-space. (b)
Reconstruction using CS with LO-Norm for undersampling ratios of 33.3, 30, 25,
20, 15, 10% of k-space respectively from top to bottom.

29

S50

100

150

200

oA S Ww QN
[o) I = B B o I | h
0 0O0O0OO
r @

150
200 Z200
250 250
200 200
250
400
450

S00

[/ s
0000 Q0
0000 0 0

i)
o]

as50

<400

A50

500

A
[}
s}
N
[}
[}
A
[o}
[}
4]
o}
e}

nm A b NN 2
cmoaononaoWN
0 D0OO0O0O0OO0OOOD@W

2y
0
o
w
o]
o
A
o]
(o]
0
0
o

Q mw
o

100 100

150 150
200 200
250
200
250 250
<400 <00
450 450

500 500

W N
o a a
00 u}

[0

200

(b)

Figure 5.9: (a) Noised Shepp Logan image reconstructed from 100% of k-space.
(b) Reconstruction using CS with LO-Norm for undersampling ratios of 33.3, 30,
25, 20, 15, 10% of k-space respectively from top to bottom.

30

100 100

200 200

300 300

400 400

500 500

100 200 300 400 500 100 200 300 400 500

100 100
200 200
300 300
400 400
500 500
100 200 300 400 500 100 200 300 400 500

100 100
200 200
300 300
400 400
500 500
100 200 300 400 500 100 200 300 400 500

100 100
200 200
300 300
400 400
500 500
100 200 300 400 500 100 200 300 400 500

100 100
200 200
300 300
400 400
500 500
100 200 300 400 500 100 200 300 400 500

100 100
200 200
300 300
400 400
500 500
100 200 300 400 500 100 200 300 400 500

(@) (b)

Figure 5.10: (a) Brain image reconstructed from 100% of k-space. (b)
Reconstruction using CS with LO-Norm for undersampling ratios of 33.3, 30, 25,
20, 15, 10% of k-space respectively from top to bottom.

31

25¢

05

—&—L1-Min
—— L0-Min

256

. . . .
0.1 02 03 04 05
Sampling Ratio

(a)

255F

254

253

Py S

MSE

251F

251

249+

quwe——@ o

01

I ! L
0.15 02 025 03 035

Sampling Ratio

(©

Figure 5.11: Quality comparison between using CS with L1-Norm & L0-Norm, (a)
& (b) MSE and QI of Shepp Logan results. (¢) & (d) MSE and QI of Noised Shepp

L L L
0.15 02 025 03 035

Sampling Ratio

(€)

Q

Q

<

55

541

531

521

S51r

491

a8t

47t

46

0.99

0985
098¢
09751
097 ¢
0965

0.96
0

45
0

%10

—&— L1-Min
—— LO-Min

x10

. . . .
01 0z 03 04 05
Sampling Ratio

(b)

—&— L1-Min
—— LO-Min

TG

0.1 02 03 04 05
Sampling Ratio

(d)

T
—&—L1-Min
—— LO-Min

/

I |
0.1 02 03 04 05
Sampling Ratio

(f)

Logan results. (e) & (f) MSE and QI of Brain image results.

32

100

200

300

400

500

100 200 300 400 500

100

200

300

400

500
100 200 300 400 500

100

200

300

400

500
100 200 300 400 500

100

200

300

400

500

100 200 300 400 500

100

200

300

400

500
100 200 300 400 500

100

200

300

400

500
100 200 300 400 500

(@)

Figure 5.12: (a) Brain image reconstructed from 100% of k-space. (b)
Reconstruction using CS with Fourier transform and L1-Norm for undersampling
ratios of 33.3, 30, 25, 20, 15, 10% of k-space respectively from top to bottom.

100

200

300

400

500
100 200 300 400 500

100

200

300

400

500
100 200 300 400 500

100

200

300

400

500
100 200 300 400 500

100

200

300

400

500

100 200 300 400 500

100

200

300

400

500
100 200 300 400 500

100

200

300

400

500
100 200 300 400 500

(b)

33

100

200

300

400

500
100 200 300 400 500

100

200

300

400

500
100 200 300 400 500

100

200

300

400

500
100 200 300 400 500

100

200

300

400

500
100 200 300 400 500

100

200

300

400

500

100 200 300 400 500

100

200

300

400

500

100 200 300 400 500

(@)

100

200

300

400

500
100 200 300 400

500

100

200

300

400

500

100 200 300 400 500

100

200

300

400

500
100 200 300 400

500

100

200

300

400

500

100 200 300 400 500

100

200

300

400

500

100 200 2300 400 500

100

200

300

400

500

100 200 300 400 500

(b)

Figure 5.13: (a) Brain image reconstructed from 100% of k-space. (b)
Reconstruction using Fourier based CS with LO-Norm for undersampling ratios of
33.3, 30, 25, 20, 15, 10% of k-space respectively from top to bottom.

34

105

MSE

8 L L L
0.1 0.15 02 025
Sampling Ratio

(@)

03 035

MSE

—&— Wav-L1
—— Four-L1

. . .
0.1 0.15 02 025
Sampling Ratio

(©)

MSE

. . .
01 0.15 02 025
Sampling Ratio

(€)

L
03 035

0.99 T T T T
—&— L1-Min
—— LO0-Min
0985 A
0l /
o 09750
097

09651

096

| |
0 0.1 02 03 04 05
Sampling Ratio

(b)

098 T T T T

—e— Wav-L1
—— FourL1

0985}
ol /
o 095}

047

09651

098
0

. . . .
01 0z 03 04 05
Sampling Ratio

(d)

099 T T T T
—&— WavL0
——Four-L0
09851 1
098 4
o 0975+
097}

0965

0.96 I ! L
0 0.1 02 03 04 05

Sampling Ratio

)

Figure 5.14: Quality Comparison, (a) & (b) MSE & QI for brain image
reconstructions using Fourier based CS with LO-Norm & L1-Norm. (c) & (d) MSE
& QI for Fourier based CS vs. Wavelet based CS with L1-Norm. (¢) & (d) MSE &

QI for Fourier based CS vs. Wavelet based CS with LO-Norm.

35

500

450

400

350+

300

2501

Processing Time

100+

S0+

150

—&—L1-Min
—— L0-Min

Wavelet Based

500

! !
02 03

!
04 05

450

400

350

300

250+

Processing Time

100+

501

Sampling Ratio
(a)
—a WaVLW
——Four 1 I
ol \\/_é
150+
g etk oo wa e g
0 I I I I
0 0.1 02 03 04 05
Sampling Ratio
(©

500

450 F

400 F

350+

Processing Time

150

100

50

500

450+

400+

350

Processing Time

150 -

100 -

50

300

2501

200

—&— L1-Min
—— LO-Min

Fourier Based

N

e o e 5 o
. . . .
0.1 02 03 04 05
Sampling Ratio

300F

250+

2001

— WENLU

—_— FourLU I

~

I |
0.1 02 03 04 05
Sampling Ratio

(d)

Figure 5.15: Performance comparison (a) Processing time for reconstructions
using Wavelet based CS with LO-Norm & L1-Norm. (b) Processing time for using
Fourier based CS with LO-Norm & L1-Norm. (c) Processing time for using L1-
Norm with Wavelet and Fourier. (d) Processing time for using LO-Norm with

Wavelet and Fourier.

Table 5.1: Real MR image MSE with Fourier as a sparse transform

Undersampling | = 55, 30% 25% 20% 15% 10%
Ratio

L1-Norm 816e-4 | 847e-4 | 88ea 9.39-4 9.9e-4 0.001
LO-Norm 6.45e-4 | 685e-4 | 7.42e-4 | 8.1e4 87%-4 | 9.59-4

36

Table 5.2: Real MR image QI with Fourier as a sparse transform

Undersampling | 55, 30% 25% 20% 15% 10%
Ratio

L1-Norm 0.9837 0.9831 0.9825 0.9814 0.9804 0.9793
LO-Norm 09870 | 0.9862 0.9852 0.9839 0.9825 0.9811

Table 5.3: Real MR image MSE with Wavelet as a sparse transform

Undersampling | 534, 30% 25% 20% 15% 10%
Ratio
L1-Norm 8.56e-4 9.02e-4 9.62e-4 10.5e-4 11.33e4 12.35e-4
LO-Norm 6.45e-4 6.85e-4 7.42e-4 8.1le-4 8.79e-4 9.57e-4
Table 5.4: Real MR image QI with Wavelet as a sparse transform

Undersampling

. 33% 30% 25% 20% 15% 10%
Ratio
L1-Norm 0.9833 0.9823 0.9812 0.9793 0.9778 0.9759
LO-Norm 0.9870 0.9863 0.9852 0.9839 0.9825 0.9811

Table 5.5: Clear Shepp Logan MSE

Undersampling

. 33% 30% 25% 20% 15% 10%
Ratio
L1-Norm 2.4813 2.4811 2.4805 2.4796 2.4788 2.4777
LO-Norm 0.5046 0.5041 0.5056 0.5063 0.5033 0.5030

Table 5.6: Clear Shepp Logan QI

Undersampling

. 33% 30% 25% 20% 15% 10%
Ratio
L1-Norm 4.97e-6 4.97e-6 4.98e-6 4.99e-6 5e-6 5.01e-6
LO-Norm 1.53e-5 1.53e-5 1.52e-5 1.51e-5 1.52e-5 1.52e-5

37

Table 5.7: Noised Shepp Logan MSE

Undersampling | 530, 30% 25% 20% 15% 10%
Ratio
L1-Norm 2.4813 2.4811 2.4805 2.4796 2.4788 2.4777
LO-Norm 2.4950 2.5537 2.5444 2.5520 2.5510 2.5403
Table 5.8: Noised Shepp Logan QI

Undersampling

. 33% 30% 25% 20% 15% 10%
Ratio
L1-Norm 4.97e-6 4.97e-6 4.98e-6 4.99e-6 5e-6 5.01le-6
LO-Norm 4.98e-6 4.89e-6 4.88e-6 4.9e-6 4.91e-6 4.91e-6

Table 5.9: Noised Shepp Logan SNR

Undersampling

. 33% 30% 25% 20% 15% 10%
Ratio
L1-Norm 0.00427 0.00427 0.00427 0.00426 0.00426 0.00426
LO-Norm 0.00417 0.00409 0.00410 0.00408 0.00408 0.00409

Table 5.10: Real MR image reconstruction time with Fourier as sparse transform

Undersampling | 5, 30% 25% 20% 15% 10%
Ratio

L1-Norm 126.41 126.68 130.05 131.34 124.01 129.74
LO-Norm 188.99 189.20 237.00 150.50 187.94 212.77

Table 5.11: Real MR image reconstruction time with Wavelet as sparse transform

Undersampling | 5, 30% 25% 20% 15% 10%
Ratio

L1-Norm 189.03 188.99 236.57 150.00 18714 | 211.83
LO-Norm 189.61 188.40 236.42 149.62 186.97 212.28

38

Chapter 6 : Embedded Implementation

In this chapter we investigate the use of an embedded platform based on the
OMAP processor (BeagleBoard) for a challenging image reconstruction algorithm for
MRI based on the compressed sensing. We compare straightforward implementations
of the compressed sensing reconstruction algorithm on different processing platforms
including embedded processors to verify the performance of such platforms. The
performance of the algorithm on the embedded platform was compared to the
performance on two large processing platforms containing Intel® Core™ Duo
Processor and Intel® Core™ i7-2630QM CPU 2.00GHz (Intel Corporation, USA).

6.1. CS Algorithm Preparation

The CS algorithm to be tested on the embedded platform was the initial CS
algorithm using the L1-norm minimization in the solution of the optimization problem
in Eg. (3.1) and implemented using the standard C language and gcc 4.6.3 (Free
Software Foundation, Inc., Boston, USA) on Ubuntu 11.10 (Canonical Ltd., London,
United Kingdom) using a platform containing an Intel® Core™ Duo Processor 72450
2.00 GHz (Intel Corporation, USA). The memory used by the program was optimized
and reduced in order to be suitable for the limited memory of BeagleBoard.

Due to memory considerations we used an angiography-like simulated image with
a size of 100x100 pixels and containing randomly generated vessels with different sizes
and magnitudes as shown in Figure 6.1 (a). The k-space of the image was
undersampled with a factor of 20 with a randomly generated sampling pattern shown in
Figure 6.1 (b), and as an initial guess for the algorithm we used a zero filling with
density compensation (ZF-w/dc) reconstructed image Figure 6.1 (c). ZF-w/dc is the
reconstruction by zero-filling the missing k-space data and k-space density
compensation [5]. The algorithm block diagram is shown in Figure 6.2.

@ (b) ©

Figure 6.1: (a) Original image. (b) Sampling pattern. (c) Zero filling with density
compensation reconstruction.

39

http://www.fsf.org/
http://www.fsf.org/

An initial
guess for

image Final
Image

Undersampled

Source K-space

Image

Fourier Transform and
Undersampling by Reconstruction with

multiplication with sampling ZF-wide
pattern

L1penalized non linear
= conjugate gradient —
reconstruction

Y

Figure 6.2: CS algorithm block diagram

6.2. Embedded Reconstruction

In order to run the OMAP we need first to load it with an embedded operating
system (Windows based or Linux based), we build Angstrém system which is a
complete Linux distribution and includes the kernel, a base file system, basic tools and
a package manager to install software from a repository. It uses the Open Embedded
(OE) platform, a tool-chain that makes cross-compiling and deploying packages easy
for embedded platforms, also an inter-processor communication system (DSP/BIOS
Link) Fig.3, was built between the two processors (ARM and DSP) to allow passing
messages and data for testing algorithm from the ARM (that works as a general purpose
processor GPP) side to the DSP side to perform it Figure 6.3 [8].

The algorithm was tested on the embedded platform in two modes the first was on
the GPP (ARM) and the second was implemented using the two processors of the board
(ARM & DSP) [8].

GPP | DSP

Shared: Memory

7 N\ : : e 2
GppApp PROC_write | 5pp <psp - DspApp

[.1 region e
Direct
memory
reads &

; writes
PROC read ;
1 DSP->GPP A

<,7 region el

NOTIFY _notify '
9 ; < : Xt J

Figure 6.3: Communication with DSP.

40

6.2.1. Arm Based Reconstruction System

Here the CS algorithm was tested only on the ARM processor and compiled using
EGLIBC 2.16 (Linux Foundation, USA). All calculations were performed in a straight
forward sequential manner using the GPP. The algorithm test data including the image
file, the undersampling pattern, and the probability density function for the density
compensated reconstruction was transferred to the BeagleBoard though Ethernet [8].

6.2.2. Hybrid processor based Reconstruction System

The CS algorithm here was divided into two parts, the first is performed on the
ARM processor and the second is performed on the DSP. The part to be on the ARM
processor includes all preparation processes for the CS algorithm including memory
allocations, read and write of test data to the shared memory with the DSP. The part to
be on the DSP includes the core processes, iterations, and computations of the CS
algorithm and it uses all the data written by the ARM in the shared memory. All the
memory needed by the algorithm was fixed and preallocated from the ARM side [8].

6.3. Results and Discussion

After testing the algorithm on the BeagleBoard we get the reconstructed image
using CS as shown in Figure 6.4 and it was identical to the one produced by the same
algorithm tested on the large processing platforms.

The performance of the algorithm after trying it on the different platforms is shown
Table 6.1. All the processors give longer processing time than the time expected for this
algorithm especially on the DSP while that on the ARM processor was found to be
surprisingly close to significantly larger processing platforms. This is apparently due to
the dependence of the algorithm on 2D Fourier transform and the prolonged loops
which take long processing time. The excessive processing time obtained when running
the same algorithm on the DSP was difficult to explain at first until further research was
done and that revealed the different architecture of this platform that requires very
different coding strategy to take advantage of the available computing hardware on the
processor. Hence, simple porting of code running on other general purpose processors
is not a good strategy to develop efficient code on DSPs.

Difficulties were also found in attempting to transfer data between the ARM and
DSP parts of the OMAP processor. The data passing interface allowed limited data
packets that barely allowed the 100x100 sized image to be transferred for processing.
This is clearly a very challenging problem facing the porting of such algorithms into
embedded DSPs.

It should be noted that the algorithm used was implemented using serial code. This
did not clearly take advantage of the number of processors available on the processing
platform used. Hence, the difference between the first two Intel-based platforms with 2
and 8 processors can be attributed only to differences in clock speed rather than number
of processor.

41

Figure 6.4: CS based reconstructed image.

Table 6.1: Processing time.

Module Processing Time (min)
Core duo 22.5
Core i7 16.5
ARM 30.1
DSP About 1000

42

Conclusions and Future Work

The results confirmed the theory of compressed sensing as a powerful method of
image reconstruction under very low sampling conditions. The performance of the CS
algorithm can be enhanced in both speed and quality of reconstructions through the use
of some modifications as using 10 penalized reconstruction which gives better images
than those produced by 11 penalized reconstructions. The used smoothed version of the
10-norm introduced a success in both the quality of reconstructed images which were
better than their counterparts in the I1 penalized reconstruction and processing time that
was found to be very close to the time of using |1 penalized problem.

Using Fourier transform as a sparse transform was found to give better results than
Wavelet transform if using an |1 penalized reconstruction and approximately the same
results if using the 10 penalization. Also it was found that the Fourier transform is time
consuming if used with the 10 penalization and speeds up the algorithm if used with 11
penalization. The best performance for the CS algorithm in both quality and processing
time was found to be achieved if using the 10 penalized reconstruction with Wavelet or
the 11 penalized reconstruction with Fourier.

A further research will be done in order to enhance the performance of the
compressed sensing algorithm through taking in consideration the symmetry of
encoded state (k-space) at which the MR images are acquired. This may increase the
number of acquired samples in the k-space from the same low sampling conditions of
CS.

The processing time of the algorithm is compared on different processing platforms
with results indicating interesting performance for the embedded ARM processor part
of the OMAP processor. Also, the results indicated that the porting of such
sophisticated algorithm to the DSP was not straightforward and that simple porting
resulted in a very poor performance. So, special coding methods that take advantage of
the architecture of the DSP to utilize the vectored computational hardware and
pipelining must be carefully mapped onto the algorithm before it is ported. Further
investigation is needed to develop specific porting instructions to allow the
performance of the DSP to reach its theoretical limit. Targeting new embedded
platforms that allow direct communication and debugging on DSP and containing
multicores DSP’s will be an interesting path to follow to allow further investigation for
the performance of such special function processors with the challenging and
computationally expensive algorithms like compressed sensing.

43

44

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

References

R. H. Hashemi, W. G. Bradley, and C. J. Lisanti, MRI: The Basics. Lippincott
Williams & Wilkins, 2010, p. 400.

D. Weishaupt, V. D. Koechli, and B. Marincek, How does MRI work?: An
Introduction to the Physics and Function of Magnetic Resonance Imaging.
Springer, 2008, p. 182.

Advanced Imaging, “MRI Frequently Asked Questions.” [Online]. Available:
http://www.advancedimagingofmt.com/index.php?page=mri-fag.

E. M. Haacke, R. W. Brown, M. R. Thompson, and R. Venkatesan, Magnetic
Resonance Imaging: Physical Principles and Sequence Design. Wiley-Liss,
1999, p. 914.

M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of
compressed sensing for rapid MR imaging.,” Magnetic resonance in medicine :
official journal of the Society of Magnetic Resonance in Medicine / Society of
Magnetic Resonance in Medicine, vol. 58, no. 6, pp. 1182-95, Dec. 2007.

M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, “Compressed Sensing
MRI,” IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 72-82, Mar. 2008.

G. A. Wright, “Magnetic resonance imaging,” IEEE Signal Processing
Magazine, vol. 14, no. 1, pp. 56-66, 1997.

Y. A. Amer, M. A. El-Tager, E. A. EI-Alamy, A. Abdel-Salam, and Y. M.
Kadah, “Embedded magnetic resonance image reconstruction using compressed
sensing,” in 2012 Cairo International Biomedical Engineering Conference
(CIBEC), 2012, pp. 35-38.

E. J. Candes and M. B. Wakin, “An Introduction To Compressive Sampling,”
IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 21-30, Mar. 2008.

E.J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact
signal reconstruction from highly incomplete frequency information,” IEEE
Transactions on Information Theory, vol. 52, no. 2, pp. 489-509, Feb. 2006.

D. L. Donoho, “Compressed sensing,” IEEE Transactions on Information
Theory, vol. 52, no. 4, pp. 1289-1306, Apr. 2006.

E. J. Candes and T. Tao, “Near-Optimal Signal Recovery From Random

Projections: Universal Encoding Strategies?,” IEEE Transactions on Information
Theory, vol. 52, no. 12, pp. 5406-5425, Dec. 2006.

45

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

D. S. Taubman and M. W. Marcellin, JPEG2000 Image Compression
Fundamentals, Standards and Practice, vol. 642. Boston, MA: Springer US,
2002.

T. Chang, L. He, and T. Fang, “MR Image Reconstruction from Sparse Radial
Samples Using Bregman Iteration,” Proc. of the 14th Annual Meeting of ISMRM,
Seattle, vol. 4, p. 696, 2006.

J. C. Ye, S. Tak, Y. Han, and H. W. Park, “Projection reconstruction MR
imaging using FOCUSS.,” Magnetic resonance in medicine : official journal of
the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance
in Medicine, vol. 57, no. 4, pp. 764-75, Apr. 2007.

K. T. Block, M. Uecker, and J. Frahm, “Undersampled radial MRI with multiple
coils. Iterative image reconstruction using a total variation constraint.,” Magnetic
resonance in medicine : official journal of the Society of Magnetic Resonance in

Medicine / Society of Magnetic Resonance in Medicine, vol. 57, no. 6, pp. 1086—
98, Jun. 2007.

J. H. L. M. Lustig, “Faster imaging with randomly perturbed, undersampled
spirals and [I|1 reconstruction,” Proc. of the 13th Annual Meeting of ISMRM,
Miami Beach, p. 685, 2005.

J. M. Santos, C. H. Cunningham, M. Lustig, B. A. Hargreaves, B. S. Hu, D. G.
Nishimura, and J. M. Pauly, “Single breath-hold whole-heart MRA using
variable-density spirals at 3T.,” Magnetic resonance in medicine : official
journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic
Resonance in Medicine, vol. 55, no. 2, pp. 371-9, Feb. 2006.

S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic Decomposition by
Basis Pursuit,” SIAM Journal on Scientific Computing, vol. 20, no. 1, pp. 33-61,
Jan. 1998.

J. F. Claerbout and F. Muir, “ROBUST MODELING WITH ERRATIC DATA,”
GEOPHYSICS, vol. 38, no. 5, pp. 826-844, Oct. 1973.

F. Santosa and W. W. Symes, “Linear Inversion of Band-Limited Reflection
Seismograms,” SIAM Journal on Scientific and Statistical Computing, vol. 7, no.
4, pp. 1307-1330, Oct. 1986.

S.-J. Kim, K. Koh, M. Lustig, and S. Boyd, “An Efficient Method for
Compressed Sensing,” in 2007 IEEE International Conference on Image
Processing, 2007, vol. 3, pp. 11 —117-111 —120.

E. J. Candes and J. K. Romberg, “Signal recovery from random projections,” in
Electronic Imaging 2005, 2005, pp. 76-86.

I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding algorithm
for linear inverse problems with a sparsity constraint,” Communications on Pure
and Applied Mathematics, vol. 57, no. 11, pp. 1413-1457, Nov. 2004,

46

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

J.-L. Starck, M. Elad, and D. L. Donoho, “Image decomposition via the
combination of sparse representations and a variational approach,” IEEE
Transactions on Image Processing, vol. 14, no. 10, pp. 1570-1582, Oct. 2005.

M. Elad, B. Matalon, and M. Zibulevsky, “Coordinate and subspace optimization
methods for linear least squares with non-quadratic regularization,” Applied and
Computational Harmonic Analysis, vol. 23, no. 3, pp. 346-367, Nov. 2007.

D. L. Donoho, M. Elad, and V. N. Temlyakov, “Stable recovery of sparse
overcomplete representations in the presence of noise,” IEEE Transactions on
Information Theory, vol. 52, no. 1, pp. 6-18, Jan. 2006.

M. M. Bronstein, A. M. Bronstein, M. Zibulevsky, and H. Azhari,
“Reconstruction in diffraction ultrasound tomography using nonuniform FFT.,”
IEEE transactions on medical imaging, vol. 21, no. 11, pp. 1395-401, Nov.
2002.

Linux, “Embedded Computing with Beagle Board,” 2011. [Online]. Available:
http://www.start-linux.com/embedded-linux-boards/embedded-computing-with-
beagle-board.

T. Instruments, “BeagleBoard System Reference Manual Rev C4,” 2009.

T. Instruments, “OMAP35x Applications Processor Technical Reference
Manual,” 2012.

K. P. Pruessmann, M. Weiger, P. Bornert, and P. Boesiger, “Advances in
sensitivity encoding with arbitrary k-space trajectories.,” Magnetic resonance in
medicine : official journal of the Society of Magnetic Resonance in Medicine /
Society of Magnetic Resonance in Medicine, vol. 46, no. 4, pp. 638-51, Oct.
2001.

H. Z. William W Hager, “A survey of nonlinear conjugate gradient methods,”
Pacific journal of Optimization, vol. 2, no. 1, pp. 35-38, 2006.

W. W. Hager and H. Zhang, “A New Conjugate Gradient Method with
Guaranteed Descent and an Efficient Line Search,” SIAM Journal on
Optimization, vol. 16, no. 1, pp. 170-192, Jan. 2005.

R. Fletcher and C. Reeves, “Function minimization by conjugate gradients,” The
Computer Journal, vol. 7, no. 2, pp. 149-154, Feb. 1964.

Y. Zhang, H. D. Cheng, J. Huang, and X. Tang, “An effective and objective

criterion for evaluating the performance of denoising filters,” Pattern
Recognition, vol. 45, no. 7, pp. 2743-2757, Jul. 2012.

C. Loizou, Despeckle Filtering Algorithims and Software for Ultrasound

Imaging (Synthesis Lectures on Algorithms and Software in Engineering).
Morgan and Claypool Publishers, 2008, p. 166.

47

[38] C.S.Oxvig, P.S. Pedersen, T. Arildsen, and T. Larsen, “Improving Smoothed 10
Norm in Compressive Sensing Using Adaptive Parameter Selection,” Computing
Research Repository, p. 7, Oct. 2012.

48

Appendix A: Getting BeagleBoard Ready

As mentioned before, BeagleBoard can be powered to act like a minicomputer by
loading it with an operating system (OS). This OS may be a Linux or Windows based
OS and in our work we used a Linux based OS. A complete Linux distribution:
includes the kernel, a base file system, basic tools and even a package manager to
install software from a repository was used (one of projects of Yocto Project). It is
optimized for low-power controllers like the one in BB and intends to be small and
basic system to modify on your needs.

The Yocto Project is an umbrella project covering a fairly wide swath of embedded
Linux technologies. It is not a Linux distribution. The Yocto Project™ is an open
source collaboration project that provides templates, tools and methods to help you
create custom Linux-based systems for embedded products regardless of the hardware
architecture. It's a complete embedded Linux development environment with tools,
metadata, and documentation - everything you need. The tools are easy to get started
with, powerful to work with (including emulation environments, debuggers, an
Application Toolkit Generator, etc.) and they allow projects to be carried forward over
time without causing you to lose optimizations and investments made during the
project’s prototype phase and to focus on their specific product features and
development. The Yocto Project fully supports a wide range of hardware and generates
images for many kinds of devices and supports device emulation through the QEMU
Emulator.

Needed things to develop the Yocto project environment:

e A host system running a supported Linux distribution (i.e. recent releases of
Fedora, openSUSE, CentOS, and Ubuntu). If the host system supports
multiple cores and threads, you can configure the Yocto Project build
system to decrease the time needed to build images significantly.

e The right packages.

e Arelease of the Yocto Project.

Environment Development

Packages and package installation vary depending on your development system
and on your intent. The next sections list — for Ubuntu - the required packages needed
to build an image that runs on BeagleBoard (the ARM side). The Yocto project has
many distributions like Poky and Angstrom and we here use Poky distribution.

1. The Packages

The essential packages you need for Ubuntu can be acquired through the following
command:

$ sudo apt-get install gawk wget git-core diffstat unzip
texinfo \build- essential chrpath libsdll.2-dev xterm

2. Building an Image

In the development environment you will need to build an image whenever you
change hardware support, add or change system libraries, or add or change services that
have dependencies.

49

Use the following commands to build your image. The OpenEmbedded build
process creates an entire Linux distribution, including the toolchain, from source.

$ wget http://downloads.yoctoproject.org/releases/yocto/yocto-
1.4/poky-dylan-9.0.tar.bz?2

$ tar xjf poky-dylan-9.0.tar.bz2

$ cd poky-dylan-9.0

$ source oe-init-build-env

Notes

e The build process using Sato currently consumes about 50GB of disk space.
To allow for variations in the build process and for future package
expansion, we recommend having at least 100GB of free disk space.

e The first command retrieves the Yocto Project release tarball from the
source repositories using the wget command.

e The second command extracts the files from the tarball and places them
into a directory named poky-dylan-9.0 in the current directory.

e The third and fourth commands change the working directory to the Source
Directory and run the Yocto Project oe-init-build-env environment setup
script. Running this script defines OpenEmbedded build environment
settings needed to complete the build. The script also creates the Build
Directory, which is build in this case and is located in the Source Directory.
After the script runs, your current working directory is set to the Build
Directory. Later, when the build completes, the Build Directory contains all
the files created during the build.

Examine your local.conf file in your project's configuration directory, which is
found in the Build Directory. The defaults in that file should work fine. However, there
are some variables of interest at which you might look. By default, the target
architecture for the build is gemux86, which produces an image that can be used in the
QEMU emulator and is targeted at an Intel® 32-bit based architecture. To change this
default, edit the value of the MACHINE variable in the configuration file before
launching the build (select that one of BeagleBoard).

Another couple of variables of interest are the BB_NUMBER_THREADS and the
PARALLEL_MAKE variables. By default, these variables are commented out.
However, if you have a multi-core CPU you might want to uncomment the lines and set
both variables equal to twice the number of your host's processor cores. Setting these
variables can significantly shorten your build time.

Continue with the following command to build an OS image for the target, which
is core-image-sato in this example.

$ bitbake -k core-image-sato

Depending on the number of processors and cores, the amount of RAM, the speed
of your Internet connection and other factors, the build process could take several hours
the first time you run it. Subsequent builds run much faster since parts of the build are
cached.

Upon finishing you can find your image data in the following path (yocto/poky-
danny-8.0/build/tmp/deploy/images) this data includes the following important files
which will be loaded on our board:

e ulmage
e U-boot.bin

50

http://www.yoctoproject.org/docs/1.4/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.4/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.4/ref-manual/ref-manual.html#structure-core-script
http://www.yoctoproject.org/docs/1.4/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.4/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.4/ref-manual/ref-manual.html#var-BB_NUMBER_THREADS
http://www.yoctoproject.org/docs/1.4/ref-manual/ref-manual.html#var-PARALLEL_MAKE

e MLO-beagleboard
e core-image-sato-beagleboard.tar.bz2

Compiling Kernel

A kernel should be compiled and prepared to be added to system modules on
BeagleBoard. One can bring a kernel from kernel.org, compile it and it will work
properly on the board but for BeagleBoard there is a good kernel which has better
compatibility with our system. This kernel is called Balister kernel. Philip Balister
kernel is contained in the following link you just needs to zip its contents
(https://github.com/balister/linux-omap-philip).

Before starting kernel compiling you need to make sure from installing the ARM
compilers (code sourcery) from (http://www.mentor.com/embedded-software/sourcery-
tools/sourcery-codebench/editions/lite-edition/). Once you install them you will need to
add the path of compilers (default is: /opt/CodeSourcery/Sourcery _G++_Lite/bin) to
the system path using the export command in Ubuntu as follows:

export PATH="SPATH:/opt/CodeSourcery/Sourcery G++ Lite/bin"

but take care while you perform this. If not properly executed, can destroy your system
path (this step can be included in the second item in the following steps as will be
shown).

Steps:

1. Change your directory to balister kernel folder.

2. Create the environment variables which include the architecture and cross
compilers and the code sourcery path (if you did not perform before) in a file
and call it env-vars as follows:

export PATH=$PATH:/opt/CodeSourcery/Sourcery G++ Lite/bin
export CROSS COMPILE=arm-none-linux-gnueabi-
export ARCH=arm

3. Source the file you created in 1 using the following command:

sSource env-vars

Copy the file named ““defconfig” to ““.config”.

Type the following command “make menuconfig”.

On execution of the previous command you will have the menu in Figure A.1.
Select “system type”.

Select “TTI OMAP common features” as in Figure A.2.

Mark labels beside “IOMMU Module” and “IOMMU_IVA2” as in Figure A.3.
0. Save and exit the configuration.

1. Now build the kernel and compile its modules using the following commands:

RB©o©o~N O~

make -j4 ulmage
make -j4 modules

12. Now install your kernel modules using the following command:

51

https://github.com/balister/linux-omap-philip
http://www.mentor.com/embedded-software/sourcery-tools/sourcery-codebench/editions/lite-edition/
http://www.mentor.com/embedded-software/sourcery-tools/sourcery-codebench/editions/lite-edition/

make INSTALL MOD PATH=path modules install
but replace “path” with the path you want and at which the kernel modules will
be created.

yassin@yassin-PC: ~/Desktop/media/LinuxSamsung/BeagleBoard/kernel/balister/linux-omap

.config Linux/arm 3.0.0 Kernel Configuration

Linux/arm 3.0.0 Kernel Configuration
Arrow keys navigate the menu. <Enter> selects submenus --->. Highlighted letters are hotkeys. Pressing
<¥> includes, <N> excludes, <M> modularizes features. Press <Esc><ESc> to exit, <?> for Help, </> for
search. Legend: [*] built-in [] excluded <M> module < > module capable

[1 patch physical to virtual translations at runtime (EXPERIMENTAL)
ceneral setup --->
[*] Enable loadable module support --->

i* Enable the block lqser ---=

Bus support >
xernel Features --->
Boot options --->
CPU Power Management --->
Floating point emulation
uUserspace binary formats
Power management options

[*] Networking support --->
Device Drivers --->
File systems
Kernel hacking -
Security options

-*- Cryptographic API
Library routines

Load an Alternate Cenfiguratien
Save an Alternate Configuration

< Exit > < Help >

Figure A.1: Kernel menu configuration.

yassin@yassin-PC: ~/Desktop/media/Linuxsamsung/BeagleBoard/kernel/balister/linux-omap
.config - Linux/arm 3.0.0 Kernel Configuration

System Type

Arrow keys navigate the menu. <Enter> selects submenus --->. Highlighted letters are hotkeys. Pressing
<¥> includes, <N> excludes, <M> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </> for
search. Legend: [*] built-in [] excluded <M> module < > module capable

[*] MMU-based Paged Memory Management Support
ARM system type (TI OMAP >
[| TI OMAP Common Features --->
TI OMAP2/3/4 Specific Features --->
#%% System MMU *%%
% Processor Type *
**% Processor Features *
[*] Support Thumb user binaries
[*] Enable ThumbEE CPU extension
[] Emulate SWP/SWPB instructions
[] pisable I-cache (I-bit)
[] pisable D-cache (c-bit)
[] pisable branch prediction
[*] ARM errata: Stale prediction on replaced interworking branch
[] ARM errata: Processor deadlock when a false hazard is created
[] #"RM errata: Data written to the L2 cache can be overwritten with stale data
[1] ARM errata: Faulty hazard checking in the Store Buffer may lead to data corruption
[] ARM errata: possible faulty MMU translations following an ASID switch

< Exit > < Help >

Figure A.2: Kernel menu configuration.

13. Now you have your kernel ready at folder called “lib” at the path you selected
in the previous step.

52

& yassin@yassin-PC: ~/Desktop/media/Linuxsamsung/BeagleBoard/kernel/balister/linux-omap
.config - Linuxfarm 3.0.0 Kernel Configuration

TI OMAP Common Features
Arrow keys navigate the menu. <Enter> selects submenus Highlighted letters are hotkeys. Pressing
<Y¥> includes, <N> excludes, <M> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </> for
Search. Legend: [*] built-in [] excluded <M> module < > module capable

OMAP System Type (TI OMAP2/3/4) ---=»
*** QMAP Feature Selections ***
smartReflex support
Class 3 mode of Smartreflex Implementation
reset unused clocks during boot
OMAP multiplexing support
Multiplexing debug output
wWarn about pins the bootloader didn't set up
-*- McBSP support
< > Mailbox framework support
[*] ToMMU Module
< > _Export OMAP IOMMU internals in DebugFs
[
[*] Use 32KHz timer
[] OMAP3 HS/EMU save and restore for L2 AUX control register
(128) kernel internal timer frequency for 32KHz timer
-*- Use dual-mode timer
OMAP PM layer selection (No-op/debug PM layer) --->

B

< Exit > < Help >

Figure A.3: Kernel menu configuration.

Building Inter-processor Communication RTOS
In order to perform inter-processor communication between ARM acting as GPP
and the DSP we need a real time OS called SYSLINK to provide the needed API’s used
for this process to handle the shared memory between the two processors. SYSLINK
can be downloaded from Tl company website (http://software-
dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/syslink/index.html).
The SysLink product provides the following services to frameworks and
applications:
e Processor Manager
e Inter-Processor Communication
e Utility modules

Steps:

1. Before starting the build process you should make sure of installing the
following components on your host system:
a. Tl Linux EZ Software Development Kit (EZSDK) for Sitara™ ARM®

Microprocessors and you can download from
(http://www.ti.com/tool/linuxezsdk-sitara) and a detailed installation for
SDK is available here

(http://www.fedevel.com/welldoneblog/2011/09/c6a816x-installation-
host-machine-linux-kernel-compilation/).

b. TI inter-processor communication (IPC) and you can download from
(http://downloads.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/ipc/
).

c. T BIOS and you can download from
(http://downloads.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/bio
s/syshios/6_34 04 22/index_FDS.html).

d TI XDC tools and you can download from
(http://downloads.ti.com/dsps/dsps_public_swi/sdo_sb/targetcontent/rtsc
/3 24 05 48/index FDS.html).

53

http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/syslink/index.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/syslink/index.html
http://www.ti.com/tool/linuxezsdk-sitara
http://www.fedevel.com/welldoneblog/2011/09/c6a816x-installation-host-machine-linux-kernel-compilation/
http://www.fedevel.com/welldoneblog/2011/09/c6a816x-installation-host-machine-linux-kernel-compilation/
http://downloads.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/ipc/
http://downloads.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/ipc/
http://downloads.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/bios/sysbios/6_34_04_22/index_FDS.html
http://downloads.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/bios/sysbios/6_34_04_22/index_FDS.html
http://downloads.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/rtsc/3_24_05_48/index_FDS.html
http://downloads.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/rtsc/3_24_05_48/index_FDS.html

e. Tl C6000 code generation tools and you can download from

(https://www-
a.ti.com/downloads/sds support/TICodegenerationTools/download.htm

2. Extract the tar.gz file downloaded to any path you want using the following
command:

tar -xzvf syslink <version>.tar.gz -C path
and change your directory to Syslink directory.
3. Update the product.mak file for your environment (BB) by changing the
following parameters:
a. Device.
b. Directories for different TI components (IPC, XDCtools, BIOS, and
SDK).
4. Build the Syslink driver and libraries with the following command:

make syslink
5. Build the examples using the following command:

make examples
6. To assemble the SysLink executables and examples into a directory structure
suitable for running on the device's file-system use the following command:

make install
Preparing an SD Card carrying a Linux image for BB-xm

The Linux image built on the host device is now ready for booting the
BeagleBoard and in order to use you should prepare an SD card carrying the image to
boot your BeagleBoard. As mentioned all the needed files for the image are o the
following path where you installed your Yocto project Linux distribution (yocto/poky-
danny-8.0/build/tmp/deploy/images). A micro SD card of at least 4 GB is needed and to
have it loaded with the image it should be divided into two partitions as in Figure A.4.
The first partition is boot partition and its format should be (bootable FAT16) with a
size that does not exceed 50 MB, the second partition is the one for Linux file system
and it should be in (EXT3) format with the remaining bytes in the card. One can use for
example the Ubuntu disk utility to create the needed partitions on SD card.

boot

(FAT16) rootfs (ext3)

Figure A.4: SD card partitions

After creating partitions they will ne be loaded with the Linux image. The bootable
partition will contain a copy of the following files:

54

https://www-a.ti.com/downloads/sds_support/TICodegenerationTools/download.htm
https://www-a.ti.com/downloads/sds_support/TICodegenerationTools/download.htm

o X-loader “MLO-beagleboard” and rename it to MLO on the card.

e U-boot binary “u-boot.bin”.

e ulmage.

e Boot script file “boot.scr” (the next paragraph shows how to create it).

A boot script file is created by setting the environment variable in a “cmd” file.
Environment variables are the boot arguments and the boot command for the BB. A
“cmd” file with any name like “boot.cmd” is created and filled with arguments in Table
A.1l. And the “boot.cmd” file will looks like the snapshot in Figure A.5.

Table A.1: Environment Variables.

Variable Value

boo&ugs console=tty0 console=tty02,115200n8
root=/dev/mmcblk0p2 mem=200ME@0x80000000
mem=256M@0x90000000 rootwait rootfstype=ext3 ro

bootcmd mmc init; fatload mmc 0:1 0x80300000 uImage; bootm
0x80300000
gH:\boot.cmd-Notepadn.- ‘_- ,“.‘ I] T - -'Q_.-‘...T...v_

file Edit Search View Encoding Lenquage Setfings Macro Run Plugins Window ?

LT FIRE e EM"MMM@@
mmwmwmummﬂ

1 setenv Dootend 'mme init; fatload mc 0:1 080300000 ulmage; bootm 0xB0300000

J setenv bootargs 'consolesttyd console=ttyo?, 115200n8 roots/dev/mcblkipd men=200MA0xB0000000 men=256MA0%90000000 rootvait rootfstypesextd ro'
3 boot

4

|
s

Figure A.5: “boot.cmd” file.

Use the following command to create “boot.scr” file:

mkimage -A arm -O linux -T script -C none -a 0 -e 0 -n 'Execute
ulmage.bin' -d boot.cmd boot.scr

After preparing the boot partition now extract your file system on the second
partition “rootfs”. The file system for your BB is the file called “core-image-sato-
beagleboard.tar.bz2” in the same directory of the previous files. Then move the
compiled Balister kernel to the file system partition by zipping the lib directory
produced from kernel compile process and extracting it at this SD partition. Also copy
the built Syslink to the file system partition to use it. Now all the components needed
for using your BB are ready and all loaded to the SD card for plug and play. After
booting the BB you should insert the Syslink module to system modules using

“insmod” command and you will find the module in the following path (syslink/lib/-/-/-
[-I-/syslink.ko).

55

Booting BeagleBoard-XM using USB-Serial converter

1. Use the command minicom —s to configure the serial port settings.
2. In serial port setup Figure A.6 change:

a. Serial device to be “/dev/ttyUSBO0”.

b. Hardware flow control to be “No”.
3. Save your setup as dfl.
4. Exit.
5. Power the BegaleBoard using USB or 5V power adapter.
6. Wait till it requests BeagleBoard login and log in as root.
+ +
| B - Serial Device : /dev/ttysl |
| B - Lockfile Location : /var/lock |
| ¢ - Callin Program |
| D - Callout Program |
| E - Bps/Par/Bits : 115200 8Nl
| F - Hardware Flow Control : No |
| G - Software Flow Control : No |
| |
| Change which setting? |
+ +

| Screen and keyboard |
| Save setup as dfl |
| Save setup as.. |
| Exit |
| Exit from Minicom |
+ +

Figure A.6: using minicom command.

Compiling a C code file and running it on the ARM processor

1.

First make of the presence of cross compilers path (code sourcery) in the
system path by echoing PATH and if not add it using export command as
mentioned in earlier section.

Add the path of the Sourcery bin folder to the system PATH.

Compile your C code using arm-none-linux-gnueabi-gcc with the following

command:
arm-none-linux-gnueabi-gcc -Wall file name.c —-Im -o

output file name

4.

Copy the executable file to the file system of BeagleBoard on the SD-card
or transfer it using Ethernet and run it from its terminal.

Running an algorithm on the DSP processor using SysLink

1.

You should have the source of SysLink (you can get it from: http://software-
dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/syslink/index.html).

56

http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/syslink/index.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/syslink/index.html

2. You should divide your algorithm into two parts the 1% to be run on the
ARM processor and the other on DSP (memory allocations and reading or
writing files are the parts to be done on the ARM and calculations are the
parts to be run DSP.

3. You can use any of the examples provided with the SysLink to write your
code in order to use its architecture without the need to write it from scratch.

4. After finishing your code perform the build operation to get your executable
files as mentioned in an earlier section.

57

58

sadlall

goadll Jia bl sl Jilus pal aal g cadaliad) ol sl o
S Qe 8 alishe sadd Aa o Y] daline 0y Slea A1 dpadis dla)
daciall Clsa¥l o (Y 220 () ALYl 108 e e el g5 AREy €0l
oy wais Ol (Ul cplapall AS s dain Bysall (8 Sasy 8 Gl Alilly oI Gy
Bgyee Buan el Byl llin eI 4o 3 Ll andaliadd))l 5ypeal (anil
Aslhall bl axe Jis ally (ulsll saa 28 e Blhe ooy Jaguaal ulual) aul
Gl apaatl 8 A 838 ool ity Bypeall Bagn (B S 28 (gl (o0 Bypeall ol
el ae Aaphll 38 e alaiiud o WS 5S dayn pandll o) Jili skl
Al oda b Ll Al aaal) Q6 4ali (e 530S dadie 53 S dAnedal) dalladl
o) wig Jasraall Gulua¥) Apls e lldie) wdalind))l jsem olid 2l s,
b Aeaiiius) luldll dae i aladinly J8 iy 8 Adle sasa D jsa LY Al
iz et Aallas i lgie Aalal) (e 220 o 4l 30 WS Ll S5y Lal) o))l
P e Aginadl jgeall 3l Al sam 235 jelal Jaal) 138 .(OMAP) llaall e
i) WS gadl Gulial) alaiiul %4) Josd Gy Jagiias 2255 ¢lad
5o US Cpuail oladl (e SISV Ugags alaial span il el medall dalledl) sl e
cohll il ikl 8 Aaenall Aadal) el i Jrs

el jale ganly f g
Y4A4\F\o : Saall

Eran :w\

Yoy : Jaa) e 8

o\ :C—'\AS‘ @Jlﬁ

il ghaially duall 3 gl Asigl il
ol ZEQR

g8 il
g3 el ibaae july .o
1O siadiaall
T8 el ihaas july o
dagls Ao s 28l a0
sl iy deaa .o

RS

(Lalal) caiadll)

(sl pated)

(Al lgie

daedal) Aallaal) Al o Lo griad) (ulual) 40 aladiuly adalisdl upl) a6y
(Al clalst)

daerall Lada¥) ¢ Laad)l) c)LaY) ellas cdasiazmall Gulua¥] ¢ paall o Uy ¢ dalinal o))

Al (adls

Jah T Al pomdll Jia ol il Bl pal sl o cuslaliad) Gl Sapeail)
8 e e al sas AR8s 0 adm) Jeai 3 alisha 3ad A5a (s oY) bline () Slea
ASn Ani Bygeall (8 aay 8 (oA Calilly O a5 Aneal)l ClsaY) e puandY ae) AdLaYL
iphi dia el e F ol g blind))l ypal Gasdll () pmis b Jully (anall
Ll e I Al Gl sasa A5 Ge Ble Ay dagiad) pulaal) sl Ay e Baa cuely
Gl ppeail 8 Al s3a pladia) iy yseall Bagn B SY a8 (g1 (g Bypall sl Ayl
daenal) Aadleadl Aaki) oo Aphll 338 Jie pladiul o) WS 508 dapn (aad) o) Jili dalinal
Ol s ol ol 3wy ALl oda 8 Ll LSS aaall QS dali e 508 dadie 50 O5Sam
Gy 8 Ale sagn I3 jsem Y aliwiy o)lid) Ky bagrmall Gulea¥) Al e Taldie) il
O e o alain s S las) W L) A hall b dediud) Gluldl s e Hadauly 08
3ol dailly Bamm i ekl Jandl 138 .(OMAP) el o adiny zade dalles ol lgie dalasY)
O WS Lagiad) (slual) aladinly %9+) Josd Aoty Jasiuime (5225 cliad DA (o disal) jsall
Jie i 36 S Gpuail ool (e FSY Ugangs alaiaYl spm il el sanall dadleall alas e dliis
chal) ypeaill it Aaarall dalal) ol

Aalail Lo d ghmall Gulun) A il el (il gaa ol

daaddll Aadladll
dlac)

sale audl yale Cpady

5 ,alll Gaala — Lutighl 3K 1) dasie Al
sialdl da 5y e Jpaall cilillia e 5 5aS
o
e glaiall g Apdall 4 ol Lusigl)

ropiaiaal) A3l e ddiay
i) il g8 atl) il puly 1) sl LY
AERY ISPV sl o Gaua 2l ;) gSall ALY
el il @53l aml) dasa 1 s SELY)

5 Al Hnala - duigl) A
A yad) uan A) sgan - 5 5l

YOy

Aadail e T ghmall Guln) A5 il el (i)l paa ol
faard) dalladl

dlac)
ale adl gale cpaly

5Ll drala — durig IS) danie Al
Dftalall s s (o Jpaall Glillaia (4e ¢ 328
«
Cila shaiall 5 duhall 4 sall Al

) i) Gl

73 an)) dhias jul o]
Alall 4y gal) Aaigh aniy i
il ¢hatall

DJ_A\A]\ :\._JLA\A - Lml@\ :\—AS
:\._tJJAJ‘J—&AA ;L—.Ujﬁ-“‘.; - 3).—.3?”

YNy

Lokl e Lo sraall GeloaY 408 aladiuly kbl ()) sea oy
daeaall dalladll

dac |
sale 2l pale Gy
5 all dasls — doigh A0S 1) dasie Allu
il A3 e el cillliie e 5 38

T
il slaiall g dpdall G geall duigl)

5 Al aai gl
Ayl uasdy) sean-s ol

Yoyy

