

MAGNETIC RESONANCE IMAGE RECONSTRUCTION

USING COMPRESSED SENSING ON EMBEDDED

PROCESSING PLATFORMS

By

Yassin Amer El-Sayed Amer

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

Systems & Biomedical Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2013

MAGNETIC RESONANCE IMAGE RECONSTRUCTION

USING COMPRESSED SENSING ON EMBEDDED

PROCESSING PLATFORMS

By

Yassin Amer El-Sayed Amer

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

Systems & Biomedical Engineering

Under the Supervision of

Prof. Dr. Yasser M. Kadah

……………………………….

Professor of Biomedical Engineering

Systems & Biomedical Engineering

Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2013

MAGNETIC RESONANCE IMAGE RECONSTRUCTION

USING COMPRESSED SENSING ON EMBEDDED

PROCESSING PLATFORMS

By

Yassin Amer El-Sayed Amer

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

Systems & Biomedical Engineering

Approved by the

Examining Committee

Prof. Dr. Yasser M. Kadah, Thesis Main Advisor

Prof. Dr. Nahed H. Solouma, Internal Examiner

Prof. Dr. Mohamed I. El-Adawy, External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2013

Engineer’s Name: Yassin Amer El-Sayed Amer

Date of Birth: 5/3/1989

Nationality: Egyptian

E-mail: yassin.amer@eng.cu.edu.eg

Phone: 01069699880

Address: Quweisna – Almenoufia Governorate

Registration Date: 1/10/2010

Awarding Date: / /

Degree: Master of Science

Department: Systems and Biomedical Engineering

Supervisors:

 Prof. Dr. Yasser M. Kadah

Examiners:

 Prof. Dr. Yasser M. Kadah (Thesis main advisor)

 Prof. Dr. Nahed H. Solouma (Internal examiner)

 Prof. Dr. Mohmaed I. El-Adawy (External examiner)

Title of Thesis:

Magnetic Resonance Image Reconstruction Using Compressed Sensing On Embedded

Processing Platforms

Key Words:

Magnetic Resonance Imaging; Image Reconstruction; Compressed Sensing; L0 Norm

BeagleBoard; OMAP; DSP.

Summary:

Magnetic Resonance Imaging (MRI) is an essential medical imaging modality.

Enduring a diagnostic session in an MR machine means lying motionless for a long

time (up to 45 minutes) which is very uncomfortable besides the countless ear-ringing,

bangs, knocks and the image artifacts which may appear due to motion. So, reducing

the scan time (Acquisition time) of an MR image is a very important issue. A newly

emerged theory known as Compressed Sensing (CS) is a novel sampling paradigm

which reduces the number of measurements needed for image reconstruction with no

significant degradation in image quality. Applying CS for MRI offers significant scan

time reductions and the availability of embedded reconstruction platforms based on

such techniques will be very beneficial in size and cost reduction. An MR image

reconstruction algorithm based on CS was built, tested and modified in order to

produce images of higher quality in shorter reconstruction times under the same

sampling conditions, and its performance was tested on different platforms including an

embedded platform based on OMAP processor. This work showed good results for the

quality of images reconstructed from highly undersampled k-space (up to 90 %

reduction) using CS also the performance of the algorithm on the embedded platform

was interesting and points to several future directions for performance optimization in

utilizing such embedded platforms in practical medical imaging applications.

mailto:yassin.amer@eng.cu.edu.eg

i

Acknowledgment

Firstly, I would like to thank ALLAH, the source of every gift.

Secondly, I would like to thank Prof. Yasser Kadah for his continuous support,

valuable guidance and great science which you will always find when you need them.

Also an important part of this research would not have been possible without the

support of Eng. Mostafa El-Tager and Eng. Ehab El-Alamy.

Finally for my family especially my parents, you are my real gift.

ii

Dedication

To Egypt.

iii

Table of Contents

ACKNOWLEDGMENT .. I

DEDICATION ... II

TABLE OF CONTENTS .. III

LIST OF TABLES .. V

LIST OF FIGURES ...VI

NOMENCLATURE ... VIII

ABSTRACT ..IX

 : INTRODUCTION .. 1 CHAPTER 1

 PROBLEM OVERVIEW .. 1 1.1.

 THESIS OBJECTIVE .. 1 1.2.

 THESIS ORGANIZATION ... 1 1.3.

 : MR IMAGE ACQUISITION .. 3 CHAPTER 2

 SPIN ECHO (SE) PULSE SEQUENCE ... 3 2.1.

 SPATIAL ENCODING .. 3 2.2.

 DATA SPACE ... 4 2.3.

 SCAN TIME .. 5 2.4.

 : COMPRESSED SENSING .. 7 CHAPTER 3

 TECHNIQUE OVERVIEW ... 7 3.1.

 SPARSITY .. 7 3.2.

 INCOHERENCE ... 8 3.3.

 COMPRESSED SENSING MRI ... 8 3.4.

 IMAGE RECOVERY (RECONSTRUCTION PROBLEM) .. 10 3.5.

 : BEAGLEBOARD (EMBEDDED PLATFORM) 13 CHAPTER 4

 SYSTEM OVERVIEW .. 13 4.1.

 PROCESSOR ... 14 4.2.

 USAGE SCENARIOS .. 15 4.3.

 : PERFORMANCE ENHANCEMENT OF CS ALGORITHM 17 CHAPTER 5

 CS ALGORITHM ARCHITECTURE ... 17 5.1.

 IMAGE QUALITY EVALUATION METRICS .. 19 5.2.

5.2.1. Mean Squared Error (MSE) .. 19

5.2.2. Geometric Average Error (GAE) ... 19

5.2.3. Quality Index (QI) .. 20

 CS ALGORITHM PERFORMANCE .. 20 5.3.

 CS USING L0-NORM MINIMIZATION ... 21 5.4.

iv

 CS USING FOURIER TRANSFORM AS THE SPARSE TRANSFORM FOR MR REAL 5.5.

DATA 26

 DISCUSSION .. 27 5.6.

 : EMBEDDED IMPLEMENTATION .. 39 CHAPTER 6

 CS ALGORITHM PREPARATION ... 39 6.1.

 EMBEDDED RECONSTRUCTION .. 40 6.2.

6.2.1. Arm Based Reconstruction System .. 41

6.2.2. Hybrid processor based Reconstruction System ... 41

 RESULTS AND DISCUSSION .. 41 6.3.

CONCLUSIONS AND FUTURE WORK ... 43

REFERENCES ... 45

APPENDIX A: GETTING BEAGLEBOARD READY ... 49

v

List of Tables

Table ‎2.1: Different MRI Scan Times. ... 5

Table ‎5.1: Real MR image MSE with Fourier as a sparse transform 36
Table ‎5.2: Real MR image QI with Fourier as a sparse transform 37
Table ‎5.3: Real MR image MSE with Wavelet as a sparse transform 37
Table ‎5.4: Real MR image QI with Wavelet as a sparse transform 37
Table ‎5.5: Clear Shepp Logan MSE ... 37

Table ‎5.6: Clear Shepp Logan QI ... 37
Table ‎5.7: Noised Shepp Logan MSE .. 38
Table ‎5.8: Noised Shepp Logan QI .. 38
Table ‎5.9: Noised Shepp Logan SNR... 38

Table ‎5.10: Real MR image reconstruction time with Fourier as sparse transform 38
Table ‎5.11: Real MR image reconstruction time with Wavelet as sparse transform 38
Table ‎6.1: Processing time. .. 42
Table A.1: Environment Variables. .. 55

vi

List of Figures

Figure ‎2.1: Pulse sequence diagram [1]. .. 3

Figure ‎2.2: Spatially Encoded Sequence [1]. ... 4
Figure ‎2.3: Data Space [1]. ... 4
Figure ‎3.1: (a) A gray-level image. (b) Image Wavelet transform. (c) Reconstruction

after zeroing out [9]. ... 8
Figure ‎3.2: (a) A sparse signal. (b) Its K-Space. (c) Incoherent interference due to

random undersampling. (d) Aliasing due to uniform undersampling. (e), (f) Isolation of

Strong components. (h), (g) Lowering interference and weak component isolation [6]. . 9
Figure ‎3.3: (a) MR Images. (b) Images in the sparse domain [6]. 9
Figure ‎3.4: (a) A sparse signal. (b) Reconstruction using l1 minimization. (c)

Reconstruction using l2 minimization [9]. .. 11
Figure ‎4.1: BeagleBoard [30]. .. 13
Figure ‎4.2: OMAP35xx Block Diagram. ... 14
Figure ‎5.1: Conjugate gradient Algorithm block diagram. .. 18

Figure ‎5.2: (a) 10% pattern. (b) 33.3% pattern... 18

Figure ‎5.3: (a) Shepp logan image reconstructed from 100% of k-space. (b)

Reconstruction using CS with undersampling ratios of 33.3, 30, 25, 20, 15, 10% of k-

space respectively from top to bottom. ... 22
Figure ‎5.4: (a) Noised Shepp logan image reconstructed from 100% of k-space. (b)

Reconstruction using CS with undersampling ratios of 33.3, 30, 25, 20, 15, 10% of k-

space respectively from top to bottom. ... 23
Figure ‎5.5: (a) Brain image reconstructed from 100% of k-space. (b) Reconstruction

using CS with undersampling ratios of 33.3, 30, 25, 20, 15, 10% of k-space respectively

from top to bottom. ... 24

Figure ‎5.6: MSE & QI calculated for CS reconstructions compared to full k-space

reconstruction for the three data types. (a) & (b) MSE and QI of Shepp logan. (c) & (d)

MSE and QI of Noised Shepp Logan. (e) & (f) MSE and QI of Brain Image. 25
Figure ‎5.7: (a) 10% undersampling pattern. (b) 33.3% undersampling pattern. 26
Figure ‎5.8: (a) Shepp Logan image reconstructed from 100% of k-space. (b)

Reconstruction using CS with L0-Norm for undersampling ratios of 33.3, 30, 25, 20,

15, 10% of k-space respectively from top to bottom.. 29
Figure ‎5.9: (a) Noised Shepp Logan image reconstructed from 100% of k-space. (b)

Reconstruction using CS with L0-Norm for undersampling ratios of 33.3, 30, 25, 20,

15, 10% of k-space respectively from top to bottom.. 30
Figure ‎5.10: (a) Brain image reconstructed from 100% of k-space. (b) Reconstruction

using CS with L0-Norm for undersampling ratios of 33.3, 30, 25, 20, 15, 10% of k-

space respectively from top to bottom. ... 31

Figure ‎5.11: Quality comparison between using CS with L1-Norm & L0-Norm, (a) &

(b) MSE and QI of Shepp Logan results. (c) & (d) MSE and QI of Noised Shepp Logan

results. (e) & (f) MSE and QI of Brain image results. ... 32
Figure ‎5.12: (a) Brain image reconstructed from 100% of k-space. (b) Reconstruction

using CS with Fourier transform and L1-Norm for undersampling ratios of 33.3, 30, 25,

20, 15, 10% of k-space respectively from top to bottom. ... 33
Figure ‎5.13: (a) Brain image reconstructed from 100% of k-space. (b) Reconstruction

using Fourier based CS with L0-Norm for undersampling ratios of 33.3, 30, 25, 20, 15,

10% of k-space respectively from top to bottom.. 34

vii

Figure ‎5.14: Quality Comparison, (a) & (b) MSE & QI for brain image reconstructions

using Fourier based CS with L0-Norm & L1-Norm. (c) & (d) MSE & QI for Fourier

based CS vs. Wavelet based CS with L1-Norm. (c) & (d) MSE & QI for Fourier based

CS vs. Wavelet based CS with L0-Norm. .. 35
Figure ‎5.15: Performance comparison (a) Processing time for reconstructions using

Wavelet based CS with L0-Norm & L1-Norm. (b) Processing time for using Fourier

based CS with L0-Norm & L1-Norm. (c) Processing time for using L1-Norm with

Wavelet and Fourier. (d) Processing time for using L0-Norm with Wavelet and Fourier.

 .. 36
Figure ‎6.1: (a) Original image. (b) Sampling pattern. (c) Zero filling with density

compensation reconstruction. ... 39
Figure ‎6.2: CS algorithm block diagram .. 40
Figure ‎6.3: Communication with DSP. .. 40
Figure ‎6.4: CS based reconstructed image. .. 42

Figure A.1: Kernel menu configuration. .. 52
Figure A.2: Kernel menu configuration. .. 52
Figure A.3: Kernel menu configuration. .. 53

Figure A.4: SD card partitions .. 54
Figure A.5: “boot.cmd” file. ... 55

Figure A.6: using minicom command. ... 56

viii

Nomenclature

ARM Advanced RISC Machines

BB BeagleBoard

BIOS Basic Input/Output System

CG Conjugate Gradient

CS Compressed Sensing

DSP Digital Signal Processor

GAE Geometric Average Error

GPP General Purpose Processor

HLOS High Level Operating System

JPEG Joint Photographic Experts Group

MLO Memory Loader

MRCP Magnetic Resonance Cholangiopancreatography

MRI Magnetic Resonance Imaging

MSE Mean Squared Error

OMAP Open Media Applications Platform

OS Operating System

QI Quality Index

RAM Random Access Memory

RTOS Real Time Operating System

SD Secure Digital

SE Spin Echo

SNR Signal to Noise Ratio

TE Time to Echo

TI Texas Instruments

TMG Temporomandibular Joint

TPSF Transform Point Spread Function

TR Repetition Time

ZF-w/dc Zero Filling with Density Compensation

ix

Abstract

Magnetic Resonance Imaging (MRI) is an essential medical imaging modality.

Enduring a diagnostic session in an MR machine means lying motionless for a long

time (up to 45 minutes) which is very uncomfortable besides the countless ear-ringing,

bangs, knocks and the image artifacts which may appear due to motion. So, reducing

the scan time (Acquisition time) of an MR image is a very important issue. A newly

emerged theory known as Compressed Sensing (CS) is a novel sampling paradigm

which reduces the number of measurements needed for image reconstruction with no

significant degradation in image quality. Applying CS for MRI offers significant scan

time reductions and the availability of embedded reconstruction platforms based on

such techniques will be very beneficial in size and cost reduction. An MR image

reconstruction algorithm based on CS was built, tested and modified in order to

produce images of higher quality in shorter reconstruction times under the same

sampling conditions, and its performance was tested on different platforms including an

embedded platform based on OMAP processor. This work showed good results for the

quality of images reconstructed from highly undersampled k-space (up to 90 %

reduction) using CS also the performance of the algorithm on the embedded platform

was interesting and points to several future directions for performance optimization in

utilizing such embedded platforms in practical medical imaging applications.

1

 : Introduction Chapter 1

 Problem Overview 1.1.

Magnetic Resonance Imaging (MRI) is one of the common and powerful medical

imaging procedures used at the current time due to its ability to show soft tissue

structures, such as ligaments and internal organs like brain. MRI can be safely used

with people who are vulnerable to the effects of ionizing radiation, such as pregnancy

cases and babies also to be used to image in any plane. All of this has made MRI an

essential medical imaging modality but having an MRI scan is very uncomfortable

because of the long scan times (20-60 minutes or more) which means lying motionless

inside the gantry during this period besides hearing noisy sounds and this may prevent

many claustrophobic people from undergoing an MRI scan. MR images also may suffer

motion artifacts and the patient may repeat the scan many times till having a good

image which will be very uncomfortable and costly. So using techniques that reduce

MRI scan times will help to raise the efficiency of this important modality.

 Thesis Objective 1.2.

This work aims to reduce MRI scan time by minimizing the number of

measurements used to reconstruct an MR image through the use of a newly emerged

theory called Compressed Sensing (CS) which uses nonlinear reconstruction themes to

build images of good quality (with the same resolution) using far smaller number of

measurements, and build a cheap and fast reconstruction platform using CS, and based

on the use embedded and special function processors.

 Thesis Organization 1.3.

The remainder of this thesis is organized as follows:

 ‎Chapter 2 provides a background about MR image acquisition process.

 ‎Chapter 3 provides an overview on compressed sensing and its usage with MRI.

 ‎Chapter 4 provides an overview about the embedded platform used

(BeagleBoard).

 ‎Chapter 5 provides a detailed description for the methods used to enhance the

performance of the CS algorithm with MR images.

 ‎Chapter 6 provides a detailed description for the embedded implementation of

the CS based reconstruction algorithm.

 Appendix A provides detailed steps for building an operating system for

BeagleBoard and getting it ready to be used.

2

3

 : MR Image Acquisition Chapter 2

The purpose of this chapter is to give a brief overview about the MR image

acquisition process, the image data space, k-Space, and acquisition time.

 Spin Echo (SE) Pulse Sequence 2.1.

Spin Echo (SE) is the most frequently used pulse sequence (a sequence of radio

frequency pulses) during an MR study. The sequence starts with the 90° which causes

the magnetization vector MZ to be flipped into the x-y plane. After the 90° pulse the

spins will get out of phase with each other due to magnetic field inhomogeneity. At a

certain time τ after the 90° pulse, when the spins have gotten out of phase, a 180° pulse

is applied. Now all the spins flip 180° in the x-y plane and they continue precessing, but

now in the opposite direction [1]. The pulse sequence diagram is shown in Figure ‎2.1.

Figure ‎2.1: Pulse sequence diagram [1].

From Figure ‎2.1 we start off with a 90° RF pulse to flip the spins into the x-y

plane. We wait a time τ and apply a 180° RF pulse. Then we wait a long time, TR

(Repetition Time), and repeat the process [1]. Also the time to echo (TE) is the time

after the 90° pulse when we get maximum signal again.

 Spatial Encoding 2.2.

The signals received from a patient contain information about the entire part of the

patient being imaged but they do not have any particular spatial information, and to

determine the origin of each component of the signal we use the gradients for x, y, and

z directions Figure ‎2.2. These gradients are called:

 The slice-select gradient

 The frequency-encoding gradient

 The phase-encoding gradient

4

Figure ‎2.2: Spatially Encoded Sequence [1].

 Data Space 2.3.

It is the analog version of the k-space, and it is composed of rows of acquired

signals at different phase encoding gradients (Figure ‎2.3) as follows [1]:

1. With TR#1, we have no phase shift. After the frequency-encoding step, a

signal is received and placed into the center of the data space.

2. With TR#2, we have no phase shift. After the frequency-encoding step, a

signal is received and placed into one above the center of the data space.

3. With TR#3, we have no phase shift. After the frequency-encoding step, a

signal is received and placed into one below the center of the data space.

4. Continue till filling the data space in this manner.

Figure ‎2.3: Data Space [1].

5

 Scan Time 2.4.

The scan time is an important factor in MRI systems. It is directly proportional to

the size of the image and depends on also the type of the study being performed. It can

be calculated through the simple formula in Eq. (‎2.1) [2], Table ‎2.1 shows ranges of

scan time for different studies [3].

.averagessignalofnumberstepsencodingphaseofnumberTTimeScan R 

(‎2.1)

Many ways are used in order to reduce the scan time but this comes with the

reduction of image quality. One of this ways is to shorten TR and according to this

reduction, the SNR will decrease according to the nature that SNR∝ √ [4] also

the contrast of image is changed with TR and if it changes for the worse this will not be

useful. Another way to reduce scan time is to reduce the number of phase encoding

steps but this causes the volume effects to be worse [4]. So new methods are needed to

reduce the scan time without affecting the image quality.

Table ‎2.1: Different MRI Scan Times.

Scan Type Scan Time

MRI of the Brain 20-45 minute

MRI of the Orbits 20-35 minute

MRI of the TMJ 45-60 minute

MRI of the Soft Tissue

Neck
25-35 minute

MRI of the Cervical Spine 20-35 minute

MRI of the Upper

Extremity
20-45 minute

MRI of the Thoracic Spine 25-45 minute

MRI of the Chest 25-45 minute

MRI of the Abdomen 25-45 minute

MRI MRCP 50-60 minute

MRI of the Lumbar Spine 20-35 minute

MRI of the Pelvis 20-35 minute

MRI of the Lower

Extremity
20-35 minute

MRI Run Off 50-60 minute

MRI Arthrogram 30-60 minute

6

7

 : Compressed Sensing Chapter 3

Imaging speed is limited by many constraints like physical factors (e.g. slew rate in

MRI), physiological factors and processing speed [5]. Any imaging system contains

two main stages the first is data collection and the second is image reconstruction. The

data collection stage depends on the resolution of image collected and field of view [6],

[7]. The time needed for image reconstruction depends on the processing power of the

machine and complexity of the reconstruction algorithm and of course the size of data

[8]. In order to enhance the imaging speed this will be done in one of the previous

stages or in both of them, and CS works mainly in the first stage of data acquisition in

addition to a modification in the reconstruction process.

The purpose of this chapter is to give a detailed description for the CS algorithm

and the natural fit between MRI and CS.

 Technique overview 3.1.

Conventional sampling approaches of signals or images follow Shannon’s theorem

which states that the sampling rate must be at least twice the maximum frequency

present in the signal in order to be able to completely recover the signal (Nyquist rate)

[9], and this underlies nearly all signal acquisition protocols including those used in

medical imaging devices. For some signals like images which are not bandwidth-

limited, the sampling rate is determined by the desired spatial resolution [9]. However,

it is common to use an antialiasing filter to limit the bandwidth of the signal so that

Shannon’s theorem applies.

Compressed Sensing (CS) is a novel sampling paradigm that goes against the

commonly known sampling wisdom, and tries to reduce the measurements needed to

reconstruct the signal or image without significantly degrading its quality [10–12]. CS

depends on the broad success of lossy compression techniques for signals and images

which raises a very natural question: why to go to so much effort to acquire all the data

when most of what we get will be thrown away? Can we just directly measure the part

that will not end up being thrown away? [11]. So CS is a compressed data acquisition

protocol which cares only about acquiring the data that will not be thrown away by

lossy compression. In order for CS to be applicable the signal or image should obey

two key requirements which are Sparsity and Incoherence [9].

 Sparsity 3.2.

For CS to be applied the Sparsity condition should exist for the object (signal or

image) of interest. Sparsity means that the underlying object has a sparse representation

in a known domain.

Many natural signals have sparse representation in if it is expressed in a certain

domain. For example if we considered the image in Figure ‎3.1(a) which represents a

gray-level image, and contains pixel values from 0 to 255 and its wavelet transform in

(b), we find that despite of having nearly all pixels with non zero value, the wavelet

transform provides a concise representation with many near zero coefficients and

relatively small few large coefficients [9].

8

If the image is reconstructed after zeroing out most of the small coefficients in

wavelet domain (97.5 % of coefficients) Figure ‎3.1(c), we see that the difference is

hardly noticeable. Sparsity is what underlies most modern lossy coders like JPEG-2000

and others by first applying a sparsifying transform, mapping image content into a

vector of sparse coefficients, and then encodes the sparse vector by approximating the

most significant coefficients and ignoring the smaller ones [9], [13].

Figure ‎3.1: (a) A gray-level image. (b) Image Wavelet transform. (c)

Reconstruction after zeroing out [9].

 Incoherence 3.3.

The second condition for CS to be applied is the incoherence which means that the

artifacts caused in linear reconstruction due to reduction in data collected should be

noise like in the sparsifying domain [5], and this depends on the undersampling scheme

used. To be easily understood a 1D sinusoidal signal undersampling example is

considered in Figure ‎3.2; in Figure ‎3.2(b) we can see the two used undersampling

schemes (random and uniform 8-fold undersampling) [6]. The results from uniform

undersampling (d) have coherent interference which prevents recovery, but in (c) the

interference due to random undersampling can be separated and the signal can be

recovered through two stages including strong components recovery using simple

thresholding (e), (f), and weak components recovery is done by subtracting the

interference calculated for the recovered strong components from the complete signal

interference and then component isolation using thresholding (h), (g) [6].

 Compressed Sensing MRI 3.4.

For successful application of CS in MRI, MR images should obey: (1) to be

naturally compressible by sparse coding in a certain transform domain, and (2) the

aliasing artifacts due to k-space undersampling be incoherent (noise like) in that

transform domain [5]. The first condition applies for MRI as most MR images are

sparse in an appropriate transform domain Figure ‎3.3. First, brain images look sparse in

wavelet domain, angiograms in Finite difference, and dynamic heart in temporal

frequency [6].

Index

A
m

p
lit

u
d

e

9

Figure ‎3.2: (a) A sparse signal. (b) Its K-Space. (c) Incoherent interference due to

random undersampling. (d) Aliasing due to uniform undersampling. (e), (f)

Isolation of Strong components. (h), (g) Lowering interference and weak

component isolation [6].

Figure ‎3.3: (a) MR Images. (b) Images in the sparse domain [6].

Also as included in the 1D signal example in Figure ‎3.2, we see that a complete

random set of samples will be sufficient for incoherent interference [10], [11]. Random

point k-space sampling in all dimensions is generally impractical as the k-space

trajectories have to be relatively smooth due to hardware and physiological

considerations [5], and therefore sampling trajectories must follow relatively smooth

lines and curves. Non-Cartesian sampling schemes can be highly sensitive to system

10

imperfections [6]. So considering Cartesian grid sampling will be more practical where

the sampling is restricted to undersampling the phase-encodes and fully sampled

readouts [5]. Alternative sampling trajectories are possible and some very promising

results have been presented by [14–16] (radial imaging), and by [17], [18] (spiral

imaging).

Furthermore, a uniform random distribution of samples in spatial frequency does

not take into account the energy distribution of MR images in k-space, which is far

from uniform. Most energy in MR imagery is concentrated close to the center of k-

space and rapidly decays towards the periphery of k-space [6]. Therefore, realistic

designs for CS in MRI should have variable density sampling with denser sampling

near the center of k-space, matching the energy distribution in k-space [6]. All those

key features of MR images have enabled the use of CS with MRI.

 Image Recovery (Reconstruction Problem) 3.5.

When using CS, the image should be reconstructed using a nonlinear

reconstruction that enforces both the sparsity of the image and consistency of the

reconstructed data with the acquired samples [5]. In MRI, CS can be considered to be a

special case as the samples are simply individual Fourier coefficients (k-space samples)

not pixel values [5].

 When applying CS with MRI, we only need to acquire a subset S of k-space

coefficients and the reconstruction is obtained through solution of the following

optimization problem:

,y-mF minimize
2S1

 tosubjectm (‎3.1)

While denotes the Fourier transform evaluated just at frequencies in the subset

S, ψ is the sparse transform, m is the reconstructed image, y is the measured k-space

data from the MR scanner, and ε controls the fidelity of the reconstructed data [5], [9].

In Error! Reference source not found., the objective function is the l1 norm

hich is defined as ‖ ‖ ∑ | | , and minimizing ‖ ‖ promotes sparsity [5], [19].

The constraint ‖ ‖ controls the data consistency. In other words Eq. (‎2.1)

finds a solution that is compressible by ψ [5]. The use of l1 norm as a sparsity-

promoting function traces back several decades. A leading early application was

reflection seismology, in which a sparse reflection function (indicating meaningful

changes between subsurface layers) was sought from bandlimited data [20], [21]. An

example for reconstruction of a 1D signal using l1 norm vs. l2 norm minimization is

shown in Figure ‎3.4 [9]. As seen in the example minimizing the l1 norm shows perfect

reconstruction.

Special purpose methods for solving problem in Eq. (‎3.1) have been a focus of

research interest since CS was first introduced. Proposed methods include: interior

point methods [19], [22], projections onto convex sets [23], iterative soft thresholding

[24–26], iteratively reweighted least squares [15], [27], and non-linear conjugate

gradients and backtracking line-search [5], [14], [16], [28].

11

Figure ‎3.4: (a) A sparse signal. (b) Reconstruction using l1 minimization. (c)

Reconstruction using l2 minimization [9].

12

13

 : BeagleBoard (Embedded Platform) Chapter 4

Embedded computing is a rapidly growing field. This field has exploded with the

wide adoption of smartphones and most recently, the creation of multimedia devices.

For developers interested in learning more about embedded computing or working to

design a new embedded device, finding cost effective hardware on which to experiment

can be a challenge. The BeagleBoard is one answer to this challenge [29].

This Chapter gives a detailed description for the BeagleBoard which is used the

embedded platform for our experiment.

 System Overview 4.1.

The BeagleBoard is a low cost USB powered fanless computer. It is based on the

OMAP35xx architecture, uses Texas Instruments ARM-8 and designed specifically to

address the open source community Figure ‎4.1 [30].

Figure ‎4.1: BeagleBoard [30].

The device can be connected to the USB port of a PC or laptop for

experimentation. One great feature of the Beagle Board is that its capabilities can be

expanded by the addition of various peripherals. These expansion capabilities include

support for stereo audio, an interface for SD memory cards, the ability to be powered

via USB style cell phone chargers and power supplies, DVI-D for connection to

computer monitors, and different input devices like keyboards and pointing devices

[29], [30]. There are certified and third party peripherals available including a 5V

power supply and an Ethernet connection.

The device can be used for a variety of applications. Some of the ones mentioned

on the beagleboard.org web site include multimedia player, game console, home

automation, and kitchen computer.

14

In order to use the BeagleBoard, it should be loaded with an operating system

which may be Linux or Windows based. Many software projects are available to create

a version of Android for the BeagleBoard and OMAP3 platforms and also several

Linux distributions being ported to the Beagle Board including Debian and Gentoo [29]

(see Appendix A). All of this makes it not only a powerful learning tool but potentially

a powerful and inexpensive prototyping tool as well.

The BeagleBoard is an exciting project that provides an extremely low-cost

hardware solution for developers to learn about embedded computing. It can also

potentially provide the perfect platform for prototyping the next generation of

embedded devices.

 Processor 4.2.

The OMAP35x family of high-performance, applications processors are based on

the enhanced OMAP™ 3 architecture and are integrated on TI's advanced 65-nm

process technology. The architecture is designed to provide best-in-class video, image,

and graphics processing sufficient to support video streaming, conferencing and

gaming. The architecture of OMAP35xx is designed to provide maximum flexibility in

a wide range of end applications including medical imaging. The device can support

numerous HLOS and RTOS solutions including Linux and Windows Embedded CE

Figure ‎4.2 [31].

Figure ‎4.2: OMAP35xx Block Diagram.

This OMAP device includes state-of-the-art power-management techniques

required for high-performance mobile products.

The following subsystems are part of the device:

15

 Microprocessor unit (MPU) subsystem based on the ARM® Cortex™-A8

microprocessor.

 IVA2.2 subsystem with a C64x+ digital signal processor (DSP) core.

 POWERVR SGX™ Graphics Accelerator subsystem for 3D graphics

acceleration to support display and gaming effects.

 Camera image signal processor (ISP) that supports multiple formats and

interfacing options connected to a wide variety of image sensors.

 Display subsystem with a wide variety of features for multiple concurrent

image manipulation, and a programmable interface supporting a wide

variety of displays. The display subsystem also supports NTSC/PAL video

out.

 Level 3 (L3) and level 4 (L4) interconnects that provide high-bandwidth

data transfers for multiple initiators to the internal and external memory

controllers and to on-chip peripherals.

The device also offers:

 A comprehensive power and clock-management scheme that enables high-

performance, low-power operation, and ultralow-power standby features.

The device also supports SmartReflex™ adaptative voltage control. This

power management technique for automatic control of the operating voltage

of a module reduces the active power consumption.

 A memory stacking feature using the package-on-package (POP)

implementation.

 Usage Scenarios 4.3.

When loading BeagleBoard with an operating system the ARM processor will

work as the GPP, and to allow passing data and messages from the GPP to DSP, an

inter-communication system will be built for the two sides. The CS based MRI

reconstruction system will be implemented to run on the BeagleBoard in two modes as

follows:

 Complete processing on the GPP (ARM).

 Hybrid processing on both sides of the processor (GPP and DSP).

16

17

 : Performance Enhancement of CS Algorithm Chapter 5

 CS Algorithm Architecture 5.1.

The problem in Eq. (‎3.1) represents a convex optimization problem. Finding a

solution to this equation requires a highly efficient optimization method due to the large

size of the parameter space. A suitable approach for such problems is the conjugate

gradient method. It has initially been presented by Hestenes and Stiefel in 1952 for the

solution of linear systems and in the meantime successfully applied to MRI

reconstruction problems [32]. The method has been extended to nonlinear optimization

by Fletcher and Reeves in 1964 and since then a number of optimized nonlinear

conjugate gradient approaches have been developed [33]. Recently, Hager and Zhang

[34] presented a version with improved convergence properties, which will be

appropriate to solve Eq. (‎3.1). In this work we used the nonlinear conjugate gradient

and backtracking line search to solve this problem similar to [5], [14], [16], [28] as it is

characterized with low memory requirements and strong convergence.

Considering the unconstrained problem in the so-called Lagrangian form:

,ψmλymFargmin
1

2

2um  (‎5.1)

Whereλis a regularization parameter that determines the trade-off between the

data consistency and the sparsity [5].λcan be selected so that the solution of Eq. (‎5.1)

will be the same as that of Eq. (‎3.1). The conjugate gradient algorithm implemented is

shown in Figure ‎5.1 and f(m) is the objective function as defined in Eq. (‎5.1).

“mingrad” and “maxiter” are used as stopping criteria for the algorithm by gradient

magnitude and number of iterations respectively, αand βare line search parameters

and are arbitrary selected (defaults are α= 0.05 and β=0.6). γ is the conjugate gradient

update parameter and it can be calculated through many methods [33] and the selected

method was that used in the first conjugate gradient method proposed by Fletcher and

Reeves [35] as shown in Eq. (‎5.2).

.
g

g
2

2k

2

21k
 (‎5.2)

Matlab (The MathWorks, Inc., Natick, MA, USA), was used for the

implementation of CS algorithm. After implementation the algorithm was tested on two

types of data the first is the SheppLogan phantom by computing its k-space at the

wanted locations only using its continuous Fourier formulas, the second type of data is

real brain MR image data.

18

Figure ‎5.1: Conjugate gradient Algorithm block diagram.

Figure ‎5.2: (a) 10% pattern. (b) 33.3% pattern.

19

In order to maximize the incoherence for a given number of samples, random

sampling was chosen which results in a good, incoherent, and near-optimal solution [5].

A Monte-Carlo algorithm was used to generate the undersampling pattern which uses a

grid size based on the desired resolution, and this grid is undersampled using a

constructed probability density function and randomly draw indices from that density.

The quality of the generated undersampling pattern is judged using the Transform Point

Spread Function (TPSF) which is defined as
 [5], [6], and

the pattern with the lowest peak interference was selected. An example of generated

undersampling patterns is shown in Figure ‎5.2.

As mentioned before the constructed CS algorithm was tested on a Shepp Logan

phantom data and on a real MR data. Firstly for the Shepp Logan trial, the continuous

Fourier data was calculated at specific locations according to the generated

undersampling patterns of ratios of (33.3%, 30%, 25%, 20%, 15%, and 10%) and with

a desired resolution of 512*512 pixels and these data was prepared for testing in two

modes the first was using it directly with the algorithm and the other was by adding a

Gaussian noise (µ=0.002 & σ
2
=0.002) to the Fourier data (Signal to Noise Ratio: 2.3

dB) and then testing it with the algorithm. The sparsifying transform used for the Shepp

Logan images was the Finite Difference transform. Secondly the Algorithm was tested

on real MR data which was a brain MR image with a resolution 512*512 pixels with

the same undersampling patterns used with the Shepp Logan trial but with Wavelet

transform as the sparsifying transform.

 Image Quality Evaluation Metrics 5.2.

Here, the metrics used to evaluate the quality of the produced images by

compressed sensing are mentioned.

5.2.1. Mean Squared Error (MSE)

The MSE [36], [37] has been widely used to quantify image quality. It measures

the quality change between the original and processed images in an M*N window.

When it is used alone, it does not correlate strongly enough with perceptual quality. It

should be used, therefore, together with other quality metrics and visual perception.

MSE is defined by Eq. (‎5.3).

.)(
1

1 1

2

,,
 


M

i

N

j

jiji fg
MN

MSE (‎5.3)

5.2.2. Geometric Average Error (GAE)

The value of GAE [37] is approaching zero if there is a very good transformation

(small differences) between the original and processed images; otherwise, the value of

GAE is high. GAE is defined by Eq. (‎5.4).

20

.)(/1

1 1

,,

MN
M

i

N

j

jiji fgGAE 
 

 (‎5.4)

5.2.3. Quality Index (QI)

It models any distortion as a combination of three different factors, which are loss

of correlation, luminance distortion, and contrast distortion, and is defined as:

,.
)(.)(

2
.

2222

gf

gf

gf

gf

gf

gf
Q










 (‎5.5)

Where ̅ and ̅ represent the mean of the original and processed values with their

standard deviations σg and σf of the original and processed values of the analysis

window, and σgf represents the covariance between the original and processed

windows. QI is computed for a sliding window of size 8*8 without overlapping. Its

highest value is 1 if gi, j = fi, j, whereas its lowest value is -1 if fi, j = ̅ [37].

 CS Algorithm Performance 5.3.

The Algorithm was tested during all trials on a PC containing 8 GB RAM and an

Intel
®
 Core™ i7-2630QM CPU 2.00GHz (Intel Corporation, USA). Figure ‎5.3 shows

the results of reconstruction for Shepp logan for patterns of ratios (33.3%, 30%, 25%,

20%, 15%, and 10%) from the top of figure. Figure ‎5.4 shows the results for the

reconstruction of the noised Shepp Logan with the same ratios used with the clear

Shepp Logan. Figure ‎5.5 shows the results for the brain MR image with ratios of 33.3%

to 10% from top of figure. From these results we can see that the quality of images

reconstructed from incomplete k-space is very good compared to that produced from

the complete k-space. The quality of produced images using CS is evaluated using the

metrics mentioned in the previous section. Figure ‎5.6 shows in the left column the

mean squared error drawn versus the undersampling ratios and in the right column the

quality index versus undersampling ratios for SheppLogan, noised SheppLogan, and

brain MR image from top to down respectively. The values of MSE and QI are shown

in Table ‎5.3to Table ‎5.8 at the end of chapter. From the calculated metrics it seems that

the reconstructed images using CS for Shepp Logan phantom is with medium quality as

it have a slightly high MSE and medium QI (near zero) which needs to have a value

near one for good approximation of image. The algorithm shows approximately the

same behavior with the noised Shepp Logan as in Figure ‎5.4 and Figure ‎5.6 from the

side of quality metrics except that the produced images may be visually better than the

noised images reconstructed from the complete k-space. The results for the real brain

MR image show a very good performance as the reconstructed images using CS from

small undersampling ratios have a very small MSE compared to the image produced

from the complete k-space and the QI is very close to one which indicates that the

reconstruction using CS is a very good approximation for the data.

21

 CS using L0-Norm Minimization 5.4.

In the objective function of the CS optimization problem in Eq. (‎3.1) and Eq. (‎5.1),

we used the L1-norm minimization of the sparse representation of the reconstructed

image. This part of the objective function is the part which enforces the sparsity of the

produced image in the sparsifying transform domain. The L1-norm is calculated as

mentioned before by summation of the absolute values of the array of interest and this

cares about the values of coefficients of the image in the sparse domain, but if we can

reduce the order of the norm in the objective function to care about the number of non-

zero elements in the sparse representation, this will more express the sparsity of the

vector of coefficients and minimizing this number will produce sparser images than

those produced by minimizing L1-norm.

Reducing the order of the norm means that the L0-pseudo norm will be used which

means the number of non-zero elements of the array of interest and the new

optimization problem will be as follows:

.y-mF minimize
2S0

 tosubjectm (‎5.6)

Solving Eq. (‎5.6) which is a non-convex optimization problem is generally

infeasible [38]. Replacing the L0-pseudo norm by L1-norm as shown before is one of

the solutions to this difficulty. A smoothed representation of the L0-norm by

approximation using continuous function may enhances the performance of the CS

algorithm and make it computationally inexpensive [38].

The used smoothed L0-norm is computed as follows:

 Consider

,
,0

,1
)(














x

x
xf (‎5.7)

Define the continuous multivariate function g(x) as:

,)()(
1





N

i

ixfxg (‎5.8)

L0-norm is calculated through

.)(
0

xgNx  (‎5.9)

Using the new definition of the L0-norm in Eq. (‎5.9), the CS algorithm was

implemented by solving the optimization problem in Eq. (‎5.6) using the same

techniques used with the solution of problem in Eq. (‎3.1) (nonlinear Conjugate

Gradient). Also the algorithm was tested on the same data for the algorithm of Eq. (‎3.1)

(Shepp Logan, Noised Shepp Logan, and real MR data).

22

 (a) (b)

Figure ‎5.3: (a) Shepp logan image reconstructed from 100% of k-space. (b)

Reconstruction using CS with undersampling ratios of 33.3, 30, 25, 20, 15, 10% of

k-space respectively from top to bottom.

23

 (a) (b)

Figure ‎5.4: (a) Noised Shepp logan image reconstructed from 100% of k-space. (b)

Reconstruction using CS with undersampling ratios of 33.3, 30, 25, 20, 15, 10% of

k-space respectively from top to bottom.

24

 (a) (b)

Figure ‎5.5: (a) Brain image reconstructed from 100% of k-space. (b)

Reconstruction using CS with undersampling ratios of 33.3, 30, 25, 20, 15, 10% of

k-space respectively from top to bottom.

25

(a) (b)

(c) (d)

(e) (f)

Figure ‎5.6: MSE & QI calculated for CS reconstructions compared to full k-space

reconstruction for the three data types. (a) & (b) MSE and QI of Shepp logan. (c)

& (d) MSE and QI of Noised Shepp Logan. (e) & (f) MSE and QI of Brain Image.

26

The undersampling patterns used here are generated using the same Monte-Carlo

method, but we used a modification on those ones used with the real MR data where we

concentrated most of the samples in the central region as in Figure ‎5.7 taking in

consideration that the MR k-space has most of its power in this region.

Figure ‎5.7: (a) 10% undersampling pattern. (b) 33.3% undersampling pattern.

The algorithm here also was implemented and tested on the same platform used for

the original CS algorithm. Figure ‎5.8 shows the results of using L0-norm with the finite

difference transform on the Shepp Logan for undersampling ratios of (33.3%, 30%,

25%, 20%, 15%, and 10%) from the top of figure and as we see, the produced images

seem to be with good quality compared the image produced from complete k-space

reconstruction. Figure ‎5.9 shows the results of using L0-norm with the finite difference

transform on the noised Shepp Logan for the same undersampling ratios. Figure ‎5.10

shows the results of using L0-norm with the Wavelet transform on the real MR image.

Figure ‎5.11 shows quality comparison for using the L0-norm and L1-norm in

reconstruction including the mean squared error in the left column and the quality index

in the right column.

 CS using Fourier Transform as the Sparse transform 5.5.

for MR Real Data

In this section we propose the use of the Fourier transform of the image of interest

as the sparse transform, testing it with the use of both L1-norm and smoothed L0-norm

minimization, and comparing it with the results of the same trials using the Wavelet

transform as the sparse transform. The optimization problem of CS when using Fourier

transform as the sparse transform will be as follows:

.y-mF . minimize
2S1

tosubjectmF (‎5.10)

Where F indicates the complete forward Fourier transform. The algorithm of this

technique was tested using the MR real data of the same resolution used in the previous

trials, and tested on the same computing platform used for the original CS algorithm.

Figure ‎5.12 shows the results of using the Fourier transform as the sparse transform

27

with L1-norm minimization. Figure ‎5.13 shows the results of using the Fourier

transform as the sparse transform with L0-norm minimization. Figure ‎5.14 is quality

comparison between using L1 and L0-norms with the Fourier transform as the sparse

transform, using Wavelet and Fourier with L1-norm, and using Wavelet and Fourier

with L0-norm. The left column shows the mean squared error and the right shows the

quality index. Figure ‎5.15 shows performance comparison (Processing time) for the

different versions of the CS algorithm.

Table ‎5.1 to Table ‎5.11 contain all the data represented in the comparison figures

including mean squared errors and quality index for both real brain MR and simulated

data (clear and noised Shepp Logan), signal to noise ratio for noised Shepp Logan

results, and processing time of all trials.

 Discussion 5.6.

The basic CS algorithm gave excellent results compared to images reconstructed

from complete k-space in both simulated data (Shepp Logan phantom) in Figure ‎5.3

and Figure ‎5.4, and real brain MR data in Figure ‎5.5. The quality of reconstructed

images is good according to the quality metrics measured in Figure ‎5.6 which show

good mean squared errors and quality indices with the best performance with the real

MR image. We can see that the MSE for the noised Shepp Logan gets bad as the

undersampling ratio increases and the reason for this may be that increasing the

sampling ratio here is for both the signal and the noise which results in acquiring more

information about the sampled signal (the noised image) and as a result good recovery

for the sampled signal which is an extra noised image with respect to the original Shepp

Logan image (as MSE and QI are calculated with respect to the clear image). Also we

see that the quality indices for clear and noised Shepp Logan are near zero which means

a medium quality of the produced images, but for the real MR data it is near one which

means that we have a good reconstruction from the side of correlation, luminance, and

contrast distortion.

Using the L0-norm penalized reconstruction gave the expected performance for

both the simulated data and the real MR data as shown in Figure ‎5.8 for the clear Shepp

Logan image, and Figure ‎5.10 for the real MR data. When comparing the MSE and the

quality index for the reconstructed images using L0-norm based CS compared to image

produced from complete k-space in Figure ‎5.11, we can see that the L0-norm

penalization produces images of lower mean squared errors than those produced with

L1-norm penalized reconstruction except for noised Shepp Logan images it gives

higher mean squared errors for the same reason mentioned in the last paragraph. Also

we find here that the quality of the produced images using L0-norm based CS from the

side of contrast and luminance (QI) is slightly higher than that images produced using

the L1-norm based CS. And as shown in Figure ‎5.15 (a) we can say that using L0-norm

with wavelet as a sparse transform in CS algorithm has no benefit from the side of

computation time as it has approximately the same computation time of using L1-norm

and this is considered a good thing as using L0-norm now has become computationally

inexpensive or at least comparable with using L1-norm.

Figure ‎5.12 and Figure ‎5.13 show the results of using Fourier transform as the

sparse transform with the real MR image, the results show that using Fourier with L1-

norm penalized reconstruction gave better results than using Wavelet with the same

type of reconstruction and approximately the same quality of images if using it with

L0-norm penalized reconstruction. This is verified in quality comparison figures in

28

Figure ‎5.14 which show that using Fourier based CS with L1-norm gives a smaller

mean squared error than Wavelet and approximately the same mean error with L0-

norm. With respect to the quality indices for both transforms we see that they are

excellent also and all of them are near one for both transforms (slightly higher for using

Fourier based CS). Figure ‎5.15 shows the computation time for the different trials with

the real MR image and we can see approximately all the trials have the same

computation time except for the L1-norm penalized CS based on Fourier reconstruction

which gives the best performance among all trials.

Through previous results we can say that CS algorithm is a good reconstruction

technique but the quality of images should be investigated in other ways to be sure of

the efficiency of the algorithm in full recovery of the image. One way may be to

investigate the results of the algorithm in reconstruction of diseased brain images and

see the effect of incomplete sampling on appearance of images or to find another

quality factor which better describes the reconstructed images using CS. Also other

ways need to be investigated to reduce the computation time of CS algorithm like

reducing the number of iterations of the steepest descent CG by improving the stopping

criterion used in the algorithm.

29

 (a) (b)

Figure ‎5.8: (a) Shepp Logan image reconstructed from 100% of k-space. (b)

Reconstruction using CS with L0-Norm for undersampling ratios of 33.3, 30, 25,

20, 15, 10% of k-space respectively from top to bottom.

30

 (a) (b)

Figure ‎5.9: (a) Noised Shepp Logan image reconstructed from 100% of k-space.

(b) Reconstruction using CS with L0-Norm for undersampling ratios of 33.3, 30,

25, 20, 15, 10% of k-space respectively from top to bottom.

31

 (a) (b)

Figure ‎5.10: (a) Brain image reconstructed from 100% of k-space. (b)

Reconstruction using CS with L0-Norm for undersampling ratios of 33.3, 30, 25,

20, 15, 10% of k-space respectively from top to bottom.

32

(a) (b)

(c) (d)

(e) (f)

Figure ‎5.11: Quality comparison between using CS with L1-Norm & L0-Norm, (a)

& (b) MSE and QI of Shepp Logan results. (c) & (d) MSE and QI of Noised Shepp

Logan results. (e) & (f) MSE and QI of Brain image results.

33

 (a) (b)

Figure ‎5.12: (a) Brain image reconstructed from 100% of k-space. (b)

Reconstruction using CS with Fourier transform and L1-Norm for undersampling

ratios of 33.3, 30, 25, 20, 15, 10% of k-space respectively from top to bottom.

34

 (a) (b)

Figure ‎5.13: (a) Brain image reconstructed from 100% of k-space. (b)

Reconstruction using Fourier based CS with L0-Norm for undersampling ratios of

33.3, 30, 25, 20, 15, 10% of k-space respectively from top to bottom.

35

(a) (b)

(c) (d)

(e) (f)

Figure ‎5.14: Quality Comparison, (a) & (b) MSE & QI for brain image

reconstructions using Fourier based CS with L0-Norm & L1-Norm. (c) & (d) MSE

& QI for Fourier based CS vs. Wavelet based CS with L1-Norm. (c) & (d) MSE &

QI for Fourier based CS vs. Wavelet based CS with L0-Norm.

36

(a) (b)

(c) (d)

Figure ‎5.15: Performance comparison (a) Processing time for reconstructions

using Wavelet based CS with L0-Norm & L1-Norm. (b) Processing time for using

Fourier based CS with L0-Norm & L1-Norm. (c) Processing time for using L1-

Norm with Wavelet and Fourier. (d) Processing time for using L0-Norm with

Wavelet and Fourier.

Table ‎5.1: Real MR image MSE with Fourier as a sparse transform

Undersampling
Ratio

33% 30% 25% 20% 15% 10%

L1-Norm 8.16e-4 8.47e-4 8.8e-4 9.39e-4 9.9e-4 0.001

L0-Norm 6.45e-4 6.85e-4 7.42e-4 8.1e-4 8.79e-4 9.59e-4

37

Table ‎5.2: Real MR image QI with Fourier as a sparse transform

Undersampling
Ratio

33% 30% 25% 20% 15% 10%

L1-Norm 0.9837 0.9831 0.9825 0.9814 0.9804 0.9793

L0-Norm 0.9870 0.9862 0.9852 0.9839 0.9825 0.9811

Table ‎5.3: Real MR image MSE with Wavelet as a sparse transform

Undersampling
Ratio

33% 30% 25% 20% 15% 10%

L1-Norm 8.56e-4 9.02e-4 9.62e-4 10.5e-4 11.33e-4 12.35e-4

L0-Norm 6.45e-4 6.85e-4 7.42e-4 8.1e-4 8.79e-4 9.57e-4

Table ‎5.4: Real MR image QI with Wavelet as a sparse transform

Undersampling
Ratio

33% 30% 25% 20% 15% 10%

L1-Norm 0.9833 0.9823 0.9812 0.9793 0.9778 0.9759

L0-Norm 0.9870 0.9863 0.9852 0.9839 0.9825 0.9811

Table ‎5.5: Clear Shepp Logan MSE

Undersampling
Ratio

33% 30% 25% 20% 15% 10%

L1-Norm 2.4813 2.4811 2.4805 2.4796 2.4788 2.4777

L0-Norm 0.5046 0.5041 0.5056 0.5063 0.5033 0.5030

Table ‎5.6: Clear Shepp Logan QI

Undersampling
Ratio

33% 30% 25% 20% 15% 10%

L1-Norm 4.97e-6 4.97e-6 4.98e-6 4.99e-6 5e-6 5.01e-6

L0-Norm 1.53e-5 1.53e-5 1.52e-5 1.51e-5 1.52e-5 1.52e-5

38

Table ‎5.7: Noised Shepp Logan MSE

Undersampling
Ratio

33% 30% 25% 20% 15% 10%

L1-Norm 2.4813 2.4811 2.4805 2.4796 2.4788 2.4777

L0-Norm 2.4950 2.5537 2.5444 2.5520 2.5510 2.5403

Table ‎5.8: Noised Shepp Logan QI

Undersampling
Ratio

33% 30% 25% 20% 15% 10%

L1-Norm 4.97e-6 4.97e-6 4.98e-6 4.99e-6 5e-6 5.01e-6

L0-Norm 4.98e-6 4.89e-6 4.88e-6 4.9e-6 4.91e-6 4.91e-6

Table ‎5.9: Noised Shepp Logan SNR

Undersampling
Ratio

33% 30% 25% 20% 15% 10%

L1-Norm 0.00427 0.00427 0.00427 0.00426 0.00426 0.00426

L0-Norm 0.00417 0.00409 0.00410 0.00408 0.00408 0.00409

Table ‎5.10: Real MR image reconstruction time with Fourier as sparse transform

Undersampling
Ratio

33% 30% 25% 20% 15% 10%

L1-Norm 126.41 126.68 130.05 131.34 124.01 129.74

L0-Norm 188.99 189.20 237.00 150.50 187.94 212.77

Table ‎5.11: Real MR image reconstruction time with Wavelet as sparse transform

Undersampling
Ratio

33% 30% 25% 20% 15% 10%

L1-Norm 189.03 188.99 236.57 150.00 187.14 211.83

L0-Norm 189.61 188.40 236.42 149.62 186.97 212.28

39

 : Embedded Implementation Chapter 6

In this chapter we investigate the use of an embedded platform based on the

OMAP processor (BeagleBoard) for a challenging image reconstruction algorithm for

MRI based on the compressed sensing. We compare straightforward implementations

of the compressed sensing reconstruction algorithm on different processing platforms

including embedded processors to verify the performance of such platforms. The

performance of the algorithm on the embedded platform was compared to the

performance on two large processing platforms containing Intel® Core™ Duo

Processor and Intel® Core™ i7-2630QM CPU 2.00GHz (Intel Corporation, USA).

 CS Algorithm Preparation 6.1.

The CS algorithm to be tested on the embedded platform was the initial CS

algorithm using the L1-norm minimization in the solution of the optimization problem

in Eq. (‎3.1) and implemented using the standard C language and gcc 4.6.3 (Free

Software Foundation, Inc., Boston, USA) on Ubuntu 11.10 (Canonical Ltd., London,

United Kingdom) using a platform containing an Intel® Core™ Duo Processor T2450

2.00 GHz (Intel Corporation, USA). The memory used by the program was optimized

and reduced in order to be suitable for the limited memory of BeagleBoard.

Due to memory considerations we used an angiography-like simulated image with

a size of 100100 pixels and containing randomly generated vessels with different sizes

and magnitudes as shown in Figure ‎6.1 (a). The k-space of the image was

undersampled with a factor of 20 with a randomly generated sampling pattern shown in

Figure ‎6.1 (b), and as an initial guess for the algorithm we used a zero filling with

density compensation (ZF-w/dc) reconstructed image Figure ‎6.1 (c). ZF-w/dc is the

reconstruction by zero-filling the missing k-space data and k-space density

compensation [5]. The algorithm block diagram is shown in Figure ‎6.2.

(a) (b) (c)

Figure ‎6.1: (a) Original image. (b) Sampling pattern. (c) Zero filling with density

compensation reconstruction.

http://www.fsf.org/
http://www.fsf.org/

40

Figure ‎6.2: CS algorithm block diagram

 Embedded Reconstruction 6.2.

In order to run the OMAP we need first to load it with an embedded operating

system (Windows based or Linux based), we build Ångström system which is a

complete Linux distribution and includes the kernel, a base file system, basic tools and

a package manager to install software from a repository. It uses the Open Embedded

(OE) platform, a tool-chain that makes cross-compiling and deploying packages easy

for embedded platforms, also an inter-processor communication system (DSP/BIOS

Link) Fig.3, was built between the two processors (ARM and DSP) to allow passing

messages and data for testing algorithm from the ARM (that works as a general purpose

processor GPP) side to the DSP side to perform it Figure ‎6.3 [8].

The algorithm was tested on the embedded platform in two modes the first was on

the GPP (ARM) and the second was implemented using the two processors of the board

(ARM & DSP) [8].

Figure ‎6.3: Communication with DSP.

41

6.2.1. Arm Based Reconstruction System

Here the CS algorithm was tested only on the ARM processor and compiled using

EGLIBC 2.16 (Linux Foundation, USA). All calculations were performed in a straight

forward sequential manner using the GPP. The algorithm test data including the image

file, the undersampling pattern, and the probability density function for the density

compensated reconstruction was transferred to the BeagleBoard though Ethernet [8].

6.2.2. Hybrid processor based Reconstruction System

The CS algorithm here was divided into two parts, the first is performed on the

ARM processor and the second is performed on the DSP. The part to be on the ARM

processor includes all preparation processes for the CS algorithm including memory

allocations, read and write of test data to the shared memory with the DSP. The part to

be on the DSP includes the core processes, iterations, and computations of the CS

algorithm and it uses all the data written by the ARM in the shared memory. All the

memory needed by the algorithm was fixed and preallocated from the ARM side [8].

 Results and Discussion 6.3.

After testing the algorithm on the BeagleBoard we get the reconstructed image

using CS as shown in Figure ‎6.4 and it was identical to the one produced by the same

algorithm tested on the large processing platforms.

The performance of the algorithm after trying it on the different platforms is shown

Table ‎6.1. All the processors give longer processing time than the time expected for this

algorithm especially on the DSP while that on the ARM processor was found to be

surprisingly close to significantly larger processing platforms. This is apparently due to

the dependence of the algorithm on 2D Fourier transform and the prolonged loops

which take long processing time. The excessive processing time obtained when running

the same algorithm on the DSP was difficult to explain at first until further research was

done and that revealed the different architecture of this platform that requires very

different coding strategy to take advantage of the available computing hardware on the

processor. Hence, simple porting of code running on other general purpose processors

is not a good strategy to develop efficient code on DSPs.

Difficulties were also found in attempting to transfer data between the ARM and

DSP parts of the OMAP processor. The data passing interface allowed limited data

packets that barely allowed the 100100 sized image to be transferred for processing.

This is clearly a very challenging problem facing the porting of such algorithms into

embedded DSPs.

It should be noted that the algorithm used was implemented using serial code. This

did not clearly take advantage of the number of processors available on the processing

platform used. Hence, the difference between the first two Intel-based platforms with 2

and 8 processors can be attributed only to differences in clock speed rather than number

of processor.

42

Figure ‎6.4: CS based reconstructed image.

Table ‎6.1: Processing time.

Module Processing Time (min)

Core duo 22.5

Core i7 16.5

ARM 30.1

DSP About 1000

43

Conclusions and Future Work

The results confirmed the theory of compressed sensing as a powerful method of

image reconstruction under very low sampling conditions. The performance of the CS

algorithm can be enhanced in both speed and quality of reconstructions through the use

of some modifications as using l0 penalized reconstruction which gives better images

than those produced by l1 penalized reconstructions. The used smoothed version of the

l0-norm introduced a success in both the quality of reconstructed images which were

better than their counterparts in the l1 penalized reconstruction and processing time that

was found to be very close to the time of using l1 penalized problem.

Using Fourier transform as a sparse transform was found to give better results than

Wavelet transform if using an l1 penalized reconstruction and approximately the same

results if using the l0 penalization. Also it was found that the Fourier transform is time

consuming if used with the l0 penalization and speeds up the algorithm if used with l1

penalization. The best performance for the CS algorithm in both quality and processing

time was found to be achieved if using the l0 penalized reconstruction with Wavelet or

the l1 penalized reconstruction with Fourier.

A further research will be done in order to enhance the performance of the

compressed sensing algorithm through taking in consideration the symmetry of

encoded state (k-space) at which the MR images are acquired. This may increase the

number of acquired samples in the k-space from the same low sampling conditions of

CS.

The processing time of the algorithm is compared on different processing platforms

with results indicating interesting performance for the embedded ARM processor part

of the OMAP processor. Also, the results indicated that the porting of such

sophisticated algorithm to the DSP was not straightforward and that simple porting

resulted in a very poor performance. So, special coding methods that take advantage of

the architecture of the DSP to utilize the vectored computational hardware and

pipelining must be carefully mapped onto the algorithm before it is ported. Further

investigation is needed to develop specific porting instructions to allow the

performance of the DSP to reach its theoretical limit. Targeting new embedded

platforms that allow direct communication and debugging on DSP and containing

multicores DSP’s will be an interesting path to follow to allow further investigation for

the performance of such special function processors with the challenging and

computationally expensive algorithms like compressed sensing.

44

45

References

[1] R. H. Hashemi, W. G. Bradley, and C. J. Lisanti, MRI: The Basics. Lippincott

Williams & Wilkins, 2010, p. 400.

[2] D. Weishaupt, V. D. Koechli, and B. Marincek, How does MRI work?: An

Introduction to the Physics and Function of Magnetic Resonance Imaging.

Springer, 2008, p. 182.

[3] Advanced Imaging, “MRI Frequently Asked Questions.” [Online]. Available:

http://www.advancedimagingofmt.com/index.php?page=mri-faq.

[4] E. M. Haacke, R. W. Brown, M. R. Thompson, and R. Venkatesan, Magnetic

Resonance Imaging: Physical Principles and Sequence Design. Wiley-Liss,

1999, p. 914.

[5] M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of

compressed sensing for rapid MR imaging.,” Magnetic resonance in medicine :

official journal of the Society of Magnetic Resonance in Medicine / Society of

Magnetic Resonance in Medicine, vol. 58, no. 6, pp. 1182–95, Dec. 2007.

[6] M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, “Compressed Sensing

MRI,” IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 72–82, Mar. 2008.

[7] G. A. Wright, “Magnetic resonance imaging,” IEEE Signal Processing

Magazine, vol. 14, no. 1, pp. 56–66, 1997.

[8] Y. A. Amer, M. A. El-Tager, E. A. El-Alamy, A. Abdel-Salam, and Y. M.

Kadah, “Embedded magnetic resonance image reconstruction using compressed

sensing,” in 2012 Cairo International Biomedical Engineering Conference

(CIBEC), 2012, pp. 35–38.

[9] E. J. Candes and M. B. Wakin, “An Introduction To Compressive Sampling,”

IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 21–30, Mar. 2008.

[10] E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact

signal reconstruction from highly incomplete frequency information,” IEEE

Transactions on Information Theory, vol. 52, no. 2, pp. 489–509, Feb. 2006.

[11] D. L. Donoho, “Compressed sensing,” IEEE Transactions on Information

Theory, vol. 52, no. 4, pp. 1289–1306, Apr. 2006.

[12] E. J. Candes and T. Tao, “Near-Optimal Signal Recovery From Random

Projections: Universal Encoding Strategies?,” IEEE Transactions on Information

Theory, vol. 52, no. 12, pp. 5406–5425, Dec. 2006.

46

[13] D. S. Taubman and M. W. Marcellin, JPEG2000 Image Compression

Fundamentals, Standards and Practice, vol. 642. Boston, MA: Springer US,

2002.

[14] T. Chang, L. He, and T. Fang, “MR Image Reconstruction from Sparse Radial

Samples Using Bregman Iteration,” Proc. of the 14th Annual Meeting of ISMRM,

Seattle, vol. 4, p. 696, 2006.

[15] J. C. Ye, S. Tak, Y. Han, and H. W. Park, “Projection reconstruction MR

imaging using FOCUSS.,” Magnetic resonance in medicine : official journal of

the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance

in Medicine, vol. 57, no. 4, pp. 764–75, Apr. 2007.

[16] K. T. Block, M. Uecker, and J. Frahm, “Undersampled radial MRI with multiple

coils. Iterative image reconstruction using a total variation constraint.,” Magnetic

resonance in medicine : official journal of the Society of Magnetic Resonance in

Medicine / Society of Magnetic Resonance in Medicine, vol. 57, no. 6, pp. 1086–

98, Jun. 2007.

[17] J. H. L. M. Lustig, “Faster imaging with randomly perturbed, undersampled

spirals and |l|1 reconstruction,” Proc. of the 13th Annual Meeting of ISMRM,

Miami Beach, p. 685, 2005.

[18] J. M. Santos, C. H. Cunningham, M. Lustig, B. A. Hargreaves, B. S. Hu, D. G.

Nishimura, and J. M. Pauly, “Single breath-hold whole-heart MRA using

variable-density spirals at 3T.,” Magnetic resonance in medicine : official

journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic

Resonance in Medicine, vol. 55, no. 2, pp. 371–9, Feb. 2006.

[19] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic Decomposition by

Basis Pursuit,” SIAM Journal on Scientific Computing, vol. 20, no. 1, pp. 33–61,

Jan. 1998.

[20] J. F. Claerbout and F. Muir, “ROBUST MODELING WITH ERRATIC DATA,”

GEOPHYSICS, vol. 38, no. 5, pp. 826–844, Oct. 1973.

[21] F. Santosa and W. W. Symes, “Linear Inversion of Band-Limited Reflection

Seismograms,” SIAM Journal on Scientific and Statistical Computing, vol. 7, no.

4, pp. 1307–1330, Oct. 1986.

[22] S.-J. Kim, K. Koh, M. Lustig, and S. Boyd, “An Efficient Method for

Compressed Sensing,” in 2007 IEEE International Conference on Image

Processing, 2007, vol. 3, pp. III – 117–III – 120.

[23] E. J. Candes and J. K. Romberg, “Signal recovery from random projections,” in

Electronic Imaging 2005, 2005, pp. 76–86.

[24] I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding algorithm

for linear inverse problems with a sparsity constraint,” Communications on Pure

and Applied Mathematics, vol. 57, no. 11, pp. 1413–1457, Nov. 2004.

47

[25] J.-L. Starck, M. Elad, and D. L. Donoho, “Image decomposition via the

combination of sparse representations and a variational approach,” IEEE

Transactions on Image Processing, vol. 14, no. 10, pp. 1570–1582, Oct. 2005.

[26] M. Elad, B. Matalon, and M. Zibulevsky, “Coordinate and subspace optimization

methods for linear least squares with non-quadratic regularization,” Applied and

Computational Harmonic Analysis, vol. 23, no. 3, pp. 346–367, Nov. 2007.

[27] D. L. Donoho, M. Elad, and V. N. Temlyakov, “Stable recovery of sparse

overcomplete representations in the presence of noise,” IEEE Transactions on

Information Theory, vol. 52, no. 1, pp. 6–18, Jan. 2006.

[28] M. M. Bronstein, A. M. Bronstein, M. Zibulevsky, and H. Azhari,

“Reconstruction in diffraction ultrasound tomography using nonuniform FFT.,”

IEEE transactions on medical imaging, vol. 21, no. 11, pp. 1395–401, Nov.

2002.

[29] Linux, “Embedded Computing with Beagle Board,” 2011. [Online]. Available:

http://www.start-linux.com/embedded-linux-boards/embedded-computing-with-

beagle-board.

[30] T. Instruments, “BeagleBoard System Reference Manual Rev C4,” 2009.

[31] T. Instruments, “OMAP35x Applications Processor Technical Reference

Manual,” 2012.

[32] K. P. Pruessmann, M. Weiger, P. Börnert, and P. Boesiger, “Advances in

sensitivity encoding with arbitrary k-space trajectories.,” Magnetic resonance in

medicine : official journal of the Society of Magnetic Resonance in Medicine /

Society of Magnetic Resonance in Medicine, vol. 46, no. 4, pp. 638–51, Oct.

2001.

[33] H. Z. William W Hager, “A survey of nonlinear conjugate gradient methods,”

Pacific journal of Optimization, vol. 2, no. 1, pp. 35–38, 2006.

[34] W. W. Hager and H. Zhang, “A New Conjugate Gradient Method with

Guaranteed Descent and an Efficient Line Search,” SIAM Journal on

Optimization, vol. 16, no. 1, pp. 170–192, Jan. 2005.

[35] R. Fletcher and C. Reeves, “Function minimization by conjugate gradients,” The

Computer Journal, vol. 7, no. 2, pp. 149–154, Feb. 1964.

[36] Y. Zhang, H. D. Cheng, J. Huang, and X. Tang, “An effective and objective

criterion for evaluating the performance of denoising filters,” Pattern

Recognition, vol. 45, no. 7, pp. 2743–2757, Jul. 2012.

[37] C. Loizou, Despeckle Filtering Algorithims and Software for Ultrasound

Imaging (Synthesis Lectures on Algorithms and Software in Engineering).

Morgan and Claypool Publishers, 2008, p. 166.

48

[38] C. S. Oxvig, P. S. Pedersen, T. Arildsen, and T. Larsen, “Improving Smoothed l0

Norm in Compressive Sensing Using Adaptive Parameter Selection,” Computing

Research Repository, p. 7, Oct. 2012.

49

Appendix A: Getting BeagleBoard Ready

As mentioned before, BeagleBoard can be powered to act like a minicomputer by

loading it with an operating system (OS). This OS may be a Linux or Windows based

OS and in our work we used a Linux based OS. A complete Linux distribution:

includes the kernel, a base file system, basic tools and even a package manager to

install software from a repository was used (one of projects of Yocto Project). It is

optimized for low-power controllers like the one in BB and intends to be small and

basic system to modify on your needs.

The Yocto Project is an umbrella project covering a fairly wide swath of embedded

Linux technologies. It is not a Linux distribution. The Yocto Project™ is an open

source collaboration project that provides templates, tools and methods to help you

create custom Linux-based systems for embedded products regardless of the hardware

architecture. It's a complete embedded Linux development environment with tools,

metadata, and documentation - everything you need. The tools are easy to get started

with, powerful to work with (including emulation environments, debuggers, an

Application Toolkit Generator, etc.) and they allow projects to be carried forward over

time without causing you to lose optimizations and investments made during the

project’s prototype phase and to focus on their specific product features and

development. The Yocto Project fully supports a wide range of hardware and generates

images for many kinds of devices and supports device emulation through the QEMU

Emulator.

Needed things to develop the Yocto project environment:

 A host system running a supported Linux distribution (i.e. recent releases of

Fedora, openSUSE, CentOS, and Ubuntu). If the host system supports

multiple cores and threads, you can configure the Yocto Project build

system to decrease the time needed to build images significantly.

 The right packages.

 A release of the Yocto Project.

Environment Development

Packages and package installation vary depending on your development system

and on your intent. The next sections list – for Ubuntu - the required packages needed

to build an image that runs on BeagleBoard (the ARM side). The Yocto project has

many distributions like Poky and Angstrom and we here use Poky distribution.

1. The Packages

The essential packages you need for Ubuntu can be acquired through the following

command:

 $ sudo apt-get install gawk wget git-core diffstat unzip

texinfo \build- essential chrpath libsdl1.2-dev xterm

2. Building an Image

In the development environment you will need to build an image whenever you

change hardware support, add or change system libraries, or add or change services that

have dependencies.

50

Use the following commands to build your image. The OpenEmbedded build

process creates an entire Linux distribution, including the toolchain, from source.

 $ wget http://downloads.yoctoproject.org/releases/yocto/yocto-

1.4/poky-dylan-9.0.tar.bz2

 $ tar xjf poky-dylan-9.0.tar.bz2

 $ cd poky-dylan-9.0

 $ source oe-init-build-env

Notes

 The build process using Sato currently consumes about 50GB of disk space.

To allow for variations in the build process and for future package

expansion, we recommend having at least 100GB of free disk space.

 The first command retrieves the Yocto Project release tarball from the

source repositories using the wget command.

 The second command extracts the files from the tarball and places them

into a directory named poky-dylan-9.0 in the current directory.

 The third and fourth commands change the working directory to the Source

Directory and run the Yocto Project oe-init-build-env environment setup

script. Running this script defines OpenEmbedded build environment

settings needed to complete the build. The script also creates the Build

Directory, which is build in this case and is located in the Source Directory.

After the script runs, your current working directory is set to the Build

Directory. Later, when the build completes, the Build Directory contains all

the files created during the build.

Examine your local.conf file in your project's configuration directory, which is

found in the Build Directory. The defaults in that file should work fine. However, there

are some variables of interest at which you might look. By default, the target

architecture for the build is qemux86, which produces an image that can be used in the

QEMU emulator and is targeted at an Intel® 32-bit based architecture. To change this

default, edit the value of the MACHINE variable in the configuration file before

launching the build (select that one of BeagleBoard).

Another couple of variables of interest are the BB_NUMBER_THREADS and the

PARALLEL_MAKE variables. By default, these variables are commented out.

However, if you have a multi-core CPU you might want to uncomment the lines and set

both variables equal to twice the number of your host's processor cores. Setting these

variables can significantly shorten your build time.

Continue with the following command to build an OS image for the target, which

is core-image-sato in this example.

 $ bitbake -k core-image-sato

Depending on the number of processors and cores, the amount of RAM, the speed

of your Internet connection and other factors, the build process could take several hours

the first time you run it. Subsequent builds run much faster since parts of the build are

cached.

Upon finishing you can find your image data in the following path (yocto/poky-

danny-8.0/build/tmp/deploy/images) this data includes the following important files

which will be loaded on our board:

 uImage

 u-boot.bin

http://www.yoctoproject.org/docs/1.4/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.4/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.4/ref-manual/ref-manual.html#structure-core-script
http://www.yoctoproject.org/docs/1.4/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.4/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.4/ref-manual/ref-manual.html#var-BB_NUMBER_THREADS
http://www.yoctoproject.org/docs/1.4/ref-manual/ref-manual.html#var-PARALLEL_MAKE

51

 MLO-beagleboard

 core-image-sato-beagleboard.tar.bz2

Compiling Kernel

A kernel should be compiled and prepared to be added to system modules on

BeagleBoard. One can bring a kernel from kernel.org, compile it and it will work

properly on the board but for BeagleBoard there is a good kernel which has better

compatibility with our system. This kernel is called Balister kernel. Philip Balister

kernel is contained in the following link you just needs to zip its contents

(https://github.com/balister/linux-omap-philip).

 Before starting kernel compiling you need to make sure from installing the ARM

compilers (code sourcery) from (http://www.mentor.com/embedded-software/sourcery-

tools/sourcery-codebench/editions/lite-edition/). Once you install them you will need to

add the path of compilers (default is: /opt/CodeSourcery/Sourcery_G++_Lite/bin) to

the system path using the export command in Ubuntu as follows:

 export PATH="$PATH:/opt/CodeSourcery/Sourcery_G++_Lite/bin"

but take care while you perform this. If not properly executed, can destroy your system

path (this step can be included in the second item in the following steps as will be

shown).

Steps:

1. Change your directory to balister kernel folder.

2. Create the environment variables which include the architecture and cross

compilers and the code sourcery path (if you did not perform before) in a file

and call it env-vars as follows:

export PATH=$PATH:/opt/CodeSourcery/Sourcery_G++_Lite/bin

export CROSS_COMPILE=arm-none-linux-gnueabi-

export ARCH=arm

3. Source the file you created in 1 using the following command:

source env-vars

4. Copy the file named “defconfig” to “.config”.

5. Type the following command “make menuconfig”.

6. On execution of the previous command you will have the menu in Figure A.1.

7. Select “system type”.

8. Select “TI OMAP common features” as in Figure A.2.

9. Mark labels beside “IOMMU Module” and “IOMMU_IVA2” as in Figure A.3.

10. Save and exit the configuration.

11. Now build the kernel and compile its modules using the following commands:

make -j4 uImage

make -j4 modules

12. Now install your kernel modules using the following command:

https://github.com/balister/linux-omap-philip
http://www.mentor.com/embedded-software/sourcery-tools/sourcery-codebench/editions/lite-edition/
http://www.mentor.com/embedded-software/sourcery-tools/sourcery-codebench/editions/lite-edition/

52

make INSTALL_MOD_PATH=path modules_install

but replace “path” with the path you want and at which the kernel modules will

be created.

Figure A.1: Kernel menu configuration.

Figure A.2: Kernel menu configuration.

13. Now you have your kernel ready at folder called “lib” at the path you selected

in the previous step.

53

Figure A.3: Kernel menu configuration.

Building Inter-processor Communication RTOS
In order to perform inter-processor communication between ARM acting as GPP

and the DSP we need a real time OS called SYSLINK to provide the needed API’s used

for this process to handle the shared memory between the two processors. SYSLINK

can be downloaded from TI company website (http://software-

dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/syslink/index.html).

The SysLink product provides the following services to frameworks and

applications:

 Processor Manager

 Inter-Processor Communication

 Utility modules

Steps:

1. Before starting the build process you should make sure of installing the

following components on your host system:

a. TI Linux EZ Software Development Kit (EZSDK) for Sitara™ ARM
®

Microprocessors and you can download from

(http://www.ti.com/tool/linuxezsdk-sitara) and a detailed installation for

SDK is available here

(http://www.fedevel.com/welldoneblog/2011/09/c6a816x-installation-

host-machine-linux-kernel-compilation/).

b. TI inter-processor communication (IPC) and you can download from

(http://downloads.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/ipc/

).

c. TI BIOS and you can download from

(http://downloads.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/bio

s/sysbios/6_34_04_22/index_FDS.html).

d. TI XDC tools and you can download from

(http://downloads.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/rtsc

/3_24_05_48/index_FDS.html).

http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/syslink/index.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/syslink/index.html
http://www.ti.com/tool/linuxezsdk-sitara
http://www.fedevel.com/welldoneblog/2011/09/c6a816x-installation-host-machine-linux-kernel-compilation/
http://www.fedevel.com/welldoneblog/2011/09/c6a816x-installation-host-machine-linux-kernel-compilation/
http://downloads.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/ipc/
http://downloads.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/ipc/
http://downloads.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/bios/sysbios/6_34_04_22/index_FDS.html
http://downloads.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/bios/sysbios/6_34_04_22/index_FDS.html
http://downloads.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/rtsc/3_24_05_48/index_FDS.html
http://downloads.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/rtsc/3_24_05_48/index_FDS.html

54

e. TI C6000 code generation tools and you can download from

(https://www-

a.ti.com/downloads/sds_support/TICodegenerationTools/download.htm

).

2. Extract the tar.gz file downloaded to any path you want using the following

command:

tar -xzvf syslink_<version>.tar.gz -C path

and change your directory to Syslink directory.

3. Update the product.mak file for your environment (BB) by changing the

following parameters:

a. Device.

b. Directories for different TI components (IPC, XDCtools, BIOS, and

SDK).

4. Build the Syslink driver and libraries with the following command:

 make syslink

5. Build the examples using the following command:

 make examples

6. To assemble the SysLink executables and examples into a directory structure

suitable for running on the device's file-system use the following command:

 make install

Preparing an SD Card carrying a Linux image for BB-xm

The Linux image built on the host device is now ready for booting the

BeagleBoard and in order to use you should prepare an SD card carrying the image to

boot your BeagleBoard. As mentioned all the needed files for the image are o the

following path where you installed your Yocto project Linux distribution (yocto/poky-

danny-8.0/build/tmp/deploy/images). A micro SD card of at least 4 GB is needed and to

have it loaded with the image it should be divided into two partitions as in Figure A.4.

The first partition is boot partition and its format should be (bootable FAT16) with a

size that does not exceed 50 MB, the second partition is the one for Linux file system

and it should be in (EXT3) format with the remaining bytes in the card. One can use for

example the Ubuntu disk utility to create the needed partitions on SD card.

Figure A.4: SD card partitions

After creating partitions they will ne be loaded with the Linux image. The bootable

partition will contain a copy of the following files:

https://www-a.ti.com/downloads/sds_support/TICodegenerationTools/download.htm
https://www-a.ti.com/downloads/sds_support/TICodegenerationTools/download.htm

55

 X-loader “MLO-beagleboard” and rename it to MLO on the card.

 U-boot binary “u-boot.bin”.

 uImage.

 Boot script file “boot.scr” (the next paragraph shows how to create it).

A boot script file is created by setting the environment variable in a “cmd” file.

Environment variables are the boot arguments and the boot command for the BB. A

“cmd” file with any name like “boot.cmd” is created and filled with arguments in Table

A.1. And the “boot.cmd” file will looks like the snapshot in Figure A.5.

Table A.1: Environment Variables.

Variable Value

bootargs console=tty0 console=ttyO2,115200n8

root=/dev/mmcblk0p2 mem=200M@0x80000000

mem=256M@0x90000000 rootwait rootfstype=ext3 ro

bootcmd mmc init; fatload mmc 0:1 0x80300000 uImage; bootm

0x80300000

Figure A.5: “boot.cmd” file.

Use the following command to create “boot.scr” file:

mkimage -A arm -O linux -T script -C none -a 0 -e 0 -n 'Execute

uImage.bin' -d boot.cmd boot.scr

After preparing the boot partition now extract your file system on the second

partition “rootfs”. The file system for your BB is the file called “core-image-sato-

beagleboard.tar.bz2” in the same directory of the previous files. Then move the

compiled Balister kernel to the file system partition by zipping the lib directory

produced from kernel compile process and extracting it at this SD partition. Also copy

the built Syslink to the file system partition to use it. Now all the components needed

for using your BB are ready and all loaded to the SD card for plug and play. After

booting the BB you should insert the Syslink module to system modules using

“insmod” command and you will find the module in the following path (syslink/lib/-/-/-

/-/-/syslink.ko).

56

Booting BeagleBoard-XM using USB-Serial converter

1. Use the command minicom –s to configure the serial port settings.

2. In serial port setup Figure A.6 change:

a. Serial device to be “/dev/ttyUSB0”.

b. Hardware flow control to be “No”.

3. Save your setup as dfl.

4. Exit.

5. Power the BegaleBoard using USB or 5V power adapter.

6. Wait till it requests BeagleBoard login and log in as root.

Figure A.6: using minicom command.

Compiling a C code file and running it on the ARM processor

1. First make of the presence of cross compilers path (code sourcery) in the

system path by echoing PATH and if not add it using export command as

mentioned in earlier section.

2. Add the path of the Sourcery bin folder to the system PATH.

3. Compile your C code using arm-none-linux-gnueabi-gcc with the following

command:
 arm-none-linux-gnueabi-gcc -Wall file_name.c –lm –o

output_file_name

4. Copy the executable file to the file system of BeagleBoard on the SD-card

or transfer it using Ethernet and run it from its terminal.

Running an algorithm on the DSP processor using SysLink

1. You should have the source of SysLink (you can get it from: http://software-

dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/syslink/index.html).

http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/syslink/index.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/syslink/index.html

57

2. You should divide your algorithm into two parts the 1
st
 to be run on the

ARM processor and the other on DSP (memory allocations and reading or

writing files are the parts to be done on the ARM and calculations are the

parts to be run DSP.

3. You can use any of the examples provided with the SysLink to write your

code in order to use its architecture without the need to write it from scratch.

4. After finishing your code perform the build operation to get your executable

files as mentioned in an earlier section.

58

 ‌أ

 ملخصال

الخضوع يمثل سائل التصوير الطبي. حد أهم و أالتصوير بالرنين المغناطيسي هو إن
الإستلقاء بدون حركة لمدة طويله قد تصل أو داخل جهاز رنين مغناطيسي تشخيصيةلجلسة
هذا بالإضافة إلى عدد لايحصى من الأصوات المزعجة ،مريحغير أمر هو دقيقة و 54تتخطى

 زمن خفضوبالتالي فإن ،ورنين الاذن والتلف الذي قد يحدث في الصورة نتيجة حركة المريض
هناك نظرية ظهرت حديثاً معروفة مغناطيسي هو أمر في غاية الأهمية. الفحص لصورة الرنين ال

تقنية جديدة للقياس والتي تقلل عدد القياسات المطلوبة بإسم الإحساس المضغوط وهي عبارة عن
التصوير بالرنين هذة التقنية في إستخدام يتيح لبناء الصورة بدون أي فقد يذكر في جودة الصورة.

انظمة كما أن استخدام مثل هذة الطريقة مع بدرجة كبيرة الفحص زمنتقليل المغناطيسي
في هذه الرسالة قمنا منفعة كبيرة من ناحية تقليل الحجم والتكلفة. المعالجة المدمجة سيكون ذو

تنفيذ نظام لبناء صور الرنين المغناطيسي اعتماداً على نظرية الاحساس المضغوط وتم إختباره ب
المستخدمة في أقل بإستخدام نفس عدد القياسات وقتفي عاليةذات جوده عديله لإنتاج صوروت

وتم اختبار كفاءة تشغيله على عدد من الأنظمة منها نظام معالجة مدمج يعتمد الخوارزم الأصلي
(. هذا العمل أظهر نتائج جيدة بالنسبة لكفاءة الصور المبنية من خلال OMAPعلى المعالج)

بإستخدام الإحساس المضغوط كما أن تشغيلة % 09فضاء ترددي مضغوط بنسبة تصل إلى
ووجهنا لأكثر من اتجاه لتحسين كفاءة على نظام المعالجة المدمج أظهر نتائج جديرة بالإهتمام

 تطبيقات التصوير الطبي. فيتشغيل مثل تلك الأنظمة المدمجة

 ياسين عامر السيد عامر :دسـمهن
 9090\3\4 تاريخ الميلاد:

 مصري الجنسية:
 0999\99\9 تاريخ التسجيل:

 \ \ تاريخ المنح:
 الهندسة الحيوية الطبية والمنظومات القسم:
 ماجستير الدرجة:

 المشرفون:
 ياسر مصطفى إبراهيم قدح.د. أ

 الممتحنون:
 ياسر مصطفى إبراهيم قدح)المشرف الرئيسي(أ.د.
 . ناهد حسين علي سلومة)الممتحن الداخلي(أ.د
 إبراهيم العدوي)الممتحن الخارجي(محمد أ.د.

 عنوان الرسالة:
 تقنية الإحساس المضغوط على أنظمة المعالجة المدمجة بناء صور الرنين المغناطيسي باستخدام

 الكلمات الدالة:
 الرنين المغناطيسي، بناء الصور، الاحساس المضغوط، معالج الاشارات الرقمية ، الأنظمة المدمجة

 :رسالةملخـص ال

لجلسة تشخيصية داخل إن التصوير بالرنين المغناطيسي هو أحد أهم وسائل التصوير الطبي. يمثل الخضوع
دقيقة وهو أمر غير مريح، هذا 54جهاز رنين مغناطيسي الإستلقاء بدون حركة لمدة طويله قد تصل أو تتخطى

بالإضافة إلى عدد لايحصى من الأصوات المزعجة ورنين الاذن والتلف الذي قد يحدث في الصورة نتيجة حركة
نين المغناطيسي هو أمر في غاية الأهمية. هناك نظرية المريض، وبالتالي فإن خفض زمن الفحص لصورة الر

ظهرت حديثاً معروفة بإسم الإحساس المضغوط وهي عبارة عن تقنية جديدة للقياس والتي تقلل عدد القياسات
المطلوبة لبناء الصورة بدون أي فقد يذكر في جودة الصورة. يتيح إستخدام هذة التقنية في التصوير بالرنين

تقليل زمن الفحص بدرجة كبيرة كما أن استخدام مثل هذة الطريقة مع انظمة المعالجة المدمجة المغناطيسي
سيكون ذو منفعة كبيرة من ناحية تقليل الحجم والتكلفة. قمنا في هذه الرسالة بتنفيذ نظام لبناء صور الرنين

اج صور ذات جوده عالية في وقت المغناطيسي اعتماداً على نظرية الاحساس المضغوط وتم إختباره وتعديله لإنت
أقل بإستخدام نفس عدد القياسات المستخدمة في الخوارزم الأصلي وتم اختبار كفاءة تشغيله على عدد من

(. هذا العمل أظهر نتائج جيدة بالنسبة لكفاءة OMAPالأنظمة منها نظام معالجة مدمج يعتمد على المعالج)
% بإستخدام الإحساس المضغوط كما أن 09وط بنسبة تصل إلى الصور المبنية من خلال فضاء ترددي مضغ

تشغيلة على نظام المعالجة المدمج أظهر نتائج جديرة بالإهتمام ووجهنا لأكثر من اتجاه لتحسين كفاءة تشغيل مثل
 تلك الأنظمة المدمجة في تطبيقات التصوير الطبي.

‌‌

‌

الإحساس المضغوط على أنظمة صور الرنين المغناطيسي باستخدام تقنية بناء

 المعالجة المدمجة

‌

‌اعداد‌

‌‌ياسين‌عامر‌السيد‌عامر

‌

‌القاهرة‌جامعة‌–‌الهندسة‌كلية‌إلى‌مقدمة‌رسالة

‌الماجستير‌درجة‌على‌الحصول‌متطلبات‌من‌كجزء

‌في

‌الهندسة‌الحيوية‌الطبية‌والمنظومات

‌

 :يعتمد‌من‌لجنة‌الممتحنين‌‌

 ‌

‌المشرف‌الرئيسى‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌ياسر‌مصطفى‌إبراهيم‌قدحستاذ‌الدكتور:‌الأ

 ‌

 خليادالممتحن‌ال‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌ناهد‌حسين‌علي‌سلومةستاذ‌الدكتور:‌الأ

 ‌

‌الممتحن‌الخارجي‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌العدوي‌محمد‌إبراهيمستاذ‌الدكتور:‌الأ

‌

‌

‌

‌القاهــرة‌جامعــة‌-‌الهندســة‌كليــة

‌مصـرالعربيــة‌جمهوريـة‌-‌الجيـزة

‌

3102

‌

حساس المضغوط على أنظمة ين المغناطيسي باستخدام تقنية الإصور الرنبناء

 المعالجة المدمجة

‌

‌اعداد‌

‌ياسين‌عامر‌السيد‌عامر

‌

‌القاهرة‌جامعة‌–‌الهندسة‌كلية‌إلى‌مقدمة‌رسالة

‌الماجستير‌درجة‌على‌الحصول‌متطلبات‌من‌كجزء

‌في

‌والمنظوماتالهندسة‌الحيوية‌الطبية‌

‌

‌

‌تحت‌اشراف‌

‌

 ‌ياسر‌مصطفى‌إبراهيم‌قدحأ.د.‌

أستاذ‌بقسم‌الهندسة‌الحيوية‌الطبية‌

 والمنظومات

‌

‌

‌

‌القاهــرة‌جامعــة‌-‌الهندســة‌كليــة

‌مصـرالعربيــة‌جمهوريـة‌-‌الجيـزة

‌

3102 ‌

‌

‌

‌

‌

أنظمة حساس المضغوط على صور الرنين المغناطيسي باستخدام تقنية الإبناء

 المعالجة المدمجة

‌

‌اعداد‌

‌

‌ياسين‌عامر‌السيد‌عامر

‌

‌القاهرة‌جامعة‌–‌الهندسة‌كلية‌إلى‌مقدمة‌رسالة

‌الماجستير‌درجة‌على‌الحصول‌متطلبات‌من‌كجزء

‌في

‌الهندسة‌الحيوية‌الطبية‌والمنظومات

‌

‌

‌

‌

‌

‌

‌جامعــةالقاهــرة-كليــةالهندســة

‌جمهوريـةمصـرالعربيــة-الجيـزة

‌

3102‌

