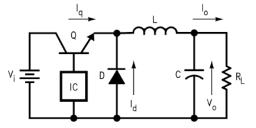
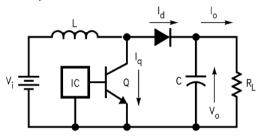

ESD – Review Problem Set #1


- 1. Design a highpass filter that is flat in both passband and stopband with cutoff frequency of 3 kHz and 60dB attenuation at 1 kHz and assuming a source and load resistances of 50Ω each. Provide two versions of the filter in (a) Shunt C and (b) Series L.
- 2. Design a 5th order Bessel lowpass filter that has cutoff frequency of 300 Hz and 40dB attenuation at 1 kHz with a load resistance of $1k\Omega$. Provide two versions of the filter in (a) Shunt C and (b) Series L.
- 3. Convert the following lowpass filter with cutoff frequency of 6.8 kHz into a bandpass filter with center frequency of 20 kHz. Assume source/load resistance of 50Ω .


 Convert the following normalized lowpass filter with into a bandstop filter with center frequency of 50 Hz and band of rejection from 45-55 Hz (3dB) assuming source/load resistance of 50Ω.

5. In the Buck regulator shown, assuming the capacitor voltage at t=0 is 0 V and that the IC will keep the transistor switch Q ON, draw the waveform for both the capacitor voltage V_0 and the switch current I_a .

6. For the shown switching regulator, given that V_i = 5V that T= 10 µs and switch Q on time or $t_{(on)}$ = 2µs. Draw the waveforms for V_o and I_g for one complete cycle.

- 7. Design a 5V to -15V switching power supply.
- 8. Design a circuit that allows a 5V output from a microcontroller to ON/OFF control a 220V AC supply to a lamp.
- 9. Design a circuit that allows a microcontroller to select one of 6 different analog signals to be connected to the input of an ADC.
- 10. Design a circuit that allows a user to deliver a signal to one of 4 different channels or completely block all signals.
- 11. Design a monostable multivibrator circuit that has a pulse width of 100 ms and a normally on load. Draw the output waveform of the circuit for a single input pulse with width of 250 ms.
- 12. Design an astable multivibrator circuit that has a period of 1 ms, a duty cycle of 1/3 and a normally off load.
- 13. Design a circuit that performs a weighted sum of 3 signals with relative weights of 1:1.5:2 respectively.
- 14. Design a circuit that allows balanced outputs (i.e., E_0^+ and E_0^-) of twice the input voltage E_i .