Chapter 3: Systems of Many Particles

Medical Equipment I 2008-2009

Introduction

- Is it possible to use classical mechanics to describe systems of many particles ?
- Example: particles in 1 mm³ of blood
 - Compute translational motion in 3D

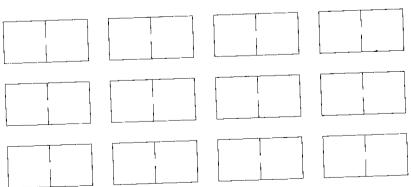
$$v_i(t + \Delta t) = v_i(t) + F_i \Delta t / m \quad , \quad (i = x, y, z)$$

- 6 multiplications + 6 additions / particle
- For 10¹⁹ particle, 10²⁰ operations required/interval
- 10⁸ s (3 years) on a 1G operations/s computer !!

Statistical Mechanics

- Do not care about individual molecules
 Impossible to trace practically
- Average macroscopic properties over many particles are what we need
- Such properties are studied under statistical physics / statistical mechanics
 - o e.g., Pressure, Temperature, etc.
 - Average and probability distribution

- Total number of molecules = N
- Box with imaginary partition
- Particles in left half = n
- P(n) can be computed from an ensemble of boxes



Example: N=1
 P(0)= 0.5 , P(1)= 0.5

Example: N=2

Molecule 1	Molecule 2	n	P(n;2)
R	R	0	$\frac{1}{4}$
\mathbf{R}	\mathbf{L}	1	1
\mathbf{L} .	R	1	$\frac{1}{2}$
\mathbf{L}	L	2	$\frac{1}{4}$

Example: N=3

Molecule 1	Molecule 2	Molecule 3	\overline{n}	P(n;3)
R	R	R	0	$\frac{1}{8}$
\mathbf{R}	\mathbf{R}	\mathbf{L}	1	0
\mathbf{R}	L	R	1	$\frac{3}{8}$
${ m L}$	R	R	1	
L	\mathbf{L}	\mathbf{R}	2	
L	R	\mathbf{L}	2	$\frac{3}{8}$
R	L	\mathbf{L}	2	0
L	\mathbf{L}	L	3	$\frac{1}{8}$

Histogram representation

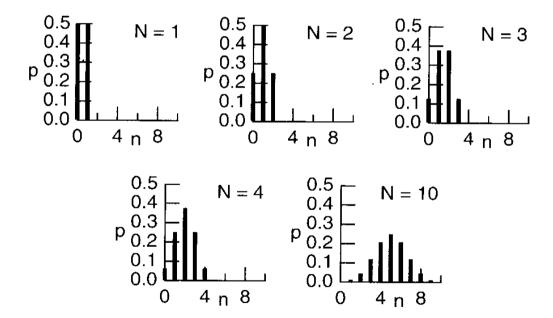


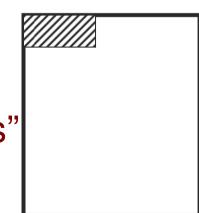
FIGURE 3.2. Histograms of P(n; N) for different values of N.

- General case: binomial distribution
- Assume a general box partitioning into two volumes v (left) and v' (right) such that p=v/V, q= v'/V, then p+q=1
- Probability of n particles in volume v given by

$$P(n; N, p) = \frac{N!}{n!(N-n)!} p^n (1-p)^{N-n}$$

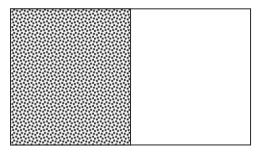
Microstates and Macrostates

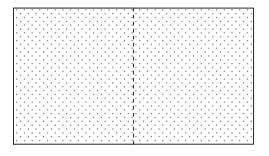
- Microstates: all information about a system
 - Position and velocity of all molecules
- Macrostates: average properties
 - Number of molecules in each half
- Example: Toys in a room
 - Microstate: position of every toy
 - Macrostate: "picked-up" or "mess"



Gas Box Example

- Partition in between
 - Partition suddenly removed
 - Many more microstates available
 - Improbable to remain all on left
 - Equilibium: half on each side
 - Macroscopic states not changing with time
 - Most random, most probable





Microstates

Energy levels defined by a set of quantum numbers = 3N (in 3D)

Discrete levels

- Total number of quantum numbers required to specify state of all particles is called *degrees of freedom (f)*
- Microstate: specified if all quantum numbers for all particles are specified

First Law of Thermodynamics

 Total energy U = sum of particle energies

$$U = 2u_{23} + u_{25} + u_{26} + u_{28}$$

$$27$$

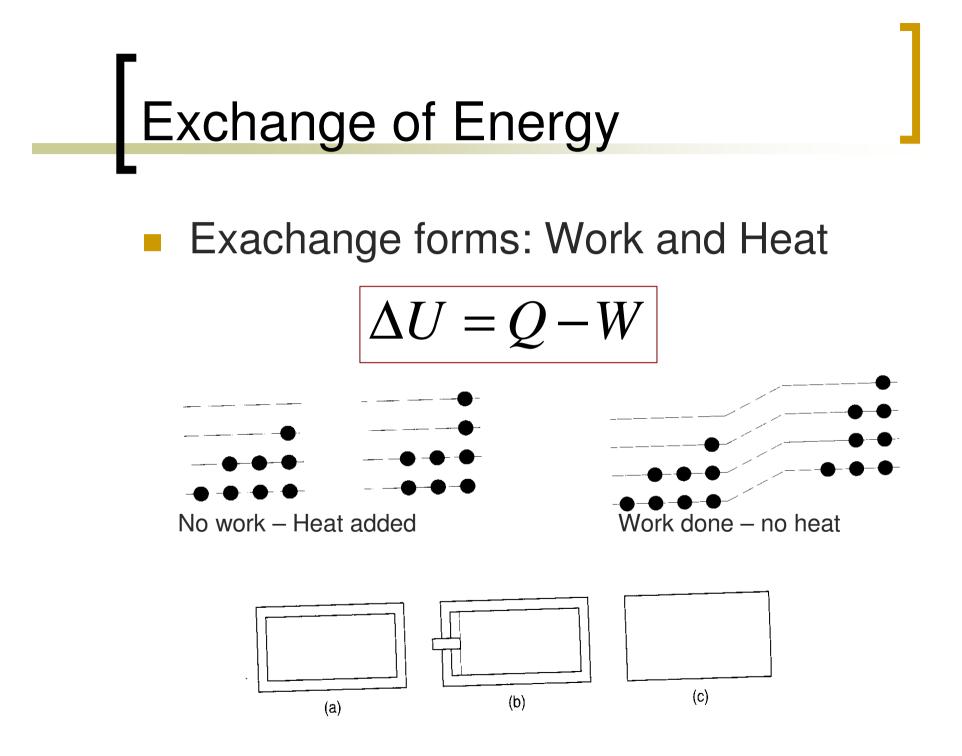
$$26$$

$$27$$

$$26$$

$$24$$

$$23$$



Specifying Microstates and Macrostates

- Microstates
 - quantum numbers of each particle in the system
- Macrostates
 - All of external parameters
 - Total energy of the system

Basic Postulates

- 1. If an isolated system is found with equal probability in each one of its accessible microstates, it is in equilibrium
 - Converse is also true
- 2. If it is not in equilibrium, it tends to change with time until it is in equilibrium
 - Equilibrium is the most random, most probably state.

Problem assignment on web site