Medical Equipment I Mid-Term Exam – Solution Guide

Time Allowed: 1 ¹/₂ Hours – Open-Book/Open-Notes

November 30, 2008

Solve as Much as You Can – Maximum Grade: 100 Points

Q1. Answer the following questions by marking the best answer among the choices given (2 pts each):

- 1. The continuity equation is a direct result of ...
 - a. Static equilibrium
 - b. Conservation of mass (*)
 - c. Newton's second law
- 2. The conservation of energy is equivalent to ...
 - a. Entropy
 - b. Thermal equilibrium
 - c. First law of thermodynamics (*)

3. The total decay in the case of multiple decay paths is equal to the ... of individual rates.

- a. multiplication
- b. sum (*)
- c. sum of inverse
- 4. If the half life of 99m Tc is 6 hours, then it will reach ... of its initial rate after 12 hours.
 - a. half
 - b. third
 - c. quarter (*)

5. A system represented by the differential equation $\frac{dy}{dx} = 100x^2$ appears ... on log-log plot.

- a. Linear (*)
- b. Quadratic
- c. None of the above

6. To analyze a system represented by the equation $y = c_1 e^{-\alpha x} + c_2 e^{-\beta x}$, we use ...

- a. Semilog plot (*)
- b. Log-log plot
- c. Linear plot
- 7. Consider a system with N>100 particles each having one of two states with probability 0.2 and 0.8 respectively. The total number of macrostates in the system should be ...
 - a. 2^{N}
 - b. 2*N*
 - c. < N(*)
- 8. The amount of mass transported across an imaginary surface per unit area per unit time is ...
 - a. Mass flux density (*)
 - b. Particle fluence
 - c. Volume fluence
- 9. One of the industrial biomedical applications of laminar flow is ...
 - a. Isolation of an infectious compartment using laminar air flow (*)
 - b. Exchange of metabolites in hemodialysis systems
 - c. Transportation of particles in injections.
- 10. Formula to estimate mean free path in liquids is different from that of gases because ...
 - a. Distance between molecules is too close and violates independence assumption (*)
 - b. Laminar flow does not allow molecules to collide

- c. Brownian motion is different in fluids
- 11. Fick's second law of diffusion is derived from Fick's first law and ...
 - a. Solvent drag
 - b. Continuity equation (*)
 - c. Viscosity
- 12. For a gas at standard temperature and pressure, if the volume of 1 mol is 22.4 liter and the radius of its molecules is 0.2 nm, then the mean free path is ...
 - a. 0.13 µm
 - b. 0.10 µm
 - c. 0.07 µm (*)

13. The plot of $(3x+2x^3)$ on log-log paper appears as a ...

- a. Cubic curve everywhere
- b. Linear curve for very large values of time (*)
- c. Quadratic curve for very small values of time
- 14. The buoyant force on planes in the air should be ...
 - a. Very small compared to its weight (*)
 - b. Approximately the same as their weight to make the plan fly
 - c. Much larger than their weight to allow the plane to move higher up
- 15. A process in which the change in a quantity Q with time is proportional to Q is ...
 - a. An exponential curve (*)
 - b. A quadratic curve
 - c. A linear curve
- 16. Microstates of a biological system with many particles may include ...
 - a. Pressure
 - b. Temperature
 - c. Particle energy (*)
- 17. When the probability of all microstates is equal, the system is at ...
 - a. Equilibrium (*)
 - b. Entropy
 - c. Random Brownian motion
- 18. A particular disease in rabbits is linked to a defective X chromosome and appears only when all X chromosomes present are defective. If the probability of a single X chromosome to be defective is 0.01, The percentage of population carrying this disease if each rabbit has 3 X chromosomes is ...
 - a. 0.0001
 - b. 0.00001
 - c. 0.000001 (*)
- 19. To reach double the diffusion distance, the diffusion time required must be ...
 - a. half
 - b. Double
 - c. Four times (*)
- 20. The solution of the Fick's second law of diffusion is ... in shape.
 - a. Gaussian (*)
 - b. Quadratic
 - c. Sinusoidal
- 21. Bigger particles in Brownian motion move ... smaller particles of the same mass.
 - a. Faster
 - b. Slower
 - c. As fast as (*)
- 22. Static equilibrium implies the balance of ... in the object under study.

- a. Torques
- b. Forces
- c. Both torques and forces (*)

23. C8051F020 microcontroller memory location 0F0H when accessed using direct addressing mode refers to ...

- a. Special function register (*)
- b. Indirect memory address
- c. Immediate value
- 24. For high timing accuracy applications, one should use a system clock based on ...
 - a. RC oscillator
 - b. Crystal oscillator (*)
 - c. The microcontroller's own internal oscillator
- 25. Watchdog timer can be used to ...
 - a. Schedule periodic check on the status of a process
 - b. Reset the microcontroller when runs out of control (*)
 - c. Measure time critical events
- 26. Using a 3.3V microcontroller, one can make a GPIO pin provide output with TTL levels (i.e., 0V for logic 0 and 5V for logic 1) using ...
 - a. A push-pull output mode and an amplifier at the output of the pin.
 - b. A push-pull output mode and a pull-up resistor connected to 5V.
 - c. An open-drain output mode and a pull-up resistor connected to 5V. (*)
- 27. GPIO pins can be used for bidirectional data transfer when they are configured as ...
 - a. Open-drain mode with internal weak pull-ups (*)
 - b. Open-drain mode with external weak pull-ups
 - c. Push-pull mode
- 28. When the microcontroller running from an external crystal oscillator finds out that its external clock source is invalid, ...
 - a. It switches automatically to internal oscillator
 - b. It can be configured to reset (*)
 - c. It causes a flag to be raised for the program to repair the problem.

Q2. Mark the following statement as either True (T) or False (F) (1 point each):

- 1. In Brownian motion, particle velocity changes only when the temperature changes.
- 2. Mean free path is much larger than particle size in gases. (T)
- 3. In solute diffusion between two solutions across a permeable membrane, Brownian motion stops at steady-state. (F)
- 4. Drag forces are determined by the Boltzmann factor in liquids. (F)
- 5. The entropy of a system is equal to the root mean square of entropies of its subsystems.(T)
- 6. Aquatic animals are essentially "weightless" because of drag forces in the water. (F)
- 7. Ideal adiabatic systems involve only mechanical work. (T)
- 8. The derivative of entropy with respect to energy depends on the temperature. (T)
- 9. Diffusion is a direct consequence of the Brownian motion phenomenon. (T)
- 10. Steady-state of the diffusion process takes same amount of time for heavier solutes as lighter ones. (F)
- 11. Laminar flow is the main mechanism for oxygen transport to capillaries through alveoli. (F)
- 12. The C8051F020 can be configured to start using an external crystal oscillator upon reset. (F)
- 13. UART serial communication requires the microcontroller to use an external crystal oscillator (T)
- 14. The output from bitwise operations is always a Boolean value. (F)

- (F)

15. The memory locations above 080H can only be accessed using indirect addressing. (T)

Q3. Denote the following C8051F020 microcontroller instructions as either being true (T) or false (F) assembly instructions. [2 point each]

1.	ADD	A, FOH	(T)
2.	MOV	70H, A	(T)
3.	MOV	@R2, A	(F)
4.	ADD	A, #300H	(F)
5.	SWAP	PO	(F)
6.	DJNZ	30H, 70H	(T)
7.	CPL	P5.4	(F)
8.	COUNT	EQU R3	(F)
9.	INC	R7	(T)
10.	MUL	AA	(F)

Q4. [10 points] Consider two systems *A* and *A*' that are in thermal contact with each other but are isolated from the rest of the universe. System *A* has <u>two</u> particle while system *A*` has <u>three</u> particles. The energy levels each particle may have *u*, 2u, 3u, etc. Let the total energy be $U^* = 7u$. Compute the number of microstates for the whole system.

Solution:

System A		System A`			System A*	
U	Ω	U'	Ω`		Ω^*	
2u	1	5u	6		6	
3u	2	4u	3		6	
4u	3	3u	1		3	
			9	$\Omega^*_{tot}=1$	8	
$\Omega^{(4u)=3$						
{1,1,2}	`,					
$\{1,2,1\},\$						
{2,1,1}						
$\Omega^{(5u)}$	= 6					
$\{1, 1, 3\}$	`,					
{1,3,1}						
{3,1,1}	· •					
{2,1,2}	2					
$\{2,2,1\}$	2					
{1,2,2}	•					

Q5. [5 points] The potential energy of hydrogen nuclei in a magnetic field is equal to (γ m B h/2 π) where γ is the gyromagnetic ratio (42.6 MHz/T), h is the Planck's constant given by 6.626×10^{-34} and B is the magnetic field, and m is the spin number that takes the values of either + $\frac{1}{2}$ or $-\frac{1}{2}$. Calculate the probability of spins with m= $\frac{1}{2}$ relative to that with m= $-\frac{1}{2}$ at magnetic field B= 1 T and temperature of 300 °K. Assume a unity density of states factor.

Solution: substitute in Boltzmann factor = (density factor=1) x exp(-(U1-U2)/k_BT) where U= (γ m B h/2 π) and m=+1/2 or -1/2

Q6. [6 Points] Write C8051F020 assembly code lines to do the following tasks:

- a. a delay of 100 clock cycles
- b. Inverting bit P5.4
- c. Inverting bit P1.6