Medical Equipment I Mid-Term Exam – Solution Guide

Time Allowed: One Hour – Open-Book/Open-Notes November 22, 2007

Solve as Much as You Can – Maximum Grade: 100 Points

Q1. Answer the following questions by marking the best answer among the choices given (2 points each):

- 1. When an object is at static equilibrium (i.e., not moving), the sum of forces in the *z*-direction is ...
 - a. Zero (*)
 - b. Equal to its mass
 - c. Equal to its weight
- 2. The conservation of mass leads to ...
 - a. Fick's first law
 - b. Continuity equation (*)
 - c. Newton's second law
- 3. The conservation of energy is stated in ...
 - a. First law of thermodynamics (*)
 - b. Newton's third law
 - c. Entropy
- 4. The total decay in the case of multiple decay paths is equal to the ... of individual rates.
 - a. multiplication
 - b. sum (*)
 - c. sum of inverse
- 5. The clearance of substance X from plasma is defined as ...
 - a. The volume of X removed from plasma per unit time
 - b. The volume of plasma from which X is completely removed per unit time (*)
 - c. The time constant of the process of plasma and substance X separation.
- 6. If the half life of 99m Tc is 6 hours, then the length of time required for it to reach $\frac{1}{4}$ is
 - ... hours.
 - a. $6\sqrt{2}$
 - b. 6 ln(2)
 - c. 12 (*)

7. A biological system represented by the differential equation $\frac{dy}{dx} = x^2 y$ appears ... on

semilog plot.

- a. Linear
- b. Quadratic
- c. None of the above (*)
- 8. In order to make the analysis of a system represented by the equation $y=\alpha x^3$, we use ...
 - a. Semilog plot

- b. Log-log plot (*)
- c. Linear plot
- 9. Consider a system with N particles each having one of two states with probability 0.2 and 0.8 respectively. The total number of microstates in the system is ...
 - a. 2^{N} (*)
 - b. 2N
 - c. N-1
- 10. The amount of mass transported across an imaginary surface per unit area per unit time is ...
 - a. Mass flux density (*)
 - b. Particle fluence
 - c. Volume fluence
- 11.Mean free path in liquids is different from gases because of the presence of ...
 - a. Diffusion
 - b. Drag forces (*)
 - c. Brownian motion
- 12.Fick's second law of diffusion combines Fick's first law and ...
 - a. Solvent drag
 - b. Continuity equation (*)
 - c. Viscosity
- 13. For a gas at standard temperature and pressure, if the volume of 1 mol is 22.4 liter and the radius of its molecules is 0.2 nm, then the mean free path is ...
 - a. 0.13 µm
 - b. $0.10 \, \mu m$
 - c. 0.07 µm (*)
- 14. The plot of the sum of two exponential decays on semilog paper appears as a linear curve ...
 - a. everywhere
 - b. for very large values of time (*)
 - c. for very small values of time
- 15. The buoyant force on animals in the air is ...
 - a. Very small (*)
 - b. Approximately the same as their weight
 - c. Much larger than their weight
- 16. The threshold of turbulent flow is determined by ...
 - a. Poiseuille equation
 - b. Stoke's equation
 - c. Reynolds number (*)
- 17.A process in which the change in a quantity Q with respect to time is proportional to time is ...
 - a. An exponential curve
 - b. A quadratic curve (*)

- c. A linear curve
- 18.Macrostates of a biological system with many particles may include all of the following <u>except</u> ...
 - a. Pressure
 - b. Temperature
 - c. Particle energy (*)

19.At equilibrium, probability of all microstates is ...

- a. Equal (*)
- b. Zero

c. 1

- 20.A particular disease in rabbits is linked to a defective X chromosome and appears only when all X chromosomes present are defective. If the probability of a single X chromosome to be defective is 0.01, The percentage of population carrying this disease if each rabbit has 3 X chromosomes is ...
 - a. 0.0001
 - b. 0.00001
 - c. 0.000001 (*)

21.To reach double the diffusion distance, the diffusion time required must be ...

- a. half
- b. Double
- c. Four times (*)

22. The solution of the Fick's second law of diffusion is ... in shape.

- a. Gaussian (*)
- b. Quadratic
- c. Sinusoidal

23. Heavier particles in Brownian motion move ... lighter particles.

- a. Faster
- b. Slower (*)
- c. As fast as
- 24.One of the industrial biomedical applications of laminar flow is ...
 - a. Isolation of an infectious compartment using laminar air flow (*)
 - b. Exchange of metabolites in hemodialysis systems
 - c. Transportation of particles in injections.
- 25. Rotational equilibrium relies on a balance of ...
 - a. Torques (*)
 - b. Forces
 - c. energies

Q2. Mark the following statement as either True (T) or False (F) (1 point each):

1. In Brownian motion, particle velocity is constant and given by $\sqrt{3k_BT/m}$. (F)

- 2. Mean free path is much larger than particle size in gases. (T)
- 3. In diffusion between two solutions across a membrane, Brownian motion stops at equilibrium. (F)
- 4. Drag forces are determined by the Boltzmann factor in liquids. (F)
- 5. The entropy of a system is equal to the sum of entropies of its subsystems. (T)
- 6. Aquatic animals are essentially "weightless" because of viscosity in the water. (F)
- 7. Water is not a compressible fluid. (T)
- 8. Adiabatic systems do not involve heat flow. (T)
- 9. Systems that are not at equilibrium tend to change until all its microstates have equal probability. (T)
- 10. The derivative of entropy with respect to energy is equal to the temperature. (F)
- 11.In Nernst equation, the voltage across the membrane is the result of the Boltzmann constant. (F)
- 12. Translational kinetic energy of any particle moving in a Brownian motion is the same. (T)
- 13.Brownian motion is a direct consequence of the diffusion phenomenon. (F)
- 14. Heavier solutes diffuse slower than lighter ones. (T)
- 15.Diffusion is the main mechanism for oxygen transport between capillaries and alveoli. (T)

Q3: Consider two systems A and A' that are in thermal contact with each other but are isolated from the rest of the universe. System A has <u>one</u> particle while system A` has <u>two</u> particles. The energy levels each particle may have u, 2u, 3u, etc. Let the total energy be $U^*=5u$. Compute the number of microstates for the whole system.

Solution:

System A		System A`		System A*
U	Ω	U	Ω	Ω^*
1u	1	4u	3	3
2u	1	3u	2	2
3u	1	2u	1	1
				$\Omega^*_{tot}=6$

Q4: Consider a system with 1000 particles where the potential energy is given by m.E where E is 10^{-20} and m may take the values of 1 and 2 only for states 1 and 2 respectively. Assuming the density of states factor is given by 0.8 (state 1 relative to state 2), calculate the relative probability of finding the system in state 1 relative to state 2 at temperature 300 °K.

Solution: Boltzmann Factor with G = 1, Us - Ur = (1 E - 2 E).

Q5: If a complication of a disease causes the dilation of capillaries to have a radius of 6 μ m instead of its normal size of 4 μ m and assuming the radius of alveoli to be 80 μ m, compute the time for oxygen to diffuse from the center of an alveolus to the center of a capillary. Assume the diffusion constant for oxygen in air to be 2×10⁻⁵ m²/s and in water to be 2×10⁻⁹ m²/s. [Hint: consider 1D diffusion]

Same steps as problem 4.18