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Topic Today 

 Matrix Computations 

 Computational complexity of common matrix operations 

 Examples of matrix decompositions 

 How to solve linear system of equation Ax=b on a computer  

 Vector / Matrix norm definitions 

 Conditioning of matrices 

 Least squares problem 

 Iterative linear system solution methods  

 Vector calculus (differentiation with respect to a vector)  

 

 

 



Matrix Vector Multiplication 

 Consider an nm matrix A and n1 vector x: 

 

 

 

 

 

 

 Matrix vector multiplication b=Ax is given as, 



Matrix Vector Multiplication 

 If b = Ax, then b is a linear combination of the columns of 

A.  

 

 

 

 

 

 Computer pseudo-code: 



Computational Complexity: 

Flop Count and Order of Complexity 

 Real numbers are normally stored in computers in a 

floating-point format.   

 Arithmetic operations that a computer performs on 

these numbers are called floating-point operations (flops) 

 Example: Update  

 1 Multiplication + 1 Addition = 2 flops 

 Matrix-vector multiplication :   2 nm flops   or O(nm) 

 For nxn matrix  (n1) vector:  O(n2) operation 

 Doubling problem size quadruples effort to solve 

 

 



Matrix-Matrix Multiplication 

 If A is an nm matrix, and X is mp, we can form the 
product B = AX, which is np such that, 

 

 

 Pseudo-code: 

 

 

 2mnp flops 

 

 

 Square case: O(n3) 

 



Systems of Linear Equations 

 Consider a system of n linear equations in n unknowns 

 

 

 

 

 Can be expressed as Ax=b such that 

 

 

  

 



Systems of Linear Equations 

 Theorem: Let A be a square matrix. The following six 

conditions are equivalent 

 



Methods to Solve Linear Equations 

 Theoretical: compute A-1 then premultiply by it: 

   A-1 A x = A-1 b     x= A-1 b 

 Practical:   A-1 is never computed! 

 Unstable 

 Computationally very expensive 

 Numerical accuracy 

 Gaussian elimination ?? 

 Computational complexity? 

 Numerical accuracy? 

 Explore ways to make this solution simpler 

   



Elementary Operations  

 A linear system of equation Ax=b remains the same if we: 

 Add a multiple of one equation to another equation.  

 Interchange two equations.  

 Multiply an equation by a nonzero constant.  

 Explore ways of solving the linear system using these 

elementary operations 

 Gaussian elimination is an example of such method 



Triangular systems of equations 

 Lower triangular systems 

 

 

 

 

 Consider linear system Gy=b:   Forward Substitution 

 

 

 Upper triangular system:  Backward Substitution  

 Efficient computation for such special matrices 



Cholesky Decomposition 

 Cholesky Decomposition Theorem: Let A be a symmetric 

positive definite matrix. Then A can be decomposed in 

exactly one way into a product A = RTR 



Solution Using Cholesky Decomposition 

 Consider problem Ax=b 

 Then, use Choleskly decomposition to put A= RTR 

 Then,  Ax =  b     RTRx= b 

 Let Rx= y  then solve RTy= b     

 triangular system of equations that is easy to solve 

 Then, solve Rx=y 

 Another triangular system of equations that is easy to solve 

 



LU Decomposition 

 LU Decomposition Theorem: Let A be an nn matrix 

whose leading principal submatrices are all nonsingular. 

Then A can be decomposed in exactly one way into a 

product   A= L U  as: 



Vector Norm 

 Measure of distance 

 Definition: 

 

 

 

 

 

 Example:  Euclidean norm 



Vector Norm 

 General definition of p-norm: 

 

 

 

 Examples: 

 2-norm: Euclidean distance 

 1-norm: (taxicab norm or Manhattan norm) 

 

 

 -norm:      



Vector Norm 

 Example:  

 draw the circles defined by the following equations: ||x||1= 1 , 

||x||2= 1 , ||x||= 1  
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Matrix Norm 

 A matrix norm is a function that assigns to each Anxn a 

real number ||A|| such that: 

 

 

 

 

 Example: Frobenius norm (commonly used) 



Matrix Norm 

 Induced (operator) norm 

 

 Special case: induced p-norm or Matrix p-norm 

 

 

 Theoretically important 

 Expensive to compute 

 Frobenius norm is NOT the matrix 2-norm (=max eigenvalue) 

 Theorem:  

 Examples: 



Condition Number 

 Consider a linear system equation and its perturbation: 

 

 Then,                         or  

 Hence,  

 

 Also,  

 Combining equations: 

 

 

 Define the condition number as: 



Condition Number 

 Using induced matrix norm, (A)  1 

 Matrices with (A)  1000 are considered ill-Conditioned 

 Numerical errors in solving Ax=b are amplified in the solution 

by the condition number 

 Estimation of condition number: from eigenvalues: divide 

maximum eigenvalue by the minimum eigenvalue or  

 (A) = max/min 

 For singular matrices, (A) =  

 Condition number improvement by scaling equations 

possible 

 Example: 



Roundoff Errors 

 Floating point number presentation 

 Mantissa  

 Exponent      7 

 Problems occur when adding numbers of very different 

scales 

 If a computation results in a number that is too big to be 

represented, an overflow is said to have occurred. 

 If a number that is nonzero but too small to be 

represented is computed, an underflow results. 

 Machine epsilon: smallest positive floating point number s 

such that fl(1+s)>1      (Homework to compute) 



Sensitivity Analysis  

 Using perturbation analysis, show how stable the solution 

is for a particular matrix A and machine precision s. 

 Condition number describes the matrix only 

 Be careful with choice of single vs. double precision since time 

gain may end up causing major errors in result ! 

 



Least-Squares Problem 

 To find an optimal solution to linear system of equations 

Ax=b that does not have to be square and it is desired to 

minimize the 2-norm of the residual 

 

 

 

 

 

 n>m :  overdetermined system     (least-squares solution) 

 n<m: underdetermined system     (minimum-norm solution) 



Orthogonal Matrices 

 An orthogonal matrix has its inverse the same as its 

transpose 

 

 

 Determinant = 1 

 Condition number = 1 (ideal) 

 Orthogonal transformations preserve length 

 Orthogonal transformations preserve angle 

 Example: rotators and reflectors 



QR Decomposition 

 Any nxn matrix A can be decomposed as a product QR 

where Q is an orthogonal matrix and R is an upper 

triangular matrix  

 Solution of Ax=b is again straightforward: 

 QRx=b 

 Let Rx= y and solve Qy=b  (solution is simply y= QTb) 

 Then solve triangular system    Rx=y as before 

 Advantage of QR solution: excellent numerical stability 

 Overdetermined case (A is nxm with n>m): QR 

decomposition is still possible with : 



Singular Value Decomposition (SVD) 

 Let A be an nxm nonzero matrix with rank r. Then A can 

be expressed as a product:  

 

 Where: 

 U is an nxn orthogonal matrix 

 V is an mxm orthogonal matrix  

  is an nxm diagonal matrix of singular values in the form: 

 



Solution of Least Squares Using SVD 

 Condition number can be shown to be equal to: 

 

 

 In order to improve condition number, we can solve the 

equation after replacing the smallest singular values by 

zero until the condition number is low enough 

 Regularization of the ill-conditioned provlem 

 “Pseudo-inverse” or “Moore-Penrose generalized inverse” 

 

 

 Highest numerical stability of all methods but O(n3) 

 



Computational Complexity 

 Cholesky's algorithm applied to an nn matrix performs 

about n3/3 flops.  

 LU based decomposition applied to an nn matrix 

performs about 2n3/3 flops.  

 Gaussian elimination applied to an nn matrix performs 

about 2n3/3 flops.  

 QR decomposition: 2nm2-2m3/3 flops 

 SVD has O(n3) flops  

 

 All are still too high for some problems 

 Need to find other methods with lower complexity 

 



Iterative Solution Methods 

 Much less computations of O(n2) 

 Steepest descent based methods  

 Conjugate gradient based methods 



Steepest Descent Methods 

 Looks for the error b-Ax and tries to remove this error 

in its direction 



Conjugate Gradient (CG) Method 

 Suppose we want to solve the following system of linear 

equations Ax = b where the n-by-n matrix A is 

symmetric (i.e., AT = A), positive definite (i.e., xTAx > 0 

for all non-zero vectors x in Rn), and real. 

 We say that two non-zero vectors u and v are conjugate 

(with respect to A) or mutually orthogonal if:   uTAv=0 

 not related to the notion of complex conjugate. 

 Suppose that {pk} is a sequence of n mutually conjugate 

directions. Then the pk form a basis of Rn, so we can 

expand the solution x* of Ax = b in this basis: 

 

 
http://en.wikipedia.org/wiki/Conjugate_gradient_method 



Conjugate Gradient (CG) Method 

 To compute the coefficients: 

 

 

 

 

     (since pi and pk are mutually conjugate for ik) 

 

 

 

 Can compute the solution in maximum n iterations! 

 Removes the error in “mutually-orthogonal” directions 

 Better performance compared to steepest descent 

 
http://en.wikipedia.org/wiki/Conjugate_gradient_method 



Iterative Conjugate Gradient Method 

 Need to solve systems where n 

is so large  

 Direct method take too much time 

 Careful choice of directions 

 Start with Ax-b as p0 

 Takes a few iterations to reach 

reasonable accuracy 

Octave/Matlab code available at http://en.wikipedia.org/wiki/Conjugate_gradient_method 



Vector Calculus 

 Let x and y be general vectors of orders n and m 

respectively: 

 

 

 

 

 Define derivative as:   



Vector Calculus 

 Special cases: when x or y are scalars 

 

 

 

 

 

 

 Other important derivatives: 



Exercise 
 Write a program to compute Machine Epsilon and report your results. 

 Look for Octave/Matlab functions that implement the topics discussed in this 
lecture and provide a list of them. 

 Modify the conjugate gradient method described in this lecture to allow using 
a general real matrix A that is not symmetric or positive definite. 

 Implement code for Gaussian elimination, steepest descent and conjugate 
gradient methods and compare results (time and accuracy) to SVD based 
solution (pseudo-inverse). Use only a few iterations for iterative methods. 

 Use vector calculus to show that the solution of Ax=b for symmetric A 
minimizes the objective function: 

 

 

 In all above problems involving linear system solution, use the Hilbert matrix as your A matrix, use a 
random x vector, compute b=Ax and use A and b to compute as estimate of the x vector then compare it 
to what you have to test your system 

 You can use available Octave/Matlab functions and write your own code for parts that are not available. 

 


