Medical Image Reconstruction Term II – 2012

Topic 1: Mathematical Basis Lecture 1

Professor Yasser Mostafa Kadah

Topic Today

Matrix Computations

- Computational complexity of common matrix operations
- Examples of matrix decompositions
- How to solve linear system of equation Ax=b on a computer
- Vector / Matrix norm definitions
- Conditioning of matrices
- Least squares problem
- Iterative linear system solution methods
- Vector calculus (differentiation with respect to a vector)

Matrix Vector Multiplication

Consider an n×m matrix A and n×l vector x:

Matrix vector multiplication b=Ax is given as,

$$b_i = a_{i1}x_1 + a_{i2}x_2 + \dots + a_{im}x_m = \sum_{j=1}^m a_{ij}x_j$$

Matrix Vector Multiplication

 If b = Ax, then b is a linear combination of the columns of A.

$$\begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{bmatrix} x_1 + \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{n2} \end{bmatrix} x_2 + \dots + \begin{bmatrix} a_{1m} \\ a_{2m} \\ \vdots \\ a_{nm} \end{bmatrix} x_m$$

Computer pseudo-code:

$$b \leftarrow 0$$

for $j = 1, \dots, m$
$$\begin{bmatrix} \text{for } i = 1, \dots, n \\ [b_i \leftarrow b_i + a_{ij} x_j \end{bmatrix}$$

Computational Complexity: Flop Count and Order of Complexity

- Real numbers are normally stored in computers in a floating-point format.
- Arithmetic operations that a computer performs on these numbers are called floating-point operations (flops)
- Example: Update $b_i \leftarrow b_i + a_{ij}x_j$
 - I Multiplication + I Addition = 2 flops
 - Matrix-vector multiplication : 2 nm flops or O(nm)
 - For nxn matrix \times (n×1) vector: O(n²) operation
 - Doubling problem size quadruples effort to solve

Matrix-Matrix Multiplication

If A is an n×m matrix, and X is m×p, we can form the product B = AX, which is n×p such that,

Pseudo-code:

2mnp flops

$$b_{ij} = \sum_{k=1}^{m} a_{ik} x_{kj}$$

$$B \leftarrow 0$$
for $i = 1, \dots, n$

$$\begin{bmatrix} \text{for } j = 1, \dots, p \\ & \begin{bmatrix} \text{for } k = 1, \dots, m \\ & \begin{bmatrix} b_{ij} \leftarrow b_{ij} + a_{ik} x_{kj} \end{bmatrix}$$

Square case: O(n³)

Systems of Linear Equations

Consider a system of n linear equations in n unknowns

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$

 $a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = o_n$

Can be expressed as Ax=b such that

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \qquad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \qquad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

Systems of Linear Equations

- Theorem: Let A be a square matrix. The following six conditions are equivalent
 - (a) A^{-1} exists.
 - (b) There is no nonzero y such that Ay = 0.
 - (c) The columns of A are linearly independent.
 - (d) The rows of A are linearly independent.

(e) $\det(A) \neq 0$.

(f) Given any vector b, there is exactly one vector x such that Ax = b.

Methods to Solve Linear Equations

Theoretical: compute A⁻¹ then premultiply by it:

$$A^{-1}A x = A^{-1}b \implies x = A^{-1}b$$

- Practical: A⁻¹ is never computed!
 - Unstable
 - Computationally very expensive
 - Numerical accuracy
- Gaussian elimination ??
 - Computational complexity?
 - Numerical accuracy?
- Explore ways to make this solution simpler

Elementary Operations

- A linear system of equation Ax=b remains the same if we:
 - Add a multiple of one equation to another equation.
 - Interchange two equations.
 - Multiply an equation by a nonzero constant.
- Explore ways of solving the linear system using these elementary operations
- Gaussian elimination is an example of such method

Γ	a_{11}	a_{12}	• • •	a_{1n}	b_1	Γ	a_{11}	a_{12}	a_{13}	• • • •	a_{1n}	b_1
	0	$a^{(1)}$		a ⁽¹⁾	$b^{(1)}$		0	$a_{22}^{(1)}$	$a_{23}^{(1)}$	• • •	$a_{2n}^{(1)}$	$b_2^{(1)}$
		^u 22		u_{2n}			0	0	$a_{33}^{(2)}$	• • •	$a_{3n}^{(2)}$	$b_{3}^{(2)}$
				•			:	•			:	:
L	0	$ a_{n2}^{(2)} $	• • •	$a_{nn}^{(1)}$	$b_n^{(1)}$		· 0	· 0	$a_{n2}^{(2)}$	• • •	$a_{nn}^{(2)}$	$b_n^{(2)}$

Triangular systems of equations

Lower triangular systems

$$G = \begin{bmatrix} g_{11} & 0 & 0 & \cdots & 0 \\ g_{21} & g_{22} & 0 & \cdots & 0 \\ g_{31} & g_{32} & g_{33} & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & 0 \\ g_{n1} & g_{n2} & g_{n3} & \cdots & g_{nn} \end{bmatrix}$$

Consider linear system Gy=b: Forward Substitution

$$y_1 = b_1/g_{11}$$

 $y_2 = (b_2 - g_{21}y_1)/g_{22}$

- Upper triangular system: Backward Substitution
- Efficient computation for such special matrices

Cholesky Decomposition

Cholesky Decomposition Theorem: Let A be a symmetric positive definite matrix. Then A can be decomposed in exactly one way into a product A = R^TR

a_{11}	a_{12}	a_{13}	• • •	a_{1n}										
a_{21}	a_{22}	a_{23}	•••	a_{2n}										
a_{31}	a_{32}	a_{33}	• • •	a_{3n}										
	•	•	·	•										
a_{n1}	a_{n2}	a_{n3}	•••	a_{nn}	J									
		ſ	r_{11}	0	0	• • •	0] [r_{11}	r_{12}	r_{13}	•••	r_{1n}	ĺ
			r_{12}	r_{22}	0	•••	0		0	r_{22}	r_{23}	• • •	r_{2n}	
		=	r_{13}	r_{23}	r_{33}		0		0	0	r_{33}	• • •	r_{3n}	
			•	•	•	••.			• •	•		·.	•	
		L	r_{1n}	r_{2n}	r_{3n}	• • •	r_{nn}		0	0	0		r_{nn}	

Solution Using Cholesky Decomposition

- Consider problem Ax=b
- Then, use Choleskly decomposition to put $A = R^T R$
- Then, $Ax = b \implies R^T Rx = b$
- Let Rx = y then solve $R^Ty = b$
 - triangular system of equations that is easy to solve
- Then, solve Rx=y
 - Another triangular system of equations that is easy to solve

LU Decomposition

 LU Decomposition Theorem: Let A be an n×n matrix whose leading principal submatrices are all nonsingular. Then A can be decomposed in exactly one way into a product A=LU as:

Ł	ωΠ	\boldsymbol{u}_{12}	u 13		u_{1n}										
ŀ	a_{21}	a_{22}	a_{23}	• • •	a_{2n}										
	a_{31}	a_{32}	a_{33}	• • •	a_{3n}										
	÷	•	•		•										
L	a_{n1}	a_{n2}	a_{n3}	• • •	a_{nn}										
				[1	0	0	•••	0]	Г	u_{11}	u_{12}	u_{13}	•••	u_{1n} -]
				l_{21}	1	0	• • •	0		0	u_{22}	u_{23}	•••	u_{2n}	
			=	l ₃₁	l_{32}	1	• • •	0		0	0	u_{33}	•••	u_{3n}	
				-	:	÷		:		÷		:		:	
				l_{n1}	l_{n2}	l_{n3}	•••	1		0	0	0		u_{nn}	

Vector Norm

Measure of distance

Definition:

A norm (or vector norm) on \mathbb{R}^n is a function that assigns to each $x \in \mathbb{R}^n$ a non-negative real number ||x||, called the norm of x, such that the following three properties are satisfied for all $x, y \in \mathbb{R}^n$ and all $\alpha \in \mathbb{R}$:

$$||x|| > 0 \text{ if } x \neq 0, \text{ and } ||0|| = 0 \quad (\text{positive definite property}) \quad (2.1.1)$$
$$||\alpha x|| = |\alpha| ||x|| \quad (\text{absolute homogeneity}) \quad (2.1.2)$$
$$||x + y|| \le ||x|| + ||y|| \quad (\text{triangle inequality}) \quad (2.1.3)$$

Example: Euclidean norm

$$\|x\|_{2} = \left(\sum_{i=1}^{n} |x_{i}|^{2}\right)^{1/2}$$

Vector Norm

General definition of p-norm:

$$||x||_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p}$$

- Examples:
 - 2-norm: Euclidean distance
 - I-norm: (taxicab norm or Manhattan norm)

$$||x||_1 = \sum_{i=1}^n |x_i|$$

▶ ∞-norm:

$$\|x\|_{\infty} = \max_{1 \le i \le n} |x_i|$$

Vector Norm

• Example:

• draw the circles defined by the following equations: $||x||_1 = 1$, $||x||_2 = 1$, $||x||_{\infty} = 1$

Matrix Norm

- A matrix norm is a function that assigns to each A∈ℜ^{nxn} a real number ||A|| such that:
 - $||A|| > 0 \text{ if } A \neq 0$ (2.1.18)
 - $\|\alpha A\| = |\alpha| \|A\|$ (2.1.19)
- $||A + B|| \leq ||A|| + ||B||$ (2.1.20)
 - $||AB|| \leq ||A|| ||B||$ (submultiplicativity) (2.1.21)
- Example: Frobenius norm (commonly used)

$$\|A\|_{F} = \left(\sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|^{2}\right)^{1/2}$$

Matrix Norm

- Induced (operator) norm $||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||}$
- Special case: induced p-norm or Matrix p-norm $\|A\|_{p} = \max_{x \neq 0} \frac{\|Ax\|_{p}}{\|x\|_{r}}$
 - Theoretically important
 - Expensive to compute
 - Frobenius norm is NOT the matrix 2-norm (=max eigenvalue)
- Theorem: $||Ax|| \le ||A|| ||x||$
- Examples:

(a)
$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|.$$
 (b) $||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^n |a_{ij}|.$

Condition Number

Consider a linear system equation and its perturbation: Ax = b and A(x + δx) = b + δb
Then, Aδx = δb or δx = A⁻¹δb
Hence, ||δx|| ≤ ||A⁻¹|| ||δb||
Also, ||b|| ≤ ||A|| ||x||
Combining equations:

$$\frac{\|\delta x\|}{\|x\|} \le \|A\| \|A^{-1}\| \frac{\|\delta b\|}{\|b\|}$$

Define the condition number as:

$$\kappa(A) = \|A\| \|A^{-1}\|$$

Condition Number

- Using induced matrix norm, $\kappa(A) \ge I$
- Matrices with $\kappa(A) \ge 1000$ are considered ill-Conditioned
 - Numerical errors in solving Ax=b are amplified in the solution by the condition number
- Estimation of condition number: from eigenvalues: divide maximum eigenvalue by the minimum eigenvalue or

 $\kappa(A) = \lambda_{\max} / \lambda_{\min}$

- For singular matrices, $\kappa(A) = \infty$
- Condition number improvement by scaling equations possible

Example:
$$\begin{bmatrix} 1 & 0 \\ 0 & \epsilon \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ \epsilon \end{bmatrix}$$

Roundoff Errors

- Floating point number presentation $.123456 \times 10^7$
 - Mantissa .123456
 - Exponent 7
- Problems occur when adding numbers of very different scales
- If a computation results in a number that is too big to be represented, an overflow is said to have occurred.
- If a number that is nonzero but too small to be represented is computed, an underflow results.
- Machine epsilon: smallest positive floating point number s such that fl(1+s)>1 (Homework to compute)

Sensitivity Analysis

- Using perturbation analysis, show how stable the solution is for a particular matrix A and machine precision s.
 - Condition number describes the matrix only
 - Be careful with choice of single vs. double precision since time gain may end up causing major errors in result !

Least-Squares Problem

 To find an optimal solution to linear system of equations Ax=b that does not have to be square and it is desired to minimize the 2-norm of the residual

$$\begin{bmatrix} \phi_1(t_1) & \phi_2(t_1) & \cdots & \phi_m(t_1) \\ \phi_1(t_2) & \phi_2(t_2) & \cdots & \phi_m(t_2) \\ \phi_1(t_3) & \phi_2(t_3) & \cdots & \phi_m(t_3) \\ \vdots & \vdots & & \vdots \\ \phi_1(t_n) & \phi_2(t_n) & \cdots & \phi_m(t_n) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{bmatrix}$$

n>m : overdetermined system
n<m: underdetermined system

(least-squares solution)
(minimum-norm solution)

Orthogonal Matrices

An orthogonal matrix has its inverse the same as its transpose

$$QQ^T = I \qquad Q^TQ = I \qquad Q^T = Q^{-1}$$

- Determinant = I
- Condition number = I (ideal)
- Orthogonal transformations preserve length
- Orthogonal transformations preserve angle
- Example: rotators and reflectors

QR Decomposition

- Any nxn matrix A can be decomposed as a product QR where Q is an orthogonal matrix and R is an upper triangular matrix
- Solution of Ax=b is again straightforward:
 - QRx=b
 - Let Rx = y and solve Qy = b (solution is simply $y = Q^T b$)
 - Then solve triangular system Rx=y as before
- Advantage of QR solution: excellent numerical stability
- Overdetermined case (A is nxm with n>m): QR decomposition is still possible with :

$$R = \left[\begin{array}{c} \hat{R} \\ 0 \end{array} \right]$$

Singular Value Decomposition (SVD)

Let A be an nxm nonzero matrix with rank r. Then A can be expressed as a product:

$$A = U\Sigma V^T$$

Where:

- U is an nxn orthogonal matrix
- V is an mxm orthogonal matrix
- > Σ is an nxm diagonal matrix of singular values in the form:

Solution of Least Squares Using SVD

Condition number can be shown to be equal to:

$$\kappa_2(A) = \frac{\sigma_1}{\sigma_n}$$

- In order to improve condition number, we can solve the equation after replacing the smallest singular values by zero until the condition number is low enough
 - Regularization of the ill-conditioned provlem
 - "Pseudo-inverse" or "Moore-Penrose generalized inverse"

$$A^{\dagger} = V \Sigma^{\dagger} U^T$$

Highest numerical stability of all methods but O(n³)

Computational Complexity

- Cholesky's algorithm applied to an n×n matrix performs about n³/3 flops.
- LU based decomposition applied to an n×n matrix performs about 2n³/3 flops.
- Gaussian elimination applied to an n×n matrix performs about 2n³/3 flops.
- QR decomposition: 2nm²-2m³/3 flops
- SVD has O(n³) flops
- All are still too high for some problems
 - Need to find other methods with lower complexity

Iterative Solution Methods

- Much less computations of O(n²)
- Steepest descent based methods
- Conjugate gradient based methods

Steepest Descent Methods

Looks for the error b-Ax and tries to remove this error in its direction

$$r \leftarrow r - Ax$$

$$p \leftarrow ?$$

$$k \leftarrow 0$$

do until satisfied or $k = l$

$$\begin{cases} q \leftarrow Ap \\ \alpha \leftarrow p^T r / p^T q \\ x \leftarrow x + \alpha p \\ r \leftarrow r - \alpha q \\ p \leftarrow ? \\ k \leftarrow k + 1 \end{cases}$$

if not satisfied, set flag

Set $p \leftarrow r$ to get steepest descent.

Conjugate Gradient (CG) Method

- Suppose we want to solve the following system of linear equations Ax = b where the *n*-by-*n* matrix A is symmetric (i.e., A^T = A), positive definite (i.e., x^TAx > 0 for all non-zero vectors x in Rⁿ), and real.
- We say that two non-zero vectors u and v are conjugate (with respect to A) or mutually orthogonal if: u^TAv=0

not related to the notion of complex conjugate.

Suppose that {p_k} is a sequence of n mutually conjugate directions. Then the p_k form a basis of Rⁿ, so we can expand the solution x_{*} of Ax = b in this basis:

$$\mathbf{x}_* = \sum_{i=1}^n \alpha_i \mathbf{p}_i$$

Conjugate Gradient (CG) Method

• To compute the coefficients:

$$\begin{aligned} \mathbf{x}_{*} &= \sum_{i=1}^{n} \alpha_{i} \mathbf{p}_{i} \\ \mathbf{b} &= \mathbf{A} \mathbf{x}_{*} = \sum_{i=1}^{n} \alpha_{i} \mathbf{A} \mathbf{p}_{i}. \\ \mathbf{p}_{k}^{\mathrm{T}} \mathbf{b} &= \mathbf{p}_{k}^{\mathrm{T}} \mathbf{A} \mathbf{x}_{*} = \sum_{i=1}^{n} \alpha_{i} \mathbf{p}_{k}^{\mathrm{T}} \mathbf{A} \mathbf{p}_{i} = \alpha_{k} \mathbf{p}_{k}^{\mathrm{T}} \mathbf{A} \mathbf{p}_{k}. \\ & \text{(since } \mathbf{p}_{i} \text{ and } \mathbf{p}_{k}^{\mathrm{H}} \text{ are mutually conjugate for } i \neq k) \end{aligned}$$

$$\alpha_k = \frac{\mathbf{p}_k^{\mathrm{T}} \mathbf{b}}{\mathbf{p}_k^{\mathrm{T}} \mathbf{A} \mathbf{p}_k} = \frac{\langle \mathbf{p}_k, \mathbf{b} \rangle}{\langle \mathbf{p}_k, \mathbf{p}_k \rangle_{\mathbf{A}}} = \frac{\langle \mathbf{p}_k, \mathbf{b} \rangle}{\|\mathbf{p}_k\|_{\mathbf{A}}^2}.$$

Can compute the solution in maximum n iterations!

- Removes the error in "mutually-orthogonal" directions
- Better performance compared to steepest descent

Iterative Conjugate Gradient Method

- Need to solve systems where n is so large
 - Direct method take too much time
- Careful choice of directions
 - Start with Ax-b as p₀
 - Takes a few iterations to reach reasonable accuracy

$$r \leftarrow r - Ax$$

$$p \leftarrow r$$

$$\nu \leftarrow r^{T}r$$

$$k \leftarrow 0$$
do until converged or $k = l$

$$\begin{bmatrix} q \leftarrow Ap \\ \mu \leftarrow p^{T}q \\ \alpha \leftarrow \nu/\mu \\ x \leftarrow x + \alpha p \\ r \leftarrow r - \alpha q \\ \nu_{+} \leftarrow r^{T}r \\ \beta \leftarrow \nu_{+}/\nu \\ p \leftarrow r + \beta p \\ \nu \leftarrow \nu_{+} \\ k \leftarrow k + 1 \end{bmatrix}$$
if not converged, set flag

Octave/Matlab code available at http://en.wikipedia.org/wiki/Conjugate_gradient_method

Vector Calculus

Let x and y be general vectors of orders n and m respective

x₁
y₁

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \qquad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$

Define

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} \stackrel{\text{def}}{=} \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_2}{\partial x_1} & \cdots & \frac{\partial y_m}{\partial x_1} \\ \frac{\partial y_1}{\partial x_2} & \frac{\partial y_2}{\partial x_2} & \cdots & \frac{\partial y_m}{\partial x_2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_1}{\partial x_n} & \frac{\partial y_2}{\partial x_n} & \cdots & \frac{\partial y_m}{\partial x_n} \end{bmatrix}$$

Vector Calculus

Special cases: when x or y are scalars

$$\frac{\partial y}{\partial \mathbf{x}} \stackrel{\text{def}}{=} \begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \frac{\partial y}{\partial x_2} \\ \vdots \\ \frac{\partial y}{\partial x_n} \end{bmatrix} \qquad \frac{\partial \mathbf{y}}{\partial x} \stackrel{\text{def}}{=} \begin{bmatrix} \frac{\partial y_1}{\partial x} & \frac{\partial y_2}{\partial x} & \dots & \frac{\partial y_m}{\partial x} \end{bmatrix}$$

• Other important derivatives:

$$\begin{array}{ccc}
 \mathbf{y} & \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \\
 \mathbf{A}\mathbf{x} & \mathbf{A}^T \\
 \mathbf{x}^T \mathbf{A} & \mathbf{A} \\
 \mathbf{x}^T \mathbf{x} & 2\mathbf{x} \\
 \mathbf{x}^T \mathbf{A}\mathbf{x} & \mathbf{A}\mathbf{x} + \mathbf{A}^T \mathbf{x}
 \end{array}$$

Exercise

- Write a program to compute Machine Epsilon and report your results.
- Look for Octave/Matlab functions that implement the topics discussed in this lecture and provide a list of them.
- Modify the conjugate gradient method described in this lecture to allow using a general real matrix A that is not symmetric or positive definite.
- Implement code for Gaussian elimination, steepest descent and conjugate gradient methods and compare results (time and accuracy) to SVD based solution (pseudo-inverse). Use only a few iterations for iterative methods.
- Use vector calculus to show that the solution of Ax=b for symmetric A minimizes the objective function:

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\mathrm{T}}\mathbf{A}\mathbf{x} - \mathbf{x}^{\mathrm{T}}\mathbf{b}, \quad \mathbf{x} \in \mathbf{R}^{n}.$$

- In all above problems involving linear system solution, use the Hilbert matrix as your A matrix, use a random x vector, compute b=Ax and use A and b to compute as estimate of the x vector then compare it to what you have to test your system
- > You can use available Octave/Matlab functions and write your own code for parts that are not available.