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Definition 

 A Markov model is generally represented as a 
graph containing a set of states represented as 
nodes and a set of transitions with probabilities 
represented by weighted edges. 
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Simulation of Markov Models 
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 We simulate a Markov model by starting at some 
state and moving to successive neighboring states 
by choosing randomly among neighbors according 
to their labeled probabilities.  
 For example, if we start in state q4, then we would have 

probability p1 of moving to q1, p2 of moving to q2, and 
(1-p1-p2) of moving to q3. If we move to q2, then we have 
probability p3 of moving to q1 and (1-p3) of moving to q3, 
and so on. The result is a walk through the state set (e.g., 
q1; q2; q1;  q2; q3; q3; . . .). 

 Resulting sequence of states is called a  

    “Markov chain” 



Markov Model Components 
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 A state set Q={q1; q2; . . . ; qn} 

 A starting distribution Pr{q(0)=qi}= pi  

 Represented by a vector 𝑝  

 A set of transition probabilities:  

 Pr{q(n+1)=qj | q(n)=qi}= pij  

 Represented by a matrix P 

 
This is the definition of  the First Order Markov Model: 

probability of  entering each possible next state dependent  

only on the current state 



Higher Order Markov Models 
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 kth Order Markov Model: 

 Pr{q(n)= qi,n | q(n-1)= qi,(n-1), q(n-2)= qi,(n-2), … , 
            q(n-k)=qi,(n-k)}= pi,j 

 Probability of next state depends on previous k states 

 Note: Any kth-order Markov model can be transformed 
into a first order Markov model by defining a new state 
set Q’=Qk (i.e., each state in Q’ is a set of k states in Q), 
with current state in Q’ being the last k states visited in 
Q. 
 Then a Markov chain in the kth-order model Q—q1; q2; q3; q4; … 

—becomes the chain {q1; q2; . . . ; qk}; {q2; q3; . . . ; qk}; {q3; q4; … ; 
qk}; … in Q’ 

 Ignore higher-order Markov models when talking about theory 



Time Evolution of Markov Models 
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 Although the behavior of Markov models is 
random, it is also in some ways predictable 

 Suppose we have a two-state model: Q={q1; q2}, 
with initial probabilities p1 and p2 and transition 
probabilities p11, p12, p21, and p22 

 Step 0: 

 

 After 1 step: 



Time Evolution of Markov Models 
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 Matrix Notation: 

 

 

 Distribution after n steps: 



Time Evolution: Example 
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Time 0 

Time 1 Time 2 

Time n 



Chapman–Kolmogorov Equations 
9 

 Generalization of how the distribution of states of 
a Markov model evolves over time 

 Suppose we have a Markov model with |Q| states 
where we define pij(n) to be the probability of 
going from state i to state j in exactly n steps 

That is, the probability of getting to state j from state i in (n+m) steps 

is the sum over all possible intermediate states k of the probability of 

getting from i to k in n steps, then from k to j in the remaining m steps 



Stationary Distributions 
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 Look at the evolution of Markov model over really 
long time scale for previous example: 

 

 

 Convergence on a single probability distribution that 
will not change on further multiplication 

 Always converge to the same final distribution vector, 
regardless of our starting point (initial distribution) 

This vector on which the state distribution converges after  

a large number of steps is called the stationary distribution 



Stationary Distributions 
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 Will this property of convergence on a unique 
stationary distribution regardless of starting point 
work for any example? 

 Answer is NO. It is possible that final vector is not unique! 

 Example: 
Start Final 



Stationary Distributions 
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 A Markov model is not even guaranteed to 
converge on any vector 

 Example: 

P= 

Initial Probability 



Ergodicity 
13 

 Ergodicity means that for any two states qi and qj 
there is some sequence of transitions with nonzero 
probability that go from qi to qj   

 Ergodic Markov chain is also sometimes called irreducible 

 Example1  Example 2  Example 3 

Ergodic Not Ergodic Not Ergodic 

Unique  

Stationary Distribution 

No Unique  

Stationary Distribution 

No 

Stationary Distribution 



Eigenvalues and Stationary Distribution 
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 Markov model will converge to a unique 
stationary distribution if its transition matrix has 
exactly one eigenvector with eigenvalue 1=1 and 
has |i| < 1 for every other eigenvector 

 Similar to Power Method of computing maximum 
eigenvalue and its corresponding eigenvector 

 Converges to this eigenvector after all eigenvalues die 
out after k-iterations: i

k= 1 (i=1) or 0 (otherwise)  



Eigenvalues and Stationary Distribution 
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 If a Markov model is not ergodic, then its state set 
can be partitioned into discrete graph components 
unreachable from one another 

 Each such component will have its own eigenvector with 
eigenvalue 1 

 Depending on which component we start in, we may 
converge on any of them 

 Example: Nonergodic Markov model 2  

Are both eigenvector with eigenvalue=1 



Test of Markov Model Convergence 
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 A Markov model is guaranteed to converge on a 
stationary distribution if there exists some integer 
N > 0 such that, 

 

 

 That is, there is some number of steps N such that no 
matter where we start, we have some bounded nonzero 
probability of getting to any given ending position in 
exactly N steps. 



Mixing Time 
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 Informally, the mixing time is the time needed for 
the Markov model to get close to its stationary 
distribution 

 if we want to run the model long enough for the 
transients to die away by some factor r, then we 
need to run for a number of rounds k such that, 

 Assume 1=1 and |i| < 1, i≠1 



Assignments 

 For each of the following models: 

 Determine whether the following Markov models have 
stationary distributions  

 Estimate stationary distributions (if available) 

 Compare Stationary distributions to eigenvector 
corresponding to maximum eigenvalue (if available) 

 Estimate mixing time for transients to die out by a factor 
of 1/100 
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𝑃1 =
1 0.2 0.1
0 0.6 0.2
0 0.2 0.7

 𝑃3 =
0.6 0.4
0.4 0.6

 

𝑃4 =
1 0
0 1

 𝑃2 =
1 0 0
0 0.8 0.3
0 0.2 0.7

 

Assume initial state of q1 

for all models 


