BIOMEDICAL ENGINEERING DEPARTMENT CAIRO UNIVERSITY

BIOMEDICAL DIGITAL SIGNAL PROCESSING FINAL EXAM

Time Allowed: 2 Hours – Maximum Number of Points: 60 – Solve All Questions

PART I: Design Problems

1. [4 Points] Assume the received signal to have a bandwidth of 1 MHz around a center frequency of 10 MHz. Design a suitable and efficient sampling schemes using both a single channel or quadrature sampling.

2. [4 Points] Describe a methodology to estimate an accurate power spectrum of a signal under the following constraints:

- Sampling rate of signal is 1kHz
- Sampling window length is 20 sec.
- Desired resolution in the frequency domain is 0.2 Hz

3. [4 Points] Design a suitable digital signal processor to compute the spectrogram given the following specifications:

- The data are sampled at a rate of 3000 samples/second.
- Spectrogram time-domain window is 256-point windows (i.e., the same as the length in spectral direction is 256 points).
- Number of windows processed per second is 30

4. [4 Points] Describe how to implement a technique to extract a model for a given biological signal. Assume all the missing information.

5. [4 Points] Describe how to design an optimal filter in the following cases:

- If the noise is stationary and known to be white Gaussian noise.
- If the noise is known to be white Gaussian noise but with time-varying parameters.

6. [4 Points] Describe how to design an optimal FIR filter to satisfy the following frequency domain response characteristics:

Frequency	0.15π	0.25π	0.6π	0.8π
Response	1	0.9	0.2	0.1

PART II: Miscellaneous Problems

7. [8 Points] It is desired to transform the following analog filter to a digital filter:

$$H(s) = \frac{s+2}{s^2+3s+3}$$

Assume the sampling rate to be 100Hz. Calculate the digital filter transfer function.

8. [4 Points] Given an FIR filter with h(-2)=1, h(1)=0,h(0)=0,h(1)=-1, calculate the output of filtering a periodic sequence x with period described as: x(0)=1, x(1)=2, x(2)=3, x(3)=4.

9. [5 Points] For each of the following systems, determine whether or not the system is linear:

(a)
$$y(n) = T[x(n)] = \sum_{k=0}^{k=n} (k+1) \cdot x(k)$$

(b) $y(n) = T[x(n)] = \max_{n+1>k>n-1} \{x(k)\}$
(c) $y(n) = T[x(n)] = 2x(n-1) + 3x(n-2) + 2x(0)$
(d) $y(n) = T[x(n)] = 10(x(n) + x(n+1))$
(e) $y(n) = T[x(n)] = \sum_{k=-\infty}^{\infty} g(k) \cdot x(n-k)$

10. [3 Points] Let h(n) denote the impulse response of a 1-D low-pass filter. Show using Fourier domain analysis that the filter g(n) defined as: $g(n) = (-1)^n \cdot h(n)$ represents a high-pass filter.

11. [4 Points] Consider the linear system described by the following equation:

y(n) = x(n) + x(n-1) - y(n-2) - y(n-3)

Derive the linear system transfer function. Derive the coefficients of an inverse filter that would enable the estimation of x(n) given y(n). Comment on the stability characteristics of this filter.

12. [6 Points] Obtain the inverse z-transformation for the following:

a) $H(z) = 1 + 2z^{-3} + 0.25z^{-5}$ b) $H(z) = 2/(3 + 2z^{-1}), |z| > 1$ c) $H(z) = (2 - z^{-1})/(2 - 3z^{-1} + z^{-2}), |z| > 1$

13. [6 Points] In an embedded DSP system, a DSP processor that allows real time processing of data. The DSP system computes the spectrogram for a color Doppler system under the following conditions: window size= 256, number of windows to compute per second=256, a hamming window is used in each case and averaging is not used. Estimate a suitable processing power for this processor.

Best of Luck!