The factor $\delta(R - x \cos \theta - y \sin \theta)$ is zero everywhere except where its argument is zero, which is along the straight line $x \cos \theta + y \sin \theta = R$ (Fig. 13.8). This straight line L represents the slit when it is at a perpendicular distance R from the origin and inclined at an angle θ to the y-axis. If θ is kept fixed, say at a value θ_i, while R is varied, then the integral $g_{\theta_i}(R)$ constitutes the projection of the density distribution $f(x,y)$ onto the line $\theta = \theta_i$ as a function of R. The resulting profile is referred to as a single scan.

The practical computational method for inversion was arrived at by Fourier transforming the Radon integral equation, finding a method of solution, and then retransforming the steps to end up with data-plane operations in which numerical Fourier transformation is actually dispensed with. The technique, known as modified back-projection (Bracewell and Riddle, 1967), was developed in connection with radioastronomical imaging where a distributed source of radiation is scanned by an antenna that receives from a narrow strip of sky whose orientation θ can be varied between scans.

The inversion procedure derives from a remarkable connection that exists between the Fourier, Abel, and Hankel transforms and from a generalization known as the Projection-Slice Theorem.

The Abel-Fourier-Hankel ring of transforms. Starting with an even function $f(r)$, if we take the Abel transform, then take the Fourier transform, and finally take the Hankel transform, we return to the original function $f(r)$ as shown in Bracewell (1956). For example, starting with $f(r) = \delta(r - a)$, which is a ring impulse located on the circle $r = a$, we take the Abel transform (Table 13.9) to get $2a/\sqrt{a^2 - x^2} \Pi(x/2a)$, the Fourier transform of which is $2\pi a j_0(2\pi a s)$ (Pictorial Dictionary). From Table 13.2 we verify that the Hankel transform of the Bessel function is $\delta(r - a)$, the function we started with.

Projection-slice theorem. When a two-dimensional density distribution is a function of radius alone, all three of the above transformations are one-dimensional but $f(r)$ can be generalized to become a function $f(x,y)$ of both x and y and
that was the Hankel transform above generalizes to a function $F(u,v)$ of u and v. These two two-dimensional functions constitute a two-dimensional Fourier transform pair, as explained earlier in the chapter in connection with the Hankel transformation. One way of thinking about Fourier transformation in two dimensions is to note that $F(u,0)$, the slice through $F(u,v)$ along the u-axis, is given by putting $v = 0$ in the two-dimensional Fourier transform definition to get

$$F(u,0) = \left[\int_{-\infty}^{\infty} f(x,y) dy \right] e^{-i2\pi u x} dx.$$

The item in square brackets is the projection of $f(x,y)$ on the x-axis. The remaining integral with respect to x simply transforms the projection. In consequence, when $f(x, y)$ is given, one slice through $F(u,v)$, namely the one along the u-axis, is obtainable by first projecting $f(x,y)$ onto its x-axis and then taking a one-dimensional Fourier transform. The Projection-Slice Theorem says that the slice through $F(u,v)$ at any angle θ_1 in the (u,v)-plane, i.e., along a line parallel to the axis R in the (x,y)-plane, is obtainable as the Fourier transform of the projection of $f(x,y)$ onto the axis R in the (x,y)-plane (Bracewell, 1956).

Reconstruction by modified back projection. Now the process of tomography is to project a certain $f(x,y)$ at various angles θ_i preferably numerous and equispaced; consequently those parts of the transform $F(u,v)$ can be deduced that lie on slices at corresponding angles. From knowledge of $F(u,v)$ one can recover $f(x,y)$ by two-dimensional Fourier transformation; but to do this one must first interpolate onto a square grid in the (u,v)-plane in order to be able to utilize available algorithms. Such numerical interpolation proves to take more time than the transformation. To avoid interpolation we note that in the (u,v)-plane, the data points resulting from the various one-dimensional transformations lie on diverging spokes $\theta = \text{const}$. The density of points is thus inversely proportional to radius, a nonuniformity that can be corrected for by multiplication by the absolute value of radius in the (u,v)-plane. Let M be a spatial frequency in the (u,v)-plane beyond which no content is expected, and let $q = \sqrt{u^2 + v^2}$. Then the correction factor is $\Pi(q/2M) = \Lambda(q/M)$. After such correction a two-dimensional Fourier transform would deliver the desired $f(x,y)$.

But the multiplicative correction to values along the slice in the (u,v)-plane corresponds to a rather simple convolution operation on the original projections $g_\phi(R)$ in the data domain, an operation that produces a modified scan

$$\hat{g}_\phi(R) = g_\phi(R) * (2M \text{sinc} 2M R - M \text{sinc}^2 M R).$$

Thus the inversion procedure for the Radon transform is (a) to modify each measured scan by simple convolution to get $\hat{g}_\phi(R)$, (b) to back-project, and (c) to accumulate the separate back projections over the (x,y)-plane. Back projection is to distribute the modified scan $\hat{g}_\phi(R)$ uniformly over the (x,y)-plane in the direction perpendicular to the R-axis. For more details see Bracewell (1995) and Deans (1983).