Medical Equipment II - 2010 Chapter 15: Interaction of Photons and Charged Particles with Matter

Professor Yasser M. Kadah

Web: http://ymk.k-space.org/courses.htm

Photon Interactions

- A number of different ways in which a photon can interact with an atom
- Notation: (γ, bc)
 - γ: incident photon
 - *b and c* are the results of the interaction
 - Ex1: (γ, γ) initial and final photons of same energy
 - Ex2: (γ , e) photon absorbed and electron emerges.

Photoelectric Effect

- Photon is absorbed by the atom and a single electron is ejected (γ, e)
- Initial photon energy hv₀ is equal to the final energy

$$h\nu_0 = T_{\rm el} + B.$$

• $T_{e'}$: Kinetic energy of electron, *B*: binding energy • Photoelectric cross section is τ .

Compton and Incoherent Scattering

 Original photon disappears and photon of lower energy and electron emerge. (γ, γ' e)

$$h\nu_0 = h\nu + T_{\rm el} + B.$$

- Compton cross section for scattering from a single electron is σ_{C} .
- Incoherent scattering is Compton scattering from all the electrons in the atom, with cross section σ_{incoh} .

Coherent Scattering

- Photon is elastically scattered from the entire atom.
 - Internal energy of atom does not change
 - Equal energy of incident and scattered photons

$$h\nu_0 = h\nu.$$

Cross section for coherent scattering is σ_{coh} .

Inelastic Scattering

- Final photon with different energy from the initial photon (γ , γ') without emission of electron.
 - Internal energy of target atom increases or decreases by a corresponding amount.
 - Examples: fluorescence and Raman scattering
 - In fluorescence, $(\gamma, \gamma' \gamma'')$, $(\gamma, 2\gamma)$, $(\gamma, 3\gamma)$ possible

Pair Production

- High energy (γ, e⁺ e⁻) interaction
- Since it takes energy to create negative electron and positive electron or positron, their rest energies must be included in the energy balance

$$h\nu_0 = T_+ + m_e c^2 + T_- + m_e c^2 = T_+ + T_- + 2m_e c^2.$$

Cross section for pair production is κ.

Energy Dependence

- Excited atom is left with a hole in some electron shell.
 - Similar state when an electron is knocked out by a passing charged particle or by certain transformations in the atomic nucleus
- Two competing processes:
 - Radiative transition: photon is emitted as an electron falls into the hole from a higher level,
 - Nonradiative or radiationless transition: emission of an Auger electron

Process	Total photon energy	Total electron energy	Atom excitation energy	Sum
Before photon strikes atom	h u	0	0	$h\nu$
After photoelectron is ejected [Fig. 15.12(a)]	0	$h\nu - B_K$	B_K	$h\nu$

Case 1: Deexcitation by the emission of a K and an L photon

Emission of K fluorescence	$B_K - B_L$	$h\nu - B_K$	B_L	h u
photon [Fig. $15.12(b)$]				
Emission of L fluorescence	$B_K - B_L$,	$h\nu - B_K$	0	h u
photon	B_L			

Case 2: Deexcitation by emission of an Auger electron from the L shell

Emission of Auger electron	0	$h\nu - B_K,$	$2B_L$	h u
[Fig. 15.12(c)]		$B_K - 2B_L$		
First L -shell hole filled by	B_L	$h\nu - B_K,$	B_L	h u
fluorescence		$B_K - 2B_L$		
Second L -shell hole filled	B_L, B_L	$h\nu - B_K,$	0	h u
by fluorescence		$B_K - 2B_L$		

- Probability of photon emission is called the fluorescence yield, W_K .
 - Auger yield is $A_K = 1 W_K$.
 - L or higher shells: consider yield for each subshell

Coster–Kronig transitions

- Radiationless transitions within the subshell
- Hole in L_I-shell can be filled by an electron from the L_{III}-shell with the ejection of an M-shell electron

Super-Coster–Kronig transitions

- Involves electrons all within same shell (e.g., all M)
- Auger cascade
 - Bond breaking important for radioactive isotopes

Energy Transfer from Photons to Electrons

Problem Assignments

Information posted on web site