
### Medical Equipment II - 2010 Chapter 15: Interaction of Photons and Charged Particles with Matter(2)

**Professor Yasser M. Kadah** 

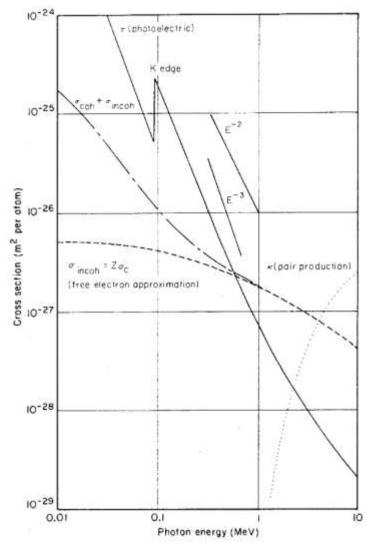
Web: http://ymk.k-space.org/courses.htm



### **Photoelectric Effect**

- ( $\gamma$ , e) Photon interaction  $h\nu_0 = T_{\rm el} + B$ 
  - $T_{e'}$ : Kinetic energy of electron, *B*: binding energy
- Binding energy depends on shell

 $\circ$   $B_{K}$ ,  $B_{L}$ , and so on.

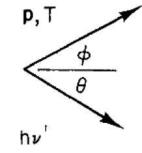

Photoelectric cross section is  $\tau$ .

$$\tau = \tau_K + \tau_L + \tau_M + \cdots$$

## **Photoelectric Effect**

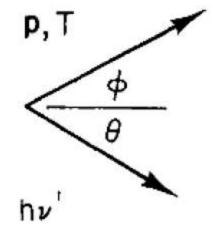
- For photon energies too small to remove an electron from the K shell,  $\tau_K$  is zero.
  - o K edge
  - Can still remove L electron
- Model around 100 KeV:

$$\tau \propto Z^4 E^{-3}.$$




( $\gamma$ ,  $\gamma' e$ ) photon interaction  $h\nu_0 = h\nu + T_{\rm el} + B$ . Photon kinematics: Special relativity

$$E^2 = (pc)^2 + (m_0 c^2)^2.$$


$$E = h\nu =$$

- = pc.
- Conservation of energy and momentum can be used to derive angle and energy of scattered photon



Conservation of momentum in direction of the incident photon:

$$\frac{h\nu_0}{c} = \frac{h\nu'}{c}\cos\theta + p\cos\phi.$$



Conservation of momentum at 90°

$$\frac{h\nu'}{c}\sin\theta = p\sin\phi.$$

Conservation of energy

$$h\nu_0 = h\nu' + T.$$

Electron energy:  
$$E = T + m_e c^2$$

Combining with special relativity:

$$E^2 = (pc)^2 + (m_0c^2)^2.$$
  $(pc)^2 = T^2 + 2m_ec^2T.$ 

**P**, T

hν

Solve 4 equations in 4 unknowns

Unknowns: *Τ*, ν', θ, φ

Wavelength of scattered photon:

$$\lambda' - \lambda_0 = \frac{c}{\nu'} - \frac{c}{\nu_0} = \frac{h}{m_e c} (1 - \cos \theta).$$

- Difference is independent of incident wavelength
- Compton length of electron  $h/m_ec$
- Energy of scattered photon

$$h\nu' = \frac{m_e c^2}{1 - \cos\theta + 1/x}$$

$$x = \frac{h\nu_0}{m_e c^2}.$$

Energy of recoil electron  $T = \frac{h\nu_0(2x\cos^2\phi)}{(1+x)^2 - x^2\cos^2\phi} = \frac{h\nu_0x(1-\cos\theta)}{1+x(1-\cos\theta)}.$ 

Dependence on angle  $\theta$ 

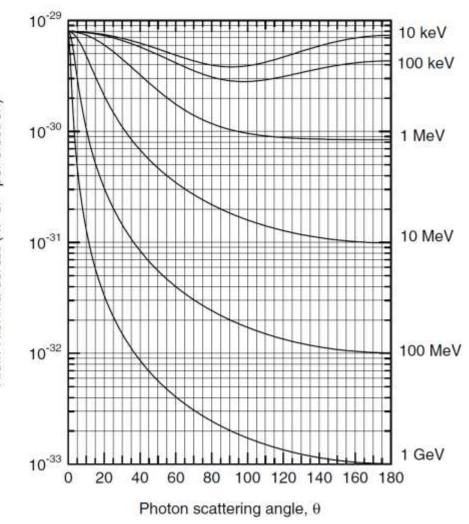
θ

180

### Compton Scattering: Cross Section

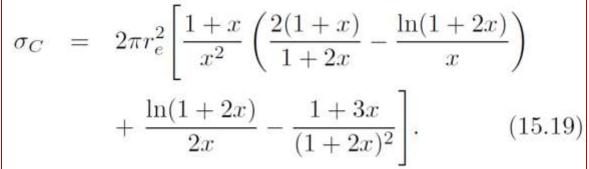
- Compton cross section  $\sigma_{C}$ .
- Quantum mechanics: Klein–Nishina Formula

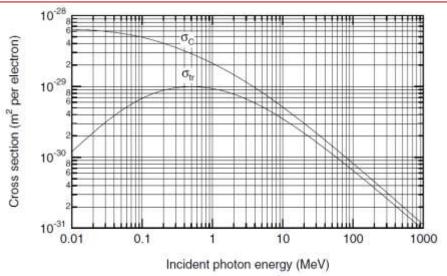
$$\frac{d\sigma_C}{d\Omega} = \frac{r_e^2}{2} \left[ \frac{1 + \cos^2\theta + \frac{x^2(1 - \cos\theta)^2}{1 + x(1 - \cos\theta)}}{\left[1 + x(1 - \cos\theta)\right]^2} \right]$$


• Classical radius of electron

$$r_e = \frac{e^2}{4\pi\epsilon_0 m_e c^2} = 2.818 \times 10^{-15} \text{ m}.$$

### -Compton Scattering: **Cross Section**


- $\sigma_{C}$  peaked in the forward direction at forward direction at forward direction at figh energies. As  $x \to 0$  (high energy):  $T_{C} = \frac{r_{e}^{2}(1 + \cos^{2}\theta)}{2}$
- As  $x \to 0$  (high

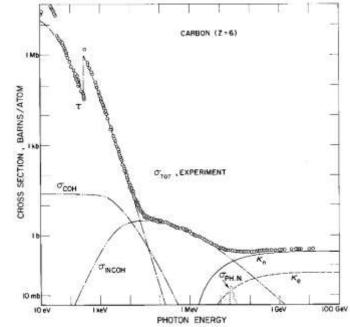

$$\frac{d\sigma_C}{d\Omega} = \frac{r_e^2(1+\cos^2\theta)}{2}$$



### Compton Scattering: Cross Section

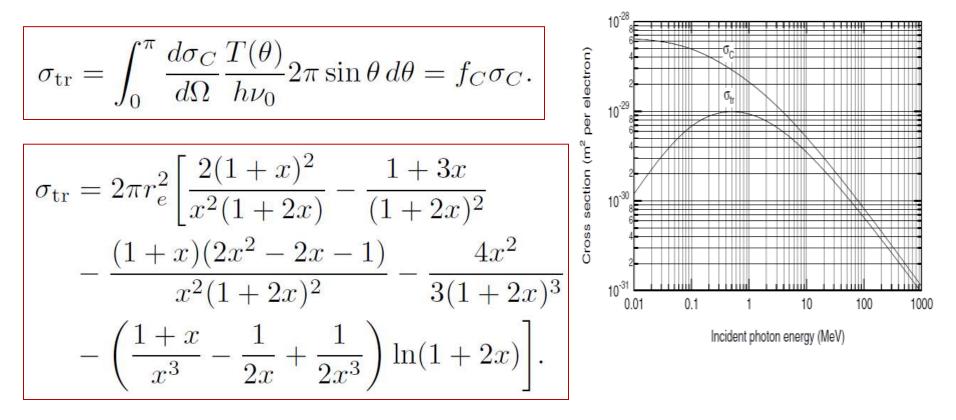
Integrated over all angles






### Compton Scattering: Incoherent Scattering

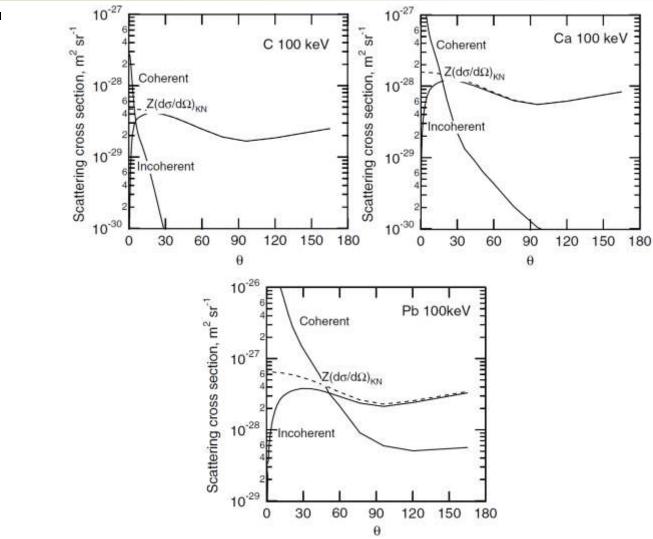
- $\sigma_c$  is for a single electron.
- For an atom containing Z electrons, maximum value of  $\sigma_{incoh}$  occurs if all Z electrons take part in Compton scattering


$$\sigma_{\text{incoh}} \leq Z \sigma_C.$$

 For carbon, equality near 10 keV.

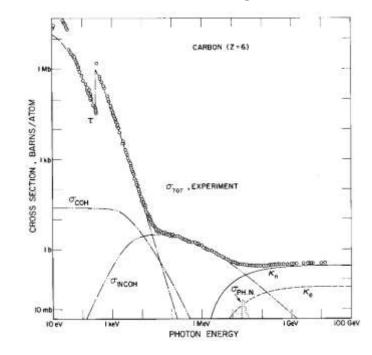


### Compton Scattering: Energy Transferred to Electron


#### Integrating T equation over all angles



### **Coherent Scattering**


- ( $\gamma$ ,  $\gamma$ ) photon interaction.
- Primary mechanism is oscillation of electron cloud in the atom in response to the electric field of the incident photons.
- Cross section for coherent scattering is  $\sigma_{coh}$ .
  - $\sigma_{coh}$  peaked in the forward direction because of interference effects between EM waves scattered by various parts of the electron cloud.
  - Peak is narrower for elements of lower atomic number and for higher energies.

### **Coherent Scattering**



### **Coherent Scattering**

- If wavelength of incident photon >> size of the atom, all Z electrons behave like a single particle with charge –Ze and mass Zm<sub>e</sub>.
  - Limit is almost  $Z^2 \sigma_c$



# **Pair Production**

• High energy ( $\gamma, e^{+} e^{-}$ ) interaction  $h\nu_{0} = T_{+} + m_{e}c^{2} + T_{-} + m_{e}c^{2} = T_{+} + T_{-} + 2m_{e}c^{2}$ .

- One can show that momentum is not conserved by the positron and electron if the former equation is satisfied.
  - Interaction takes place in the Coulomb field of another particle (usually a nucleus) that recoils to conserve momentum.
  - Cross section for pair production involving nucleus is  $\kappa_n$ .

# **Pair Production**

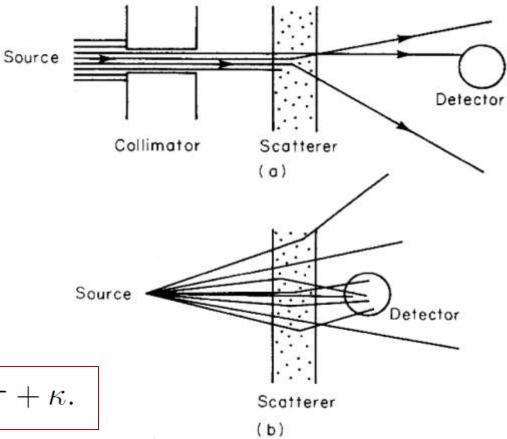
- Pair production with excitation or ionization of the recoil atom can take place at energies that are only slightly higher than the threshold
  - Cross section does not become appreciable until the incident photon energy exceeds 2.04 MeV
  - A free electron (rather than a nucleus) recoils to conserve momentum.

•  $(\gamma, e^+ e^- e^-)$  process : Triplet production.

Total cross section:

$$\kappa = \kappa_n + \kappa_e$$

### Linear Attenuation Coefficient


Narrow- vs. Broad-beam geometries

o Idealization ?

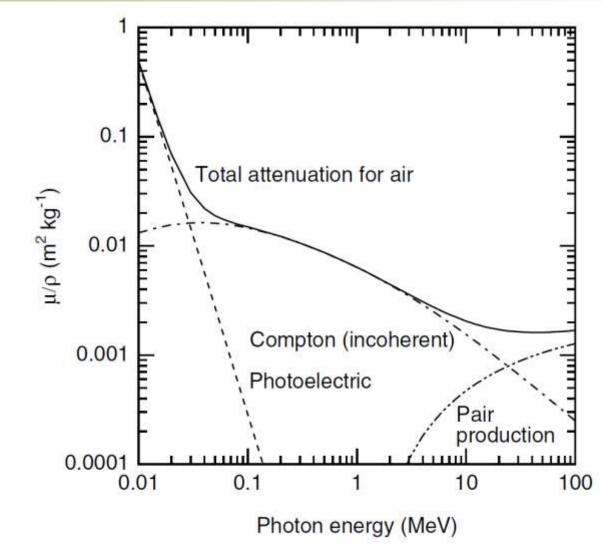
$$dN = -\frac{\sigma_{\rm tot} N_A \rho}{A} N \, dz,$$
$$N(z) = N_0 e^{-\mu_{\rm atten} z}$$

$$\mu_{\rm atten} = \frac{N_A \rho \sigma_{\rm tot}}{A}.$$

$$\sigma_{\rm tot} = \sigma_{\rm coh} + \sigma_{\rm incoh} + \tau + \kappa.$$



## **Mass Attenuation Coefficient**


# Mass attenuation coefficient Independent of density: very useful in gases

$$\frac{\mu_{\text{atten}}}{\rho} = \frac{N_A \sigma_{\text{tot}}}{A}. \qquad \blacktriangleright \qquad N(\rho z) = N_0 e^{-(\mu_{\text{atten}}/\rho)(\rho z)}.$$

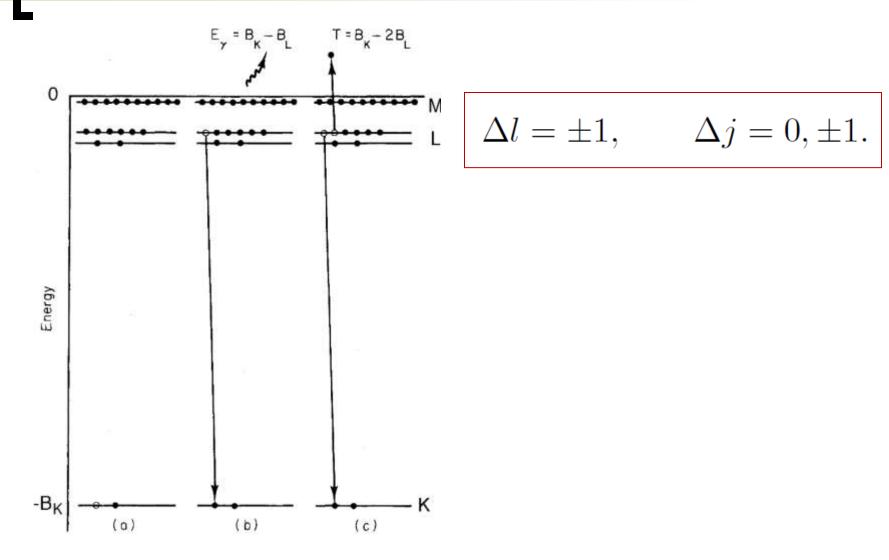
 Additional advantage in incoherent scattering: Z/A is nearly ½ for all elements except H<sup>1</sup>: minor variations over periodic table

$$\frac{\mu_{\text{atten}}}{\rho} = \frac{Z\sigma_C N_A}{A}$$

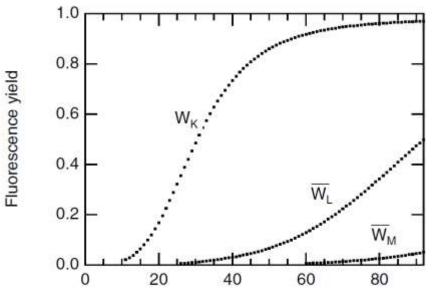
### **Mass Attenuation Coefficient**



- Excited atom is left with a hole in some electron shell.
  - Similar state when an electron is knocked out by a passing charged particle or by certain transformations in the atomic nucleus
- Two competing processes:
  - Radiative transition: photon is emitted as an electron falls into the hole from a higher level,
  - Nonradiative or radiationless transition: emission of an Auger electron


| Process                                           | Total<br>photon<br>energy | Total<br>electron<br>energy | Atom<br>excitation<br>energy | Sum    |
|---------------------------------------------------|---------------------------|-----------------------------|------------------------------|--------|
| Before photon strikes atom                        | $h\nu$                    | 0                           | 0                            | $h\nu$ |
| After photoelectron is<br>ejected [Fig. 15.12(a)] | 0                         | $h\nu - B_K$                | $B_K$                        | $h\nu$ |

Case 1: Deexcitation by the emission of a K and an L photon


| Emission of $K$ fluorescence | $B_K - B_L$   | $h\nu - B_K$ | $B_L$ | h u |
|------------------------------|---------------|--------------|-------|-----|
| photon [Fig. $15.12(b)$ ]    |               |              |       |     |
| Emission of $L$ fluorescence | $B_K - B_L$ , | $h\nu - B_K$ | 0     | h u |
| photon                       | $B_L$         |              |       |     |

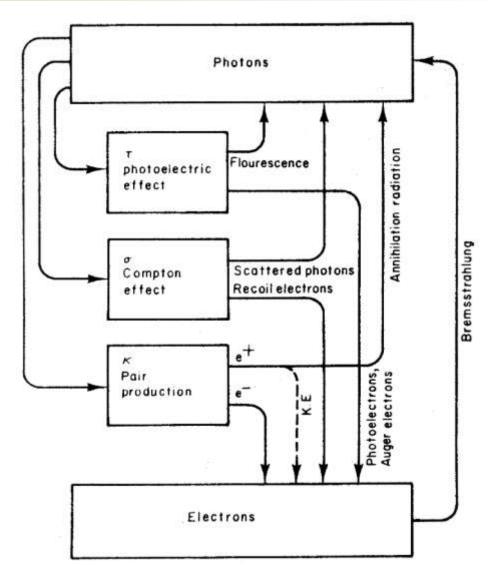
Case 2: Deexcitation by emission of an Auger electron from the L shell

| Emission of Auger electron         | 0          | $h\nu - B_K,$ | $2B_L$ | h u |
|------------------------------------|------------|---------------|--------|-----|
| [Fig. 15.12(c)]                    |            | $B_K - 2B_L$  |        |     |
| First $L$ -shell hole filled by    | $B_L$      | $h\nu - B_K,$ | $B_L$  | h u |
| fluorescence                       |            | $B_K - 2B_L$  |        |     |
| Second <i>L</i> -shell hole filled | $B_L, B_L$ | $h\nu - B_K,$ | 0      | h u |
| by fluorescence                    |            | $B_K - 2B_L$  |        |     |



- Probability of photon emission is called the fluorescence yield,  $W_K$ .
  - Auger yield is  $A_K = 1 W_K$ .
  - L or higher shells: consider yield for each subshell




#### Coster–Kronig transitions

- Radiationless transitions within the subshell
- Hole in L<sub>I</sub>-shell can be filled by an electron from the L<sub>III</sub>-shell with the ejection of an M-shell electron

#### Super-Coster–Kronig transitions

- Involves electrons all within same shell (e.g., all M)
- Auger cascade
  - Bond breaking important for radioactive isotopes

### Energy Transfer from Photons to Electrons



## **Problem Assignments**

- Information posted on web site
- Chapter 15 problems: 3, 4, 7, 8, 9, 14, 16, 17, 18, 19, 21